
www.dbooks.org

https://www.dbooks.org/

ASP.NET Core APIs

Succinctly

Dirk Strauss

Foreword by Daniel Jebaraj

 3

Copyright © 2023 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 111

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-228-7

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Succinctly Series of Books .. 6

About the Author ... 7

Chapter 1 Designing Your API ... 8

What is REST? .. 9

What are resources? ...10

The API design ...10

Project setup ..10

Adding the data project ..15

Working with entities ..18

Adding the IBookData interface ...20

Implement DbContext ..20

Using database migrations to add a database ...24

Adding a column to the database ...30

Adding the data access service ...32

How to use Postman ..34

Chapter 2 Returning Data with Your API ..37

Creating actions ...37

Using status codes ...39

Returning collections with GET ...41

Returning models instead of entities ..45

Returning a single item ...48

Searching data ...50

Chapter 3 Modifying Data with Your API ..53

Add entities using POST ..53

 5

Performing model validation...59

Change entities using PUT ...61

Remove entities using DELETE ...63

Chapter 4 Versioning Your API ...66

Implementing versioning ...66

Version actions ...69

Versioning controllers ...71

Versioning with headers ...75

Versioning with headers and query strings ...76

Versioning using the URL ...77

Conclusion ..79

www.dbooks.org

https://www.dbooks.org/

 6

The Succinctly Series of Books
Daniel Jebaraj

CEO of Syncfusion, Inc.

When we published our first Succinctly series book in 2012, jQuery Succinctly, our goal was to
produce a series of concise technical books targeted at software developers working primarily
on the Microsoft platform. We firmly believed then, as we do now, that most topics of interest
can be translated into books that are about 100 pages in length.

We have since published over 200 books that have been downloaded millions of times.
Reaching more than 2.7 million readers around the world, we have more than 70 authors who
now cover a wider range of topics, such as Blazor, machine learning, and big data.

Each author is carefully chosen from a pool of talented experts who share our vision. The book
before you and the others in this series are the result of our authors’ tireless work. Within these
pages, you will find original content that is guaranteed to get you up and running in about the
time it takes to drink a few cups of coffee.

We are absolutely thrilled with the enthusiastic reception of our books. We believe the
Succinctly series is the largest library of free technical books being actively published today.
Truly exciting!

Our goal is to keep the information free and easily available so that anyone with a computing
device and internet access can obtain concise information and benefit from it. The books will
always be free. Any updates we publish will also be free.

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctlyseries@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on social media and help us spread the word about the Succinctly series!

mailto:succinctlyseries@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.linkedin.com/company/syncfusion

 7

About the Author

Dirk Strauss is a software developer from South Africa. He has extensive experience in
SYSPRO customization, with a focus on C# and web development. He is passionate about
writing code and sharing what he learns with others.

www.dbooks.org

https://www.dbooks.org/

 8

Chapter 1 Designing Your API

If you have been a developer for any amount of time, you will undoubtedly have heard the term
API, which stands for application programming interface. For the purposes of this ebook, one
way to think of these is small bits of code that allow other systems to access data and
communicate. There are probably more systems out there that make use of APIs than you can
shake a stick at.

When you use a website or a mobile application, these systems present data to the user in a
way that is pleasing to the eye and looks all pretty on your device screen. Developers spend a
lot of time making the UI of a system user-friendly. The user types a URL into the browser, and
this opens a website that then displays data, videos, images, and other content formatted in a
user-friendly manner. Essentially, APIs do the same thing. The only difference here is that the
API does not care for formatting any of the data it returns. It is, therefore, mainly used for
communication between systems.

A system can request information from an API, and the API will just return the raw data as well
as other information that can be interpreted by the requesting system. This is all done without
much input from a human. This means that whenever you open a mobile application (for
example), chances are that the application is making use of an API call at some point in its
lifecycle without you knowing it.

As a developer, another term that you’ve probably heard is API integration. This is something
that APIs were designed to facilitate. If you need to take your system and integrate it with
another system, chances are you’re going to make use of the other system’s APIs. Think of
Shopify. Just Google the term “Shopify API,” and you will find the online Shopify API reference
documentation. If you wanted to create an application that could read data from a specific
Shopify store, you would integrate your application with several of the Shopify APIs to enable
the transfer of data between your system and the Shopify system.

This is my first port of call whenever I need to integrate between two systems. Searching for the
API reference documentation is an essential part of understanding the system API that you are
integrating with. And you better believe that not all API documentation is created equal. Some
documentation needs a little more research to make sense of.

Be that as it may, the importance of APIs cannot be underestimated. Postman released the
2021 State of the API Report, which you can find here.

The data was compiled by surveying 28,000 developers and combining that with what was
observed on the Postman platform. There were seven key findings published in this report,
which are as follows:

• The pandemic changed the world, and the world responded with APIs.
• The API ecosystem is global and growing.
• Developers are spending more time with APIs.
• API investments stay strong.
• Quality is the top priority.
• More companies are embracing the API-first philosophy.
• Being API-first pays off.

https://www.postman.com/state-of-api/2021/the-future-of-apis/

 9

The term that jumps out to me is API-first. This means that developers are inclined to design

and define APIs and API schemas before beginning with development. This is sometimes called

bottom-up design. This makes it obvious that APIs are regarded as an essential component in

many developed systems. The chances that you as a developer will be exposed to an API in

some shape or form during your career is very good.

In a blog post, Postman categorizes APIs by who has access to them. These are:

• Internal APIs
• External APIs
• Partner APIs

Internal APIs are private APIs that are used by a team, company, or organization, while external
APIs are APIs that are publicly accessible for anyone to use. Partner APIs are APIs that are
private and only shared with specific integration partners outside of the organization.

There are also several API architectures available. Some of these include:

• REST API
• Webhooks
• SOAP API
• GraphQL API
• WebSocket API
• gRPC API

The word REST should jump out at you here. REST stands for REpresentational State Transfer.
We will be taking a closer look at REST in the next section, but REST APIs are probably one of
the most common APIs used today.

Unfortunately, there are some challenges when creating and consuming APIs. I alluded to the
lack of proper documentation earlier in this section, and this is a very real problem. The
documentation created by the API providers is often listed as the number one obstacle in
helping consumers understand how to implement the API.

Another challenge is a lack of knowledge. Simply consuming an API is vastly different from
actually developing an API. In this book, I will attempt to elucidate both.

You can find the GitHub repository for the code in this book here. Let us start by having a closer
look at REST and what it means to use a REST API.

What is REST?

As mentioned in the previous section, REST stands for REpresentational State Transfer, and it
is a software architectural style that developers use when developing APIs. The REST pattern
provides a simple, uniform interface that can be used to access data (including media and other
digital resources) via web URLs. The concepts of REST are basically:

• Separation of client and server data.
• Server requests are stateless.

www.dbooks.org

https://github.com/SyncfusionSuccinctlyE-Books/ASP.NET-Core-APIs-Succinctly
https://www.dbooks.org/

 10

• Requests can be cached.
• Requests use a uniform interface.

There are a lot of opinions as to what REST is and isn’t. The basic idea, however, was
summarized as follows in a Postman blog:

REST helps you better organize your digital resources and the operations you can
perform against them. It’s about establishing a shared language to describe your digital
capabilities and enable wider collaboration around their web usage.

You will notice that the summary states the organization of digital resources. This is a key
concept in understanding REST.

What are resources?

When talking about REST, we are referring to a URL that points to a resource. Resources are a
representation of the objects in your system, such as products, purchase orders, invoices, or
employees. In other words, resources are the things in your system that you might want to
insert, update, delete, or read.

Some developers think of resources as entities, but it is important to note that resources and
entities are not always the same thing. They could be, but resources can also denote one or
more entities.

Therefore, a resource can be an employee (for example), but it can also be a sales order along
with its associated sales order lines and customer information. Resources can therefore be a
collection of entities or only a single entity. At the end of the day, you need some data from an
API, and the API will combine all the related information across several entities (or a single
entity) and return to you a single representation of this data for use in your system.

The API design

The API we will be creating will be concerned with book information for my library of books. It
will contain basic book information such as ISBN, title, and description. You can make this book
information as verbose as you want to, but for this project, I have kept the information about a
book in my library simple.

Project setup

Our focus is creating an API, but it would be incomplete for me to not go through the initial
creation and setup of the project. To this end, I will show you how to get a basic ASP.NET Core
Web API project created that targets .NET 5.0. I will also show you how to set up a basic data
service using Entity Framework so that we can have some data to test our API with.

For this example project, I will be using Visual Studio 2019 Version 16.9.4, but you can also use
the Community (free) edition of Visual Studio.

https://blog.postman.com/rest-api-definition/

 11

Figure 1: Creating a new project

Start by creating a new ASP.NET Core Web API application using the available project
templates from the Create a new project screen in Visual Studio. As you can see from Figure
1, I will be creating a C# application.

On the next screen (not shown), you can choose a name for your project and solution. You can
call this what you like, but I am creating a book repository API, so I’m calling the solution
BookRepositoryAPI and the project BookRepository.

www.dbooks.org

https://www.dbooks.org/

 12

Figure 2: Choosing the target framework

On the next screen (Figure 2), you can choose your target framework; the one we will be using
in this project is the .NET Framework 5.0. I will not be adding any authentication. You can click
Create to create your project.

 13

Figure 3: The boilerplate code

Visual Studio will now create a basic web API project with some boilerplate code
(WeatherForecast) as shown in Figure 3.

Figure 4: Uncheck Launch browser

www.dbooks.org

https://www.dbooks.org/

 14

Since I am creating an API, there is no user interface to debug. For this reason, I am going to
uncheck the Launch browser option in the project properties as shown in Figure 4. To get to
this option, right-click your BookRepository project in the Solution Explorer window and select
Properties from the context menu. On the BookRepository properties page, select the Debug
tab, and you will see the option to launch a browser. Uncheck this.

A little further down on the properties page, you will see the web server settings, as shown in
Figure 5.

Figure 5: My web server settings

Pay special attention to the URL next to the Enable SSL checkbox. Your port will most likely be
different than the one in Figure 5, which is my URL. Copy this URL, save these changes, and
run your API project.

