

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

A	Programmer’s	Guide	to	Java®	SE	8
Oracle	Certified	Associate	(OCA)

A	Comprehensive	Primer
Khalid	A.	Mughal
Rolf	W.	Rasmussen

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•	Cape	Town
Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi	•	Mexico

City
São	Paulo	•	Sydney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2016937073

Copyright	©	2017	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	request	forms	and	the	appropriate	contacts	within	the	Pearson	Education
Global	Rights	&	Permissions	Department,	please	visit	www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-293021-5
ISBN-10:	0-13-293