Because you have set the project not to launch a web browser, you will just see that Visual
Studio is running. If you right-click IIS Express in your taskbar, you will see all the currently
running sites.

Figure 6: Running applications in IIS Express

BookRepository will be one of the running sites, as seen in Figure 6.

Figure 7: URLs for running applications in IIS Express

 15

After clicking the BookRepository site in the running applications screen (Figure 6), you will
see the URLs that can be used to access the API. Note that there are the HTTP and HTTPS
URLs there that were listed on the project properties page in Figure 5.

With your application still running, open a browser and enter the URL
https://localhost:44371/WeatherForecast into the address bar, keeping in mind to

replace the port with the port listed on your property page.

Figure 8: Calling the API in the browser

As you can see in Figure 8, the default API boilerplate code returned some JSON with weather-
related data. Congratulations, you have just done a GET request on the API you created. It is the

most common HTTP method to use. There are others and we will have a look at these in later
sections of this book. For now, you have just made a request to the server and told it that you
want the information on the WeatherForecast resource. The server dutifully responded by
returning you JSON containing the WeatherForecast data.

Adding the data project

The goal of our API is to access data against a real database. For this reason, we will be adding
a data project called BookRepository.Data to the solution. Right-click your BookRepositoryAPI
solution and add a C# class library project.

www.dbooks.org

https://www.dbooks.org/

 16

Figure 9: Targeting .NET 5.0

As you can see in Figure 9, the class library targets .NET 5.0.

Figure 10: Adding Entity Framework Core

Once the BookRepository.Data project has been added, we need to install the NuGet package
Microsoft.EntityFrameworkCore to the data project, as seen in Figure 10.

 17

Figure 11: Install the latest stable EF Core NuGet package

Click Install to add Microsoft.EntityFrameworkCore to the data project. When all is done,
your solution will look like Figure 12. Expanding the Dependencies under the
BookRepository.Data project, you will see that Microsoft.EntityFrameworkCore (5.0.11) is
listed as a dependency.

Entity Framework Core (EF Core) serves as an O/RM that allows developers to:

• Work against a database using .NET objects.
• Remove the need to write explicit low-level data access code.

When you use EF Core, data access is provided using a model. This comprises entity classes
and a context object and represents a database session, allowing you to query and save data.

www.dbooks.org

https://www.dbooks.org/

 18

Figure 12: EF Core added to the data project references

It would not, however, make much sense if we didn’t add any entities to work with. Let’s do that
next.

Working with entities

Earlier in this chapter, we stated that resources could contain several entities. Now, we will
create some of these entities for our BookRepository project. Our project will be dealing with
books, but so far we have nothing that defines exactly what a book is. This is the job of an
entity. It tells our application what a book entity will look like.

As before (Figure 9), go ahead and add another class library project called
BookRepository.Core to your solution. Again, select .NET 5.0 as the target framework and
create the project. You can delete the default Class1.cs class or rename it if you like. What you

need to end up with is a class called Book.cs.

You can see this entity in Code Listing 1. It simply contains properties that describe a book in
our repository. For now, we will just add some basic information about a book, such as the ISBN
and title.

 19

Code Listing 1: The Book entity

namespace BookRepository.Core
{
 public class Book
 {
 public int Id { get; set; }
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Publisher { get; set; }
 }
}

When you have added your Book entity, your solution will look like Figure 13.

Figure 13: The Book entity

Let us swing back to our data project and flesh this out a bit by adding an interface for our book
data.

www.dbooks.org

https://www.dbooks.org/

 20

Adding the IBookData interface

We need to add an interface for the book data so that we can tell our API what methods need to
be implemented in the data service we want to create. Once the data service implements the
IBookData interface, it will be up to the data service to decide exactly how to provide the

implementation of the interface.

Inside the BookRepository.Data project, add an interface called IBookData. You can see the

code for the interface in Code Listing 2.

Code Listing 2: The IBookData interface

using BookRepository.Core;
using System.Collections.Generic;

namespace BookRepository.Data
{
 public interface IBookData
 {
 IEnumerable<Book> ListBooks();
 Book GetBook(int Id);
 Book UpdateBook(Book bookData);
 Book AddBook(Book newBook);
 int Save();
 }
}

You can see that you will have to reference the BookRepository.Core project to use the Book

entity in your BookRepository.Data project. All this interface does is tell the data service that it
must implement some logic to return a list of books, to get a specific book, to update a book, to
add a book, and to save a book. By using an interface, we can decouple the data access
service by allowing it to implement the IBookData interface. No matter what our data service

looks like, as long as it implements the interface, it will be able to be injected into our services
collection.

 Note: Our interface will change when we start creating the API, specifically to
include async methods. For now, I just want to get the basics in and create the
DbContext.

The next thing we need to do is implement a DbContext.

Implement DbContext

A DbContext instance represents a session with the database. It allows us to save and query

entity instances. Delete the existing Class1.cs file in the BookRepository.Data project and

add a new class called BookRepoDbContext.cs. You can see the code for the

BookRepoDbContext.cs class in Code Listing 3.

 21

The API will work with Book entities; therefore, the BookRepoDbContext simply has a property

of type DbSet<Book>. This tells Entity Framework that I want to query, add, delete, and update

books. You will see that I also had to add references to the BookRepository.Core project and to
Microsoft.EntityFrameworkCore.

I do agree that the name DbSet is not particularly clear about its purpose. If you ever doubt what

the purpose of a class is in .NET, you can view the metadata by clicking it and pressing F12.
The code comments here are your friend in helping you understand what the particular class
does.

Code Listing 3: The BookRepoDbContext

using BookRepository.Core;
using Microsoft.EntityFrameworkCore;

namespace BookRepository.Data
{
 public class BookRepoDbContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}

The property on the BookRepoDbContext will allow us to work with our database. We will be

using LocalDB as our database, and it is installed when you install Visual Studio. To check if

LocalDB is installed, run sqllocaldb info in the command prompt.

Figure 14: Check if LocalDB is installed

The API will use the built-in LocalDB database that is listed in the output displayed in Figure 14.
To see more info about the MSSQLLocalDB instance, run the command sqllocaldb info
mssqllocaldb from the command prompt, as you can see in Figure 15.

www.dbooks.org

https://www.dbooks.org/

 22

Figure 15: Info regarding MSSQLLocalDB

You can also view the LocalDB instance in Visual Studio by going to View > SQL Server

Object Explorer. This instance may contain several databases, and it is this instance that we
need to create a connection to. This we need to specify in the appsettings.json file that

should be in your BookRepository project.

Code Listing 4: The appsettings.json file

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "ConnectionStrings": {
 "BookConn": "Data Source=(localdb)\\MSSQLLocalDB;Initial
Catalog=BookRepo;Integrated Security=True"
 }
}

The code for the appsettings.json file is presented in Code Listing 4. All I have done is add a

new section called ConnectionStrings that contains a key and value pair for the various

database connections we want to use. This section can contain more than one database
connection, hence the section ConnectionStrings being plural. The key for our database

connection is called BookConn, and the value is the connection string to the database called

BookRepo (a database that does not exist yet).

Next, we need a way to tell the DbContext about this connection to the database we would like

to use. We will do this in the ConfigureServices method of the Startup.cs class. Modify the

ConfigureServices method as illustrated in Code Listing 5.

 23

Code Listing 5: The ConfigureServices method

public void ConfigureServices(IServiceCollection services)
 {

 _ = services.AddControllers();
 _ = services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc(“v1”, new OpenApiInfo { Title =
“BookRepository”, Version = “v1” });
 });

 _ = services.AddDbContextPool<BookRepoDbContext>(dbContextOptns
=>
 {
 _ = dbContextOptns.UseSqlServer(
 Configuration.GetConnectionString(“BookConn”));
 });
 }

This registers the DbContext as a service in the IServiceCollection.

The UseSqlServer method tells the Entity Framework about the DbContext being used in the

API.

Tip: You will probably need to add the Microsoft.EntityFrameworkCore and
Microsoft.EntityFrameworkCore.SqlServer NuGet packages to the BookRepository
project.

We also specify that DbContext pooling should be used, which allows for increased throughput.

This is because instances of DbContext are reused instead of having new instances created for

each request.

 Note: Pay attention to the fact that the key being used for our connection in the
appsettings.json file has to be an exact match to the string being passed to the
GetConnectionString method seen in Code Listing 5.

Now that we have registered the DbContext as a service in the IServiceCollection, we need

to change the BookRepoDbContext class slightly to tell it about the connection string we

specified along with any other options specified with the DbContextOptionsBuilder in the

ConfigureServices method.

Code Listing 6: The modified BookRepoDbContext class

using BookRepository.Core;
using Microsoft.EntityFrameworkCore;

www.dbooks.org

https://www.dbooks.org/

 24

namespace BookRepository.Data
{
 public class BookRepoDbContext : DbContext
 {
 public BookRepoDbContext(DbContextOptions<BookRepoDbContext>
dbContextOptns) : base(dbContextOptns)
 {

 }

 public DbSet<Book> Books { get; set; }
 }
}

Swing back to the BookRepoDbContext class and add a constructor that takes

DbContextOptions as a parameter (seen in Code Listing 6). We are now finally ready to use

database migrations to create the database we specified in the connection string specified in the
appsettings.json file (seen in Code Listing 4).

Using database migrations to add a database

For this portion of the process, we will be using the dotnet tool. The dotnet tool should be
already installed; you can check by typing the command dotnet --info at the command

prompt. If you do not have the dotnet tool installed, you can install it by running the command
dotnet tool install –global dotnet-ef.

You can find more information on installing the dotnet tool by visiting this website.

We also need to make sure that we have the Microsoft.EntityFrameworkCore.Design NuGet
package added to our BookRepository and BookRepository.Data projects. After adding the
NuGet package, your solution should now look as illustrated in Figure 16.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-tool-install

 25

Figure 16: The BookRepositoryAPI solution with the installed NuGet packages

It is extremely important that the NuGet package versions of Entity Framework Core match
between the BookRepository and BookRepository.Data projects. My versions are 5.0.11.

Before adding and running any migrations, I always run the command dotnet ef dbcontext
info, also specifying the startup project. This way I can catch any missing NuGet packages

(you might miss the addition of the Design NuGet package, for example).

www.dbooks.org

https://www.dbooks.org/

 26

Open a command prompt and change the directory to the BookRepository.Data project folder.
Now run the following command: dotnet ef dbcontext info -s
..\BookRepository\BookRepository.csproj. The output should look as illustrated in Figure

17.

Figure 17: Running dbcontext info

It is important to specify the startup project using the -s option. This is because the

BookRepository.Data project does not know about the Startup.cs class that contains the

ConfigureServices method.

If this command produced the output as illustrated in Figure 17, we should be in a good position
to add the migration to our data project.

Database migrations will enable us to keep the database in sync when a model in our project
changes. EF Core will compare the current data model to a snapshot of the old model and
figure out what has changed. It will then generate migration files and apply those migrations to
the database and record the history in a table. This is nice because it allows you to see which
migrations have been applied.

Keeping the command prompt pointed to the BookRepository.Data project, run dotnet ef
migrations from the command line.

Code Listing 7: Available commands

Usage: dotnet ef migrations [options] [command]

Options:
 -h|--help Show help information
 -v|--verbose Show verbose output
 --no-color Don't colorize output
 --prefix-output Prefix output with level

Commands:
 add Adds a new migration
 list Lists available migrations
 remove Removes the last migration
 script Generates a SQL script from migrations

Use "migrations [command] --help" for more information about a command.

 27

From the output, you will notice that we have a few commands available to us. These are:

• add
• list
• remove
• script

In our case, we want to add a new migration. From the command prompt, run the dotnet ef
migrations add --help command.

Code Listing 8: The add command arguments and options

Usage: dotnet ef migrations add [arguments] [options]

Arguments:
 <NAME> The name of the migration.

Options:
 -o|--output-dir <PATH> The directory to put files in.
Paths are relative to the project directory. Defaults to "Migrations".
 --json Show JSON output. Use with --
prefix-output to parse programatically.
 -n|--namespace <NAMESPACE> The namespace to use. Matches the
directory by default.
 -c|--context <DBCONTEXT> The DbContext to use.
 -p|--project <PROJECT> The project to use. Defaults to
the current working directory.
 -s|--startup-project <PROJECT> The startup project to use.
Defaults to the current working directory.
 --framework <FRAMEWORK> The target framework. Defaults to
the first one in the project.
 --configuration <CONFIGURATION> The configuration to use.
 --runtime <RUNTIME_IDENTIFIER> The runtime to use.
 --msbuildprojectextensionspath <PATH> The MSBuild project extensions
path. Defaults to "obj".
 --no-build Don't build the project. Intended
to be used when the build is up-to-date.
 -h|--help Show help information
 -v|--verbose Show verbose output.
 --no-color Don't colorize output.
 --prefix-output Prefix output with level.

From the output in Code Listing 8, you will notice that you can give the migration a name when
adding it. I am simply going to call this migration Initial to show that it was the first one

created. To add this migration, run the command listed in Code Listing 9 from the command
prompt.

www.dbooks.org

https://www.dbooks.org/

 28

Code Listing 9: Adding the first migration

dotnet ef migrations add Initial -s ..\BookRepository\BookRepository.csproj

Notice that we still need to specify the startup project by specifying the -s option after the

migration name Initial.

Code Listing 10: Migration successfully added

Build started...
Build succeeded.
Done. To undo this action, use 'ef migrations remove'

After the migration has been added, have a look at the BookRepository.Data project in Visual
Studio.

Figure 18: Migrations added to BookRepository.Data project

A Migrations folder has been added to the BookRepository.Data project. You will also see the
Initial migration created, called 20211107110645_Initial.cs.

 29

We are now ready to create the database in the LocalDB instance.

 Note: It was here that I found out that the BookRepository.Data project required
NuGet packages called Microsoft.EntityFrameworkCore.Relational and
Microsoft.EntityFrameworkCore.SqlServer. Just add these NuGet packages to the
data project and you should be good to go.

From the command prompt, run the dotnet build command. If you get a successful build, go

ahead and run the command as listed in Code Listing 11.

Code Listing 11: Create the database on LocalDB

dotnet ef database update -s ..\BookRepository\BookRepository.csproj

When the command has been completed, you can open the SQL Server Object Explorer and
expand the Databases folder under the MSSQLLocalDB instance to see the created database
as illustrated in Figure 19.

Figure 19: The created BookRepo database

www.dbooks.org

https://www.dbooks.org/

 30

Expanding the Tables folder, you will see the __EFMigrationsHistory table as well as the
Books table.

Figure 20: Viewing the Books table columns

Expanding the columns, I see that I have forgotten to add a column for Author. How do I add
this column to my database? It is here that database migrations show their true worth.

Adding a column to the database

Previously I saw that I had forgotten to add an Author column. This is a problem because it is
information that I will need going forward. Luckily, updating the database is simple. It only
requires that we update our Book class in the BookRepository.Core project, as seen in Code

Listing 12.

Code Listing 12: The updated Book class

namespace BookRepository.Core
{
 public class Book
 {
 public int Id { get; set; }
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Publisher { get; set; }
 public string Author { get; set; }
 }
}

 31

All I have done is add a new property for Author. The next thing I need to do is add a new

migration with this change. As mentioned earlier in this section, database migrations enable us
to keep the database in sync when a model in our project changes. EF Core will compare the
current data model to a snapshot of the old model and figure out what has changed.

Code Listing 13: Adding the new database migrations

dotnet ef migrations add BookModelUpdate1 -s
..\BookRepository\BookRepository.csproj

Run the command in Code Listing 13 to create a new database migrations file called
BookModelUpdate1, and then you will see that it has been added to the Migrations folder in the

BookRepository.Data project, as seen in Figure 21.

Figure 21: The BookModelUpdate1 database migration

All that remains to be done is to run the database migrations by executing the command in
Code Listing 14 in the command prompt.

Code Listing 14: Updating the database

dotnet ef database update -s ..\BookRepository\BookRepository.csproj

After this has been completed, refresh the Books table in the database and you will see that the

Author column has been added, as shown in Figure 22.

www.dbooks.org

https://www.dbooks.org/

 32

Figure 22: The updated Books table

This is generally the process that you will follow when modifying and adding to the database
when our models change in the project. All that remains for us to do now is to add a data access
service.

Adding the data access service

Create a new class called SqlData in the BookRepository.Data project, and let it implement

the IBookData interface. The complete code is found in Code Listing 15, so I will not go through

this in any detail. Suffice to say that it is quite basic and all that we need to start building our
API.

Code Listing 15: The SqlData data service class

using BookRepository.Core;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

namespace BookRepository.Data
{
 public class SqlData : IBookData
 {
 private readonly BookRepoDbContext _database;

 public SqlData(BookRepoDbContext database)
 {
 _database = database;

 33

 }

 public Book AddBook(Book newBook)
 {
 _ = _database.Add(newBook);
 return newBook;
 }

 public Book GetBook(int Id)
 {
 return _database.Books.Find(Id);
 }

 public IEnumerable<Book> ListBooks()
 {
 return _database.Books.OrderBy(b => b.Title);
 }

 public int Save()
 {
 return _database.SaveChanges();
 }

 public Book UpdateBook(Book bookData)
 {
 var entity = _database.Books.Attach(bookData);
 entity.State = EntityState.Modified;
 return bookData;
 }
 }
}

Lastly, we need to register our data access service in the services collection. Switch to the

BookRepository project and open the Startup.cs class.

Code Listing 16: Registering the data service

services.AddScoped<IBookData, SqlData>();

We are adding this service registration and telling our API that whenever something asks for an
implementation of IBookData, give it the SqlData class, as seen in Code Listing 16.

Code Listing 17: The modified ConfigureServices method

public void ConfigureServices(IServiceCollection services)
 {

 _ = services.AddControllers();

www.dbooks.org

https://www.dbooks.org/

 34

 _ = services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new OpenApiInfo { Title =
"BookRepository", Version = "v1" });
 });

 _ = services.AddDbContextPool<BookRepoDbContext>(dbContextOptns
=>
 {
 _ = dbContextOptns.UseSqlServer(
 Configuration.GetConnectionString("BookConn"));
 });

 _ = services.AddScoped<IBookData, SqlData>();
 }

This line of code is added to the ConfigureServices method of the Startup.cs class, as seen

in Code Listing 17. This is all that we will need to wire up our project with a SQL database to
work with. I will leave populating the Books table with data up to you. It is quite easy to do.

Right-click on the table in SQL Server Object Explorer, select View Data, and start plugging in
some data to work with.

Figure 23: The data in my Books table

Figure 23 shows the data that I have added to my Books table.

How to use Postman

Throughout this book, I will be using Postman to test the API. Postman is a free tool that you
can download here. Once you have installed Postman, you can start using it to call APIs. As a
quick start, I will show you how to perform a simple GET operation on the official public API for

the public-apis project.

First, have a look at the project page on GitHub.

The URL in Code Listing 18 is the public APIs URL. All that the GET will return is a list of all

public APIs currently cataloged in the project.

https://www.postman.com/
https://github.com/davemachado/public-api

 35

Code Listing 18: Public APIs URL

https://api.publicapis.org/entries

In Postman, make sure that you have selected a GET operation, and then paste the URL from

Code Listing 18 into the URL field, as illustrated in Figure 24. Click Send to make the GET

request.

Figure 24: The URL for the GET operation

Postman will make the API call and return the response to you from the GET request as shown

in Figure 25.

Figure 25: The GET response JSON

www.dbooks.org

https://www.dbooks.org/

 36

As you can see, it simply returns a list of APIs in its catalog. The contents of the response here
are of no concern to us (except for perhaps the axolotl API—everyone loves axolotls). What is
important is understanding what Postman can do for us.

Postman gives us a way to test the workings of our API, which, as you can imagine, is going to
be created without a UI. This book is not going to go in depth on the topic of using Postman; the
examples will illustrate the most basic usage. However, I encourage you to get to know
Postman better. It is an extremely powerful tool and knowing how to use it properly will prepare
you for your future API development.

 37

Chapter 2 Returning Data with Your API

The first thing we will be doing is adding a new controller and letting it return some dummy data.

This is just a way to start hooking up the bits and pieces that make up our API.

Creating actions

In Visual Studio, create a new controller called BookController. You can delete the default

WeatherForecastController that was created as part of the project.

Figure 26: The new BookController

Your solution will look as illustrated in Figure 26. Open the controller and start by adding a
simple GET action that will return an anonymous object containing a book title and ISBN.

Looking at Code Listing 19, it is important to note that the BookController class inherits from

ControllerBase. This is just the base class for a controller without view support. Seeing as we

aren’t going to have any views, this is perfect.

www.dbooks.org

https://www.dbooks.org/

 38

Code Listing 19: The BookController

using Microsoft.AspNetCore.Mvc;

namespace BookRepository.Controllers
{
 [Route("api/book")]
 public class BookController : ControllerBase
 {
 public object Get()
 {
 return new { Title = "Sapiens", ISBN = "9780062316110" };
 }
 }
}

You will also notice that we are specifying the route on the BookController class with a route

attribute of api/book. If you ran your API project now and performed a GET request in Postman

using the URL https://localhost:44371/api/book, then your hardcoded JSON data will be

returned to you.

By convention, however, we would never hard-code a route, as illustrated in Code Listing 19.
We would use [controller] to tell the API to use whatever comes before the word

controller as our route. Do this now by changing the route from [Route("api/book")] to

[Route("api/[controller]")], as seen in Code Listing 20.

Code Listing 20: Using a more flexible route

using Microsoft.AspNetCore.Mvc;

namespace BookRepository.Controllers
{
 [Route("api/[controller]")]
 public class BookController : ControllerBase
 {
 public object Get()
 {
 return new { Title = "Sapiens", ISBN = "9780062316110" };
 }
 }
}

Run your API in Visual Studio and perform the same GET request in Postman using the URL

https://localhost:44371/api/book. As illustrated in Figure 27, the results returned are the

same as before we changed the route. The only difference is that it is not hard-coded to Book.

 39

Figure 27: The GET results

You will also notice that the API returned a status code of 200. This means that the GET request

was successful. The question we now have is, what if something went wrong during the API
call? How would we inform the user of this event? This is where an explanation of using status
codes is required.

Using status codes

Calling an API requires a request and a response: you make a request, and the API responds.
As part of the response, the API uses status codes to indicate the status of the request. Did it
succeed or not; was the resource found or not; are you authorized to make this request or not?

There are quite a few status codes that can be used, but the following table lists some of the
main ones that you might come across.

Table 1: Status codes

Code Description

200 OK

201 Created

202 Accepted

302 Found

304 Not Modified

307 Temp Redirect

308 Perm Redirect

400 Bad Request

401 Not Authorized

403 Forbidden

www.dbooks.org

https://www.dbooks.org/

 40

Code Description

404 Not Found

405 Method Not Allowed

409 Conflict

500 Internal Error

The three status code ranges that you will be most concerned about are:

• 2xx: The request worked.
• 4xx: You did something wrong.
• 5xx: There was an error on the server.

The 500 range includes:

• 503: Service Unavailable
• 504: Gateway Timeout

There is not just a single 500 status code, as listed in Table 1. For a full list of HTTP status
codes, have a look at the list provided by the Internet Assigned Numbers Authority.

Status codes give us the ability to provide a clear response to the requester as to the outcome
of their request. It is these status codes that we will be utilizing in our API. Looking back to Code
Listing 20, modify your code as illustrated in Code Listing 21.

Code Listing 21: Modified action

using Microsoft.AspNetCore.Mvc;

namespace BookRepository.Controllers
{
 [Route("api/[controller]")]
 public class BookController : ControllerBase
 {
 [HttpGet]
 public IActionResult GetBooks()
 {
 return Ok(new { Title = "Sapiens", ISBN = "9780062316110" });
 }
 }
}

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

 41

I have changed the Get method to return an IActionResult and added the HttpGet attribute

to the method. This allows me to indicate that this method is the GET action on the same route

that we specified on the controller. The name of the method (or action), therefore, isn’t
important, and we can be a bit more descriptive in naming our actions. I am also wrapping the
return object with an Ok method that indicates what status code to return. The Ok method is

defined in the ControllerBase class, so it is available to the derived BookController class.

The GetBooks action is, therefore, our endpoint on this API to return a list of books.

Calling your API in Postman again, you should still receive the response as seen in Figure 27.
You will see how to use different status codes later on in this book, but for now, we are just
returning Ok which is a status 200.

Returning collections with GET

Our API project contains a data access layer. We set this up in Chapter 1. We now want to be
able to use the data layer and perform API actions against our database. If you look back to
Code Listing 16, you will remember that we registered our data access service in the services
collection in the Startup.cs class. This allows us to use dependency injection to inject this

service into our classes and use the service to perform actions against the database.

To inject the data access service into our controller, we will need to create a constructor.
Looking at the complete code in Code Listing 22, you will see that it has changed somewhat. I
have added a constructor and passed in the IBookData interface. This dependency injection

allows me to use the data access service in my controller.

Code Listing 22: Modifying the BookController

using BookRepository.Data;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using System;

namespace BookRepository.Controllers
{
 [Route("api/[controller]")]
 public class BookController : ControllerBase
 {
 private readonly IBookData _service;

 public BookController(IBookData service)
 {
 _service = service;
 }

 [HttpGet]
 public IActionResult GetBooks()
 {
 try

www.dbooks.org

https://www.dbooks.org/

 42

 {
 var books = _service.ListBooks();
 return Ok(books);
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError,
"There was a database failure");
 }
 }
 }
}

I have also added a try block with a catch that returns a different status code. The

StatusCodes class is in the Microsoft.AspNetCore.Http namespace, so you will have to

import this namespace, too.

In the try block, I am using the service to return the list of books. With this code in place, call

the API again in Postman, and you will see that it returns the results stored in the database.

Code Listing 23: The list of books returned from my database

[
 {
 "id": 2,
 "isbn": "076790818X",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or entertaini
ng.",
 "publisher": "Crown",
 "author": "Bill Bryson"
 },
 {
 "id": 1,
 "isbn": "0465030335",
 "title": "Letters to a Young Contrarian",
 "description": "In the book that he was born to write, provocateur
and best-
selling author Christopher Hitchens inspires future generations of radicals
, gadflies, mavericks, rebels, angry young (wo)men, and dissidents.",
 "publisher": "Basic Books",
 "author": "Christopher Hitchens"
 },
 {
 "id": 3,
 "isbn": "9780062316110",
 "title": "Sapiens",

 43

 "description": "One hundred thousand years ago, at least six differ
ent species of humans inhabited Earth. Yet today there is only one—
homo sapiens. What happened to the others?",
 "publisher": "Harper Perennial",
 "author": "Yuval Noah Harari"
 }
]

The results that are returned for you will most likely be different (because you would have added
different book data than I have). In Chapter 1, Figure 23, however, you can see that the data in
my database table matches the data returned here in the API call. But there is still something
that I don’t like. I want to do this GET request asynchronously (and you should implement

async). For this, we need to modify the IBookData interface, as seen in Code Listing 24.

Code Listing 24: The modified IBookData interface

using BookRepository.Core;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace BookRepository.Data
{
 public interface IBookData
 {
 IEnumerable<Book> ListBooks();
 Task<IEnumerable<Book>> ListBooksAsync();
 Book GetBook(int Id);
 Book UpdateBook(Book bookData);
 Book AddBook(Book newBook);
 int Save();
 }
}

I have added Task<IEnumerable<Book>> ListBooksAsync() to the interface, and this needs

to be implemented on the SqlData.cs class. The implementation of this async method is

illustrated in Code Listing 25.

Code Listing 25: Implemented ListBooksAsync in SqlData.cs

public async Task<IEnumerable<Book>> ListBooksAsync()
{
 return await _database.Books
 .OrderBy(b => b.Title)
 .ToListAsync();
}

www.dbooks.org

https://www.dbooks.org/

 44

We can now use this asynchronous method in our Controller action by changing the

IActionResult to async Task<IActionResult> and awaiting the call to the service, as

illustrated in Code Listing 26.

Code Listing 26: Calling ListBooksAsync in the controller

using BookRepository.Data;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using System;
using System.Threading.Tasks;

namespace BookRepository.Controllers
{
 [Route("api/[controller]")]
 public class BookController : ControllerBase
 {
 private readonly IBookData _service;

 public BookController(IBookData service)
 {
 _service = service;
 }

 [HttpGet]
 public async Task<IActionResult> GetBooks()
 {
 try
 {
 var books = await _service.ListBooksAsync();
 return Ok(books);
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError,
"There was a database failure");
 }
 }
 }
}

Calling the API endpoint again will still return the same data from your database, but the call is
done asynchronously.

 Note: Be sure to add the System.Threading.Tasks namespace.

This whole time, we have just been changing the logic in our controller while the actual API call
remains the same.

 45

Returning models instead of entities

There is one more thing that I want to do. I do not want to directly return the entity from my API
call. Looking back to Code Listing 23, you will notice that the data returned included the
database ID for the book. This is information that I do not want to expose to the user. I can use
a model here to control what I return to the user.

 Note: Sometimes you will want to filter out data for security reasons too.

Start by adding a Models folder to your BookRepository project. Inside this folder, add a new

class called BookModel, as illustrated in Figure 28.

Figure 28: The Models folder and the BookModel class

The code for BookModel is almost the same as the Book entity. The only difference here is that

BookModel does not have a property for the Id.

Code Listing 27: The BookModel

namespace BookRepository.Models
{
 public class BookModel
 {
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }

www.dbooks.org

https://www.dbooks.org/

 46

 public string Publisher { get; set; }
 public string Author { get; set; }
 }
}

This is what we want. We do not want to return the whole Book entity to the user, and a model

allows us to filter the data that is returned to the user.

The next change that we need to do is modify our API action on the BookController to return

the BookModel instead of the Book entity. Now the code illustrated in Code Listing 28 is

perfectly valid code. There are, however, much shorter (and in my opinion, better) ways to do
this mapping between the Book entity and the BookModel model. There is a very good tool

called AutoMapper that will automatically map classes.

You can find AutoMapper on NuGet.

I decided that implementing AutoMapper here and going into an explanation of how to set it up
and use it was beyond the scope of this book. Just be aware that there are mapping tools such
as AutoMapper that can reduce the code illustrated in Code Listing 28 to a few lines.

Code Listing 28: The Modified controller action

[HttpGet]
public async Task<ActionResult<List<BookModel>>> GetBooks()
{
 try
 {
 var books = await _service.ListBooksAsync();
 return (from book in books
 let model = new BookModel()
 {
 Author = book.Author,
 Description = book.Description,
 Title = book.Title,
 Publisher = book.Publisher,
 ISBN = book.ISBN
 }
 select model).ToList();
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }
}

https://www.nuget.org/packages/automapper/

 47

Comparing the code for the GetBooks action in Code Listing 28 to the code in Code Listing 26,

you will notice that I have changed the GetBooks action from public async
Task<IActionResult> GetBooks() to public async
Task<ActionResult<List<BookModel>>> GetBooks().

I have changed the IActionResult to ActionResult that takes the return type

List<BookModel> as a parameter.

I can now remove the return Ok(books) and return the mapped BookModel directly. Because

this matches the return type of GetBooks, a status of 200 will be returned for us.

Calling the API again in Postman, you will see that the book data is returned without the Id

property for each book, as illustrated in Code Listing 29.

Code Listing 29: The data returned from the BookModel

[
 {
 "isbn": "076790818X",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or entertaini
ng.",
 "publisher": "Crown",
 "author": "Bill Bryson"
 },
 {
 "isbn": "0465030335",
 "title": "Letters to a Young Contrarian",
 "description": "In the book that he was born to write, provocateur
and best-
selling author Christopher Hitchens inspires future generations of radicals
, gadflies, mavericks, rebels, angry young (wo)men, and dissidents.",
 "publisher": "Basic Books",
 "author": "Christopher Hitchens"
 },
 {
 "isbn": "9780062316110",
 "title": "Sapiens",
 "description": "One hundred thousand years ago, at least six differ
ent species of humans inhabited Earth. Yet today there is only one—
homo sapiens. What happened to the others?",
 "publisher": "Harper Perennial",
 "author": "Yuval Noah Harari"
 }
]

www.dbooks.org

https://www.dbooks.org/

 48

We have now filtered out data and given the user only the data that we wanted to expose to
them.

Returning a single item

While I do not want to display a book ID to the user, I do want to use that ID so that I can return
a single book from my API. Doing this is easy. As before, I will be modifying my interface to add
an asynchronous call to the database to return a single book based on its Id.

Modify your interface as illustrated in Code Listing 30.

Code Listing 30: The IBookData interface

using BookRepository.Core;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace BookRepository.Data
{
 public interface IBookData
 {
 IEnumerable<Book> ListBooks();
 Task<IEnumerable<Book>> ListBooksAsync();
 Book GetBook(int Id);
 Task<Book> GetBookAsync(int Id);
 Book UpdateBook(Book bookData);
 Book AddBook(Book newBook);
 int Save();
 }
}

Implement that method on your SqlData class, as illustrated in Code Listing 31.

Code Listing 31: The GetBookAsync implementation in SqlData

public async Task<Book> GetBookAsync(int Id)
{
 return await _database.Books.FindAsync(Id);
}

In your controller (Code Listing 32), add a new action called GetBook and include the HttpGet

attribute. In addition to HttpGet, include a route value called Id. This will bind the route value to

the Id parameter passed to the GetBook action, and it will look for it after the slash of the

[controller] section in the controller route api/[controller].

 49

Code Listing 32: The GetBook action

[HttpGet("{Id}")]
public async Task<ActionResult<BookModel>> GetBook(int Id)
{
 try
 {
 var result = await _service.GetBookAsync(Id);
 return result == null
 ? NotFound($"The book with ID {Id} was not found")
 : new BookModel()
 {
 Author = result.Author,
 Description = result.Description,
 Title = result.Title,
 Publisher = result.Publisher,
 ISBN = result.ISBN
 };
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }
}

The action then calls the GetBookAsync method on the data service, and if the result is null, it

will return a NotFound status.

Run your API and in Postman make a GET request to the URL

https://localhost:44371/api/book/1, replacing the port 44371 that I am using with the

port you are using.

Code Listing 33: The book result returned

{
 "isbn": "0465030335",
 "title": "Letters to a Young Contrarian",
 "description": "In the book that he was born to write, provocateur and
best-
selling author Christopher Hitchens inspires future generations of radicals
, gadflies, mavericks, rebels, angry young (wo)men, and dissidents.",
 "publisher": "Basic Books",
 "author": "Christopher Hitchens"
}

www.dbooks.org

https://www.dbooks.org/

 50

Looking back to Figure 23 in Chapter 1, you will see that this is the book with Id = 1 that I

added to my database table. Changing your API call to specify an invalid book Id (999 for

example), the API will return a Not Found status, as illustrated in Figure 29.

Figure 29: Book not found response

If you do get a valid book returned with Id = 999, I will have to congratulate you on your

persistence in adding all those books. Try looking for -1 instead to see the NotFound return

status.

Searching data

I want to be able to give the user the ability to search books based on the ISBN. This will allow
the user to find specific books because ISBNs are unique, and if you have the exact ISBN, you
will find the book that you are looking for. I also want the user to be able to find books if they
only enter a part of the ISBN. The API should return all books that have ISBNs starting with the
number they type.

To enable searching, we will use query strings and the query string will be mapped to the Isbn

parameter on the SearchIsbn action, which is illustrated in Code Listing 34. We are also telling

the API that any URLs that come to the API with the word search after the controller section in

the route must be handled by this action called SearchIsbn.

The SearchIsbn action simply does the call to the ListBooksAsync method on our data

service, and then filters the returned book list for all books that have ISBNs starting with the
value we supplied in the query string.

Code Listing 34: Adding the SearchIsbn action

[HttpGet("search")]
public async Task<ActionResult<List<BookModel>>> SearchIsbn(string Isbn)
{
 try
 {
 var books = await _service.ListBooksAsync();
 var results = books.Where(b => b.ISBN.StartsWith(Isbn));
 return !results.Any()
 ? NotFound()
 : (from book in results
 let model = new BookModel()
 {

 51

 Author = book.Author,
 Description = book.Description,
 Title = book.Title,
 Publisher = book.Publisher,
 ISBN = book.ISBN
 }
 select model).ToList();
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }
}

If no books are found, then we simply return a NotFound status. Assuming that you have a book

with an ISBN of 076790818X in your table, run the API and call the book search using the URL
https://localhost:44371/api/book/search?Isbn=076790818X.

Seeing as my table does have a book with the ISBN 076790818X, the API will return that
specific book result, as seen in Code Listing 35.

Code Listing 35: The result for ISBN 076790818X

[
 {
 "isbn": "076790818X",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or entertaini
ng.",
 "publisher": "Crown",
 "author": "Bill Bryson"
 }
]

If, however, I am unsure of the ISBN and only know that it starts with a 0, I can perform a book

search using the URL https://localhost:44371/api/book/search?Isbn=0 instead.

Code Listing 36: The result for book ISBNs starting with 0

[
 {
 "isbn": "076790818X",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or entertaini
ng.",
 "publisher": "Crown",

www.dbooks.org

https://www.dbooks.org/

 52

 "author": "Bill Bryson"
 },
 {
 "isbn": "0465030335",
 "title": "Letters to a Young Contrarian",
 "description": "In the book that he was born to write, provocateur
and best-
selling author Christopher Hitchens inspires future generations of radicals
, gadflies, mavericks, rebels, angry young (wo)men, and dissidents.",
 "publisher": "Basic Books",
 "author": "Christopher Hitchens"
 }
]

In a production system, searching for an ISBN starting with 0 is not going to be useful at all (it

will return too many books), but the logic here is clear. I have only three books in my database,
so doing this search is easy enough to illustrate the point.

As homework, why don’t you try and create a search for other book properties? Add in several
books from the same author and do an author search. Your API code can be extended easily to
accommodate this type of search.

Let’s see how to modify data in the next chapter.

 53

Chapter 3 Modifying Data with Your API

APIs would not be much use if they couldn’t allow the modification of data to occur. We saw in
the previous chapter that we can precisely control what the user sees by returning a model
instead of an entity during a GET request. As is the case here, when modifying data, you are in

control, and you can expose that functionality to the consumer of your API.

There are other HTTP verbs to accommodate the modification of data. The verbs you would
commonly use with APIs are:

• GET: Read data from a resource.
• POST: Create a new resource.
• PUT: Update an existing resource.
• PATCH: Make a partial update on a resource.
• DELETE: Delete a resource.

You would need to think about how you would allow something such as a DELETE, for example.

As with a PUT or a PATCH, you would most likely supply an ID of some kind when doing a

DELETE. You would not want to allow the consumer of your API to delete all the resources at once.

Add entities using POST

As I mentioned in Chapter 1, the interface in our API will be changing somewhat throughout the
development of the API. I want the ability to create a new book in my book repository, but later
on, I might want to add other entity types. I not only want EF to add my entity to the
BookRepoDbContext, but to save the entity, too. I also want the inserted ID of the entity

returned to me.

Code Listing 37: Added SaveAsync in the interface

using BookRepository.Core;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace BookRepository.Data
{
 public interface IBookData
 {
 IEnumerable<Book> ListBooks();
 Task<IEnumerable<Book>> ListBooksAsync();
 Book GetBook(int Id);
 Task<Book> GetBookAsync(int Id);
 Book UpdateBook(Book bookData);
 void AddBook(Book newBook);
 int Save();
 Task<int> SaveAsync<T>(T entity);

www.dbooks.org

https://www.dbooks.org/

 54

 }
}

For this reason, I will modify my interface (Code Listing 37) to specify that a SaveAsync method

must be implemented that takes a generic type T and returns an integer. I must then provide the

implementation for this in the SqlData.cs class, as illustrated in Code Listing 38.

Code Listing 38: The SaveAsync implementation in SqlData

public async Task<int> SaveAsync<T>(T entity)
{
 var addedEntity = _database.Add(entity);
 var entityId = -1;

 if (await _database.SaveChangesAsync() > -1)
 {
 entityId =
Convert.ToInt32(addedEntity.Property("Id").CurrentValue);
 }

 return entityId;
}

This SaveAsync method will accept an entity, add that entity to the BookRepoDbContext, and

then attempt to save the entity to the database. I can then grab the inserted Id field value

because I know that my tables in the database will always have an Id field.

 Note: There are better ways to do the SaveAsync—specifically, surrounding the
return of the inserted Id field. Because I am using a hard-coded string value for the
property name, casing matters. Therefore, if you specify ID and the column on the
table is called Id, you will receive an error. This book is, however, not a book on EF
Core. I want you to get the most out of this book concerning APIs. I’ll leave the exact
mechanics of the BookRepository.Data project up to you to fine-tune.

Entity Framework will provide this ID to you after the SaveChangesAsync method has been

successfully called. Back in the BookController, we will be utilizing model binding to bind the

JSON passed to the endpoint to our BookModel. To enable this, add the attribute

[ApiController] to your BookController class, as illustrated in Code Listing 39.

Code Listing 39: The Added ApiController attribute

namespace BookRepository.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class BookController : ControllerBase
 {

 55

This allows our controller to act as an API. We are telling .NET Core a lot about what we expect
from this controller. It will, therefore, attempt to do model binding for us.

Code Listing 40: The Post API method

public async Task<ActionResult<BookModel>> Post(BookModel model)
{
 try
 {
 var entityLocation = "";

 var entity = new Book()
 {
 Author = model.Author,
 Description = model.Description,
 Title = model.Title,
 Publisher = model.Publisher,
 ISBN = model.ISBN
 };

 var createdBookId = await _service.SaveAsync(entity);
 if (createdBookId > 0)
 {
 entityLocation = _linkGenerator.GetPathByAction("GetBook",
"Book", new { Id = createdBookId });
 return Created(entityLocation, model);
 }
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }

 return BadRequest();
}

As seen in Code Listing 40, create an API method that will accept our POST request.

 Note: The _linkGenerator will show a red squiggly line. I’ll get back to that
shortly.

The code is a lot like before with regards to the model, but this time in reverse. The SaveAsync

method accepts an entity of type T, but we know that we need to pass the database a Book

entity.

www.dbooks.org

https://www.dbooks.org/

 56

Because the SaveAsync method accepts a parameter of type T, it is quite easy to pass the

model instead of the entity which will throw an exception. This seems like a job for an interface
and a constraint. I do not want to allow the accidental passing of a model to the SaveAsync

method. It must always take an entity as a parameter.

Create a new interface in the BookRepository.Core project. Call this interface IEntity and give

it a property called Id. I want to require all entities that implement IEntity to contain a property

called Id. Not ID or RecordId, but Id. See where I’m going with this?

The code in Code Listing 41 for the IEntity interface is really simple.

Code Listing 41: The IEntity interface

namespace BookRepository.Core
{
 public interface IEntity
 {
 public int Id { get; set; }
 }
}

Implement this IEntity interface on the Book entity, as seen in Code Listing 42.

Code Listing 42: The Book entity implementing IEntity

namespace BookRepository.Core
{
 public class Book : IEntity
 {
 public int Id { get; set; }
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Publisher { get; set; }
 public string Author { get; set; }
 }
}

Swing back to the IBookData interface and add a constraint on the SaveAsync generic method

to tell it to only accept types that implement IEntity (Code Listing 43).

Code Listing 43: Added constraint on SaveAsync

using BookRepository.Core;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace BookRepository.Data
{

 57

 public interface IBookData
 {
 IEnumerable<Book> ListBooks();
 Task<IEnumerable<Book>> ListBooksAsync();
 Book GetBook(int Id);
 Task<Book> GetBookAsync(int Id);
 Book UpdateBook(Book bookData);
 void AddBook(Book newBook);
 int Save();
 Task<int> SaveAsync<T>(T entity) where T : IEntity;
 }
}

Lastly, this needs to be implemented in the SqlData class on the SaveAsync method, as seen

in Code Listing 44.

Code Listing 44: Constraint implemented in SqlData class

public async Task<int> SaveAsync<T>(T entity) where T : IEntity
{
 var addedEntity = _database.Add(entity);
 var entityId = -1;

 if (await _database.SaveChangesAsync() > -1)
 {
 entityId =
Convert.ToInt32(addedEntity.Property("Id").CurrentValue);
 }

 return entityId;
}

The code we wrote for the Post method on our controller (as illustrated in Code Listing 40) is

now much more fault-tolerant. We can only pass the data service entities to perform data
modifications on. The last bit that we need to talk about is the _linkGenerator (which you

undoubtedly see underlined with a red squiggly line in your code editor).

Because I have the Id of the created entity being returned to me, I want some way to tell the

consumer of this API where to find this created resource. This is done with a LinkGenerator,

which is in the Microsoft.AspNetCore.Routing namespace.

Code Listing 45: The modified BookController constructor

private readonly IBookData _service;
private readonly LinkGenerator _linkGenerator;

public BookController(IBookData service, LinkGenerator linkGenerator)
{

www.dbooks.org

https://www.dbooks.org/

 58

 _service = service;
 _linkGenerator = linkGenerator;
}

Modify the controller’s constructor (Code Listing 45) to take a LinkGenerator as a parameter

and save that off to a field called _linkGenerator. Back in the Post method, you can use the

GetPathByAction method of the _linkGenerator to return the location of the created entity.

Consider the code snippet in Code Listing 46.

Code Listing 46: The getPathByAction code snippet

entityLocation = _linkGenerator.GetPathByAction("GetBook", "Book", new { Id
= createdBookId });

I am telling the _linkGenerator to create a valid link to the resource I have just created with

the Id returned from the SaveAsync method. This resource can be found by doing a GET

request (which calls the GetBook action) on the BookController.

When this link has been generated, return a Created response specifying the entity location

and the model that was used to create the entity.

Figure 30: The Postman POST

We can now use Postman to create a new book for us. As seen in Figure 30, create a POST with

the URL endpoint of /api/book and specify that you will be sending raw JSON in the body.

Format the body as JSON to contain the details of the book that you want to create and click
Send.

 59

Figure 31: The 201 Created response specifying the location

As seen in Figure 31, Postman returned a 201 Created response and includes the location of

the created book for us. In this case, it is located at /api/Book/13, which means that the

inserted Id in the table is 13. Your Id returned here will differ from mine.

Go ahead and perform a GET request with Postman for your book Id returned in the POST you

performed. You will see the newly created book returned from the GET request.

Performing model validation

One more thing that I want to do is ensure that any books added contain at least an ISBN and a
title. Without these, the POST should fail.

Code Listing 47: Adding required attributes on BookModel

using System.ComponentModel.DataAnnotations;

namespace BookRepository.Models
{
 public class BookModel
 {
 [Required]
 public string ISBN { get; set; }
 [Required]
 public string Title { get; set; }
 public string Description { get; set; }
 public string Publisher { get; set; }
 public string Author { get; set; }
 }
}

www.dbooks.org

https://www.dbooks.org/

 60

As seen in Code Listing 47, modify the code in the BookModel and add the [Required]

attribute. You will also need to add the System.ComponentModel.DataAnnotations

namespace.

Figure 32: Posting an invalid BookModel

In Postman, perform a POST for an invalid BookModel without an ISBN, as seen in Figure 32.

Figure 33: The model validation message for the bad request

Postman reports an error from the API, as seen in Figure 33.

Tip: You would probably also want to add some validation in your POST to ensure
that the ISBN you are adding is unique. This can be done in the POST method on your
BookController.

With a simple attribute added to the BookModel, we can specify requirements for the models we

use in the API. For more information on the other data annotations available, have a look at the
official Microsoft documentation.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-6.0

 61

After fixing the body of the data you are posting (by adding in an ISBN), create the book via
Postman. You will see that because you have specified the ISBN, your book is correctly
created, and the location returned in the header of the API call in Postman. Make a note of this
created book Id. We will use this to update the book in the next section using PUT.

Change entities using PUT

I enjoy reading, and I want my book repository to be as complete as possible. I have added
some more books to my book repository using POST, as detailed earlier in this chapter. I do,

however, notice that I have made a mistake on the last book that I have added. The book
Foundation and Empire (as seen in Figure 34) should include the text Book 2 in the title.

Figure 34: The list of books

We need to allow the updating of an entity by implementing the PUT verb. The code to do this is

quite simple, as seen in Code Listing 48. I want to create an action decorated with the HttpPut

attribute and tell it to expect the Id of a book. I also want to pass the entity to update. The code

then tries to find an existing book with the Id we specified. This can just be done by calling the

GetBookAsync method on the data service.

If no such book is found, then we must return a NotFound, as this is the most appropriate

response in this case. If we do find a book with the given Id, then we need to apply the changes

to the entity and call UpdateAsync on the data service.

www.dbooks.org

https://www.dbooks.org/

 62

 Note: The complete source code for this book is available on GitHub. If I do not
detail a bit of code here (such as on the data service), please refer to the source code.

Code Listing 48: Implementing the PUT verb

[HttpPut("{Id}")]
public async Task<ActionResult<BookModel>> Put(int Id, BookModel model)
{
 try
 {
 var bookToUpdate = await _service.GetBookAsync(Id);

 if (bookToUpdate != null)
 {
 bookToUpdate.Author = model.Author;
 bookToUpdate.Description = model.Description;
 bookToUpdate.Title = model.Title;
 bookToUpdate.Publisher = model.Publisher;
 bookToUpdate.ISBN = model.ISBN;

 return await _service.UpdateAsync(bookToUpdate) ? model :
BadRequest();
 }
 else
 {
 return NotFound($"Can't find book with Id {Id}");
 }
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, $"There
was a database failure: {ex.Message}");
 }
}

It is then the entity that we want to update that is passed to the data service’s UpdateAsync

method, as seen in Code Listing 49.

Code Listing 49: The UpdateAsync data service method

public async Task<bool> UpdateAsync<T>(T entity) where T : IEntity
{
 var updatedEntity = _database.Attach(entity);
 updatedEntity.State = EntityState.Modified;

 return (await _database.SaveChangesAsync() > 0);
}

https://github.com/SyncfusionSuccinctlyE-Books/ASP.NET-Core-APIs-Succinctly

 63

If the update was successful, I will just return the mode. Alternatively, I will return a BadRequest.

With this PUT method added, modify the book with the correct details by creating a PUT request

in Postman using the URL that includes the Id of the book to update (and in your case, the Id

you made a note of earlier).

The URL will be something similar to https://localhost:44371/api/book/1021, where

1021 at the end of the URL will be replaced with your book Id.

Figure 35: The PUT to update a book in Postman

To verify that the update succeeded, perform a GET with the URL

https://localhost:44371/api/book and make a note of the books returned. You could also

just do a GET for the specific book Id you updated. In my example, I would do a GET request in

Postman using the URL https://localhost:44371/api/book/1021, but you would just use

your specific book Id instead of mine.

Remove entities using DELETE

The last thing I want to add to my API is the ability to delete a book. By this time, you should
have a few books in your book repository. There are perhaps some books that are no longer in
your library, or perhaps you added a book with incorrect data that you do not wish to update.

www.dbooks.org

https://www.dbooks.org/

 64

Deleting a book is easily implemented. I have added DeleteAsync to my IBookData interface

and implemented it in my SqlData service, as seen in Code Listing 50.

Code Listing 50: The DeleteAsync data service method

public async Task<bool> DeleteAsync<T>(T entity) where T : IEntity
{
 var updatedEntity = _database.Remove(entity);
 updatedEntity.State = EntityState.Deleted;

 return (await _database.SaveChangesAsync() > 0);
}

Back in the BookController, I have added a Delete action that expects the book Id of the

book you want to delete (Code Listing 51). Notice how we don’t pass it a model in this instance.

Code Listing 51: The Delete action in BookController

[HttpDelete("{Id}")]
public async Task<IActionResult> Delete(int Id)
{
 try
 {
 var bookToDelete = await _service.GetBookAsync(Id);

 return bookToDelete != null
 ? await _service.DeleteAsync(bookToDelete) ? Ok() :
BadRequest()
 : NotFound($"Can't find book with Id {Id}");
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, $"There
was a database failure: {ex.Message}");
 }
}

I perform the same GetBookAsync call to my data service as in the PUT, but this time if I find a

book, I just call the DeleteAsync on my data service. If the delete works, I just return Ok;

otherwise, a BadRequest is returned. If the book with that Id is not found, I return a NotFound,

which is exactly what we want.

Lastly, I add the HttpDelete attribute to the DELETE action.

 65

Figure 36: The DELETE in Postman

In Postman I create a DELETE and give it the URL https://localhost:44371/api/book/14,

where my book Id is 14. Your book Id will differ. This is all that I supply, and when I click Send,

as seen in Figure 36, Postman just returns a status 200.

If you do a GET for the book Id you just deleted, you will see that the book can’t be found, as

seen in Figure 37 for my book Id of 14.

Figure 37: Book Id 14 not found

With the DELETE implemented, we have the basics in place for our API. In the next chapter, let’s

expand a bit on the functionality of the API and add more logic around versioning.

www.dbooks.org

https://www.dbooks.org/

 66

Chapter 4 Versioning Your API

In this chapter, we will be discussing various topics, one of them being versioning your API.
Versioning your API is usually a good idea because this lets consumers know what data they
can expect, or that they can expect some changes in the data. There are four main types of
versioning. They are:

• URI versioning
• Versioning with headers
• Accept header versioning
• Content-type versioning

It does not matter which versioning method you implement in your API; what matters more is
that you provide a version. You might be used to seeing an API version in the URI path, as
illustrated in Code Listing 52.

Code Listing 52: Example of URI path versioning

https://localhost:44371/api/v2/book

You will also probably have seen an example of query string versioning, as illustrated in Code
Listing 53.

Code Listing 53: Example of URI query string versioning

https://localhost:44371/api/book?v=2.0

Let’s see how we can implement versioning into our book repository API.

Implementing versioning

Versioning does not come out of the box. You need to install a NuGet package, as shown in
Figure 38.

Figure 38: Adding ASP.NET Core versioning NuGet package

Ensure that you add the ASP.NET Core versioning package via NuGet, as this is built to be
used with .NET Core, which our API is built on. To allow your API to use versioning, we need to
make a change to the Startup class in the ConfigureServices method, as illustrated in Code

Listing 54.

 67

Code Listing 54: Add Versioning to configure services

services.AddApiVersioning();

With this in place, run your API and call one of your API endpoints. For example, just try to call
https://localhost:44371/api/book and have a look at the return, as illustrated in Code

Listing 55.

Code Listing 55: Versioning required

{
 "error": {
 "code": "ApiVersionUnspecified",
 "message": "An API version is required, but was not specified.",
 "innerError": null
 }
}

You will receive a status 400 bad request error from the API. You must specify an API version,
and this is the functionality we expect. Modify the URL that you call in Postman as follows and
do the same call again: https://localhost:44371/api/book?api-version=1.0. This time,

the call to your API will work because you specified the version in the query string, and .NET
Core assumes that by default, the whole API is version 1.0.

Try and call https://localhost:44371/api/book?api-version=1.1, and you will see that

you will receive an error again, as illustrated in Code Listing 56.

Code Listing 56: Default version 1.1 not supported

{
 "error": {
 "code": "UnsupportedApiVersion",
 "message": "The HTTP resource that matches the request URI
'https://localhost:44371/api/book' does not support the API version
'1.1'.",
 "innerError": null
 }
}

The reason for this is that ASP.NET Core expects the default version to be 1.0 because we

have not specified a version for this API yet. As with almost anything in .NET Core, you can
change this behavior by modifying the code we added in the ConfigureServices method in the

Startup class.

As seen in Code Listing 57, modify AddApiVersioning() to include options and give it the

default version that this API must accept.

www.dbooks.org

https://www.dbooks.org/

 68

Code Listing 57: Specify default API version

services.AddApiVersioning(o =>
{
 o.DefaultApiVersion = new ApiVersion(1, 1);
});

If you call https://localhost:44371/api/book?api-version=1.1, you will see that the call

will work. Calling https://localhost:44371/api/book?api-version=1.0 will now fail

because we have changed the default version to 1.1 for the API.

Make another small change to AddApiVersioning(), as illustrated in Code Listing 58.

Code Listing 58: Report supported API versions

services.AddApiVersioning(o =>
{
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
});

By adding ReportApiVersions, when you make a call to the API, the header information will

return the supported API versions, as seen in Figure 39.

Figure 39: Supported API versions returned in header

We have just been tinkering with the default versioning behavior here. Let’s see how to version
our actions in the next section.

 69

Version actions

Starting at the BookController, I want to tell it something about the versions that it must use. I

want it to support versions 1.0 and 1.1 of the API. Modify your BookController as illustrated

in Code Listing 59.

Code Listing 59: Supporting versions 1.0 and 1.1

[Route("api/[controller]")]
[ApiVersion("1.0")]
[ApiVersion("1.1")]
[ApiController]
public class BookController : ControllerBase

Next, I want to duplicate the GetBooks method. Make a copy of the GetBooks method and add

the attribute [MapToApiVersion("1.0")] to the first one. Then, on the ISBN property of the

BookModel being returned, append the text "- for version 1.0".

Do the same for the second GetBooks method, but rename the method to GetBooks_1_1 and

give it the attribute [MapToApiVersion("1.1")]. Append the text "- for version 1.1" to

the ISBN property of the BookModel being returned.

You can see the code for this change in Code Listing 60.

Code Listing 60: Version 1.0 and 1.1 of GET

[HttpGet]
[MapToApiVersion("1.0")]
public async Task<ActionResult<List<BookModel>>> GetBooks()
{
 try
 {
 var books = await _service.ListBooksAsync();
 return (from book in books
 let model = new BookModel()
 {
 Author = book.Author,
 Description = book.Description,
 Title = book.Title,
 Publisher = book.Publisher,
 ISBN = book.ISBN + " - for version 1.0"
 }
 select model).ToList();
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }

www.dbooks.org

https://www.dbooks.org/

 70

}

[HttpGet]
[MapToApiVersion("1.1")]
public async Task<ActionResult<List<BookModel>>> GetBooks_1_1()
{
 try
 {
 var books = await _service.ListBooksAsync();
 return (from book in books
 let model = new BookModel()
 {
 Author = book.Author,
 Description = book.Description,
 Title = book.Title,
 Publisher = book.Publisher,
 ISBN = book.ISBN + " - for version 1.1"
 }
 select model).ToList();
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError, "There
was a database failure");
 }
}

Run your API and call version 1.0 by supplying the URL

https://localhost:44371/api/book?api-version=1.0 in Postman. You will see the data

returned is coming from version 1.0 of the GET method as illustrated in Code Listing 61.

Code Listing 61: Calling Version 1.0 of the GET

{
 "isbn": "076790818X - for version 1.0",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or
entertaining.",
 "publisher": "Crown",
 "author": "Bill Bryson"
}

Next, change the URL to call version 1.1 by calling

https://localhost:44371/api/book?api-version=1.1 in Postman. The returned data will

be coming from version 1.1 of the GET method, as seen in Code Listing 62.

 71

Code Listing 62: Calling version 1.1 of the GET method

{
 "isbn": "076790818X - for version 1.1",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or
entertaining.",
 "publisher": "Crown",
 "author": "Bill Bryson"
}

But what will happen if you call the endpoint without a version, like this:
https://localhost:44371/api/book?

Your API will return the same error as seen in Code Listing 55. We can tell our API to assume
the default version (which is version 1.1 in this case) when no version is supplied by modifying

the ConfigureServices method, as seen in Code Listing 63.

Code Listing 63: Assume a default version

services.AddApiVersioning(o =>
{
 o.AssumeDefaultVersionWhenUnspecified = true;
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
});

If you call the URL https://localhost:44371/api/book again, you will see that the return

data has returned version 1.1 of the GET method, as previously illustrated in Code Listing 62.

This way you can finely control what data the consumers of the API will see when they call
specific versions of your API. Next, we will look at supporting a new version of the API
controller.

Versioning controllers

Create a copy of the BookController class and call it Book2Controller, as illustrated in

Figure 40.

www.dbooks.org

https://www.dbooks.org/

 72

Figure 40: Adding version 2.0 of the BookController

Get rid of the GetBooks_1_1 method and focus on the GetBooks method. Remove the

[MapToApiVersion("1.0")] attribute on the GetBooks() method.

 Note: You can leave the rest of the class as is, since we will only be focusing on
the GetBooks endpoint for this section.

Modify your Book2Controller as illustrated in Code Listing 64.

Code Listing 64: Version 2.0 of the BookController

[Route("api/[controller]")]
[ApiVersion("2.0")]
[ApiController]
public class Book2Controller : ControllerBase
{
 private readonly IBookData _service;
 private readonly LinkGenerator _linkGenerator;

 public Book2Controller(IBookData service, LinkGenerator linkGenerator)
 {
 _service = service;
 _linkGenerator = linkGenerator;
 }

 [HttpGet]

 73

 public async Task<IActionResult> GetBooks()
 {
 try
 {
 var books = await _service.ListBooksAsync();

 var results = new
 {
 Count = books.Count(),
 Books = books
 };

 return Ok(results);
 }
 catch (Exception)
 {
 return StatusCode(StatusCodes.Status500InternalServerError,
"There was a database failure");
 }
 }

From this code example, you can see that the API version on the controller has changed to
version 2.0 by specifying the attribute [ApiVersion(“2.0”)]. I have modified the GetBooks()

method to return an anonymous type that consists of the books returned and a count of how
many books were returned. Because I am returning an anonymous type, I can just change the
GetBooks method’s return type to Task<IActionResut>.

Run your API and make the following GET request using the URL

https://localhost:44371/api/book?api-version=2.0. The data returned will be as

illustrated in Code Listing 65.

Code Listing 65: GetBooks version 2.0

{
 "count": 5,
 "books": [
 {
 "id": 2,
 "isbn": "076790818X",
 "title": "A Short History of Nearly Everything",
 "description": "Science has never been more involving or
entertaining.",
 "publisher": "Crown",
 "author": "Bill Bryson"
 },
 {
 "id": 13,
 "isbn": "0380009145",

www.dbooks.org

https://www.dbooks.org/

 74

 "title": "Foundation (Book 1)",
 "description": "In a future century the Galactic Empire dies
and one man creates a new force for civilized life.",
 "publisher": "Avon",
 "author": "Isaac Asimov"
 },
 {
 "id": 1021,
 "isbn": "0553382586",
 "title": "Foundation and Empire (Book 2)",
 "description": "The second novel in Isaac Asimov’s classic
science-fiction masterpiece, the Foundation series.",
 "publisher": "Del Rey; Reprint edition (April 29, 2008)",
 "author": "Isaac Asimov"
 },
 {
 "id": 1,
 "isbn": "0465030335",
 "title": "Letters to a Young Contrarian",
 "description": "In the book that he was born to write,
provocateur and best-selling author Christopher Hitchens inspires future
generations of radicals, gadflies, mavericks, rebels, angry young (wo)men,
and dissidents.",
 "publisher": "Basic Books",
 "author": "Christopher Hitchens"
 },
 {
 "id": 3,
 "isbn": "9780062316110",
 "title": "Sapiens",
 "description": "One hundred thousand years ago, at least six
different species of humans inhabited Earth. Yet today there is only one—
homo sapiens. What happened to the others?",
 "publisher": "Harper Perennial",
 "author": "Yuval Noah Harari"
 }
]
}

Notice the count of books being returned for this GET request. Now perform the same GET

request using the URLs https://localhost:44371/api/book?api-version=1.1 and

https://localhost:44371/api/book?api-version=1.0. The data returned will be coming

from version 1 of the BookController.

Again, as with so much in .NET Core, you can change the behavior. If you do not want to use
the api-version portion in your API URL, you can modify this in the Startup class. Add the

using statement Microsoft.AspNetCore.Mvc.Versioning to the Startup class. Next, modify

the section of code related to the API versioning in ConfigureServices, as seen in Code

Listing 66.

 75

Code Listing 66: Specify QueryStringVersionReader

services.AddApiVersioning(o =>
{
 o.AssumeDefaultVersionWhenUnspecified = true;
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
 o.ApiVersionReader = new QueryStringApiVersionReader("v");
});

This tells the API that it should expect the version of the API to be denoted by a v in the query

string. Do a GET request using the following URL:

https://localhost:44371/api/book?v=2.0.

The data returned from your API is from version 2.0 of the BookController class.

Being able to version your controllers in this way gives you the flexibility to introduce improved
code without having to affect the functionality of the API to consumers still using earlier
versions.

Versioning with headers

Versioning with headers is also very easy to configure. If, for whatever reason, you can’t use
query strings for versioning your APIs, you can specify the version of the API you want in the
header. Modify the ConfigureServices method in the Startup for the API versioning as seen

in Code Listing 67.

Code Listing 67: Versioning with headers

services.AddApiVersioning(o =>
{
 o.AssumeDefaultVersionWhenUnspecified = true;
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
 o.ApiVersionReader = new HeaderApiVersionReader("x-version");
});

All I have done is tell the API to use headers to version the API instead of query strings. I have
therefore replaced the QueryStringApiVersionReader with the HeaderApiVersionReader,

which also takes a string parameter x-version as a header key to look for. Run the API and

head on over to Postman. On the Params tab, uncheck the key v that was used to denote the

version of the API.

www.dbooks.org

https://www.dbooks.org/

 76

Figure 41: Remove the parameter version

On the Headers tab, add the header key you defined in Code Listing 67 and specify the version
you want as the value.

Figure 42: Specify a version in the header

Now call the book list API by doing a GET request for the URL

https://localhost:44371/api/book, and you will see that the list of books returned is

coming from version 2.0 of your controller. By making a small change to the API, we can switch
between specifying the version in the query string and specifying the version in the header.

Versioning with headers and query strings

If you want to give the consumers of your API some flexibility when specifying the version they
want, you can do this (you guessed it) in the ConfigureServices method of the Startup class.

Consider the code in Code Listing 68.

 77

Code Listing 68: Combining version readers

services.AddApiVersioning(o =>
{
 o.AssumeDefaultVersionWhenUnspecified = true;
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
 o.ApiVersionReader = ApiVersionReader.Combine(
 new HeaderApiVersionReader("x-version")
 , new QueryStringApiVersionReader("version", "ver", "v"));
});

Here we are telling the API to accept a version specified in the query string as well as in the
header. What’s more, I’m telling the API to accept the following query string parameters to look
for the version to call:

https://localhost:44371/api/book?v=2.0

https://localhost:44371/api/book?ver=2.0

https://localhost:44371/api/book?version=2.0

If the consumer specifies any of these query string parameters or specifies a header key called
x-version, the API will use that to call the correct version of the API.

Versioning using the URL

Specifying the version in the URL for the API endpoint you want to use is another technique that
many developers use for versioning. I quite like this because the version is enforced as part of
the route. Start by modifying the ConfigureServices method in the Startup class, as seen in

Code Listing 69.

Code Listing 69: Specify URL versioning

services.AddApiVersioning(o =>
{
 o.AssumeDefaultVersionWhenUnspecified = true;
 o.DefaultApiVersion = new ApiVersion(1, 1);
 o.ReportApiVersions = true;
 o.ApiVersionReader = new UrlSegmentApiVersionReader();
});

The next part is a bit of a pain but is required for this versioning method to work. Because we
are going to specify the version in the URL, we need to modify the Route attribute on all our

controllers. Start by modifying the BookController and tell it to expect a route that includes the

version in the route after the Api segment, as seen in Code Listing 70. This controller is specific

to version 1.0 and version 1.1 of your API.

www.dbooks.org

https://www.dbooks.org/

 78

Code Listing 70: The modified BookController

[Route("api/v{version:apiVersion}/[controller]")]
[ApiVersion("1.0")]
[ApiVersion("1.1")]
[ApiController]
public class BookController : ControllerBase
{

Next, modify the Book2Controller by modifying its Route attribute to expect a route that

includes the version of the API, as seen in Code Listing 71.

Code Listing 71: The modified Book2Controller

[Route("api/v{version:apiVersion}/[controller]")]
[ApiVersion("2.0")]
[ApiController]
public class Book2Controller : ControllerBase
{

With these changes in place, run your API and call the following URLs:

https://localhost:44371/api/v1/book

https://localhost:44371/api/v1.1/book

https://localhost:44371/api/v2/book

The API still works and returns the list of books as expected. Some developers might not like
this method of versioning APIs because it is less forgiving and less flexible than other methods.
Some, however, might like that because specifying the version in the URL clearly states their
intent. Whichever method you choose, implementing this in your API is quite simple to do.

 79

Conclusion

In this book, we have discussed the basics of putting together an API for a book repository.
There is a lot more to learn and do, but this should give you a good starting point for creating
your APIs. Remember that when modifying (or adding) any entities, you will need to run the
database migrations (refer to Code Listings 13 and 14). Now that you have a functional API,
why not try and add some related data such as author information? Happy coding!

www.dbooks.org

https://www.dbooks.org/

	Table of Contents
	The Succinctly Series of Books
	Let us know what you think

	About the Author
	Chapter 1 Designing Your API
	What is REST?
	What are resources?

	The API design
	Project setup
	Adding the data project
	Working with entities
	Adding the IBookData interface
	Implement DbContext
	Using database migrations to add a database
	Adding a column to the database
	Adding the data access service

	How to use Postman

	Chapter 2 Returning Data with Your API
	Creating actions
	Using status codes
	Returning collections with GET
	Returning models instead of entities

	Returning a single item
	Searching data

	Chapter 3 Modifying Data with Your API
	Add entities using POST
	Performing model validation

	Change entities using PUT
	Remove entities using DELETE

	Chapter 4 Versioning Your API
	Implementing versioning
	Version actions
	Versioning controllers
	Versioning with headers
	Versioning with headers and query strings
	Versioning using the URL

	Conclusion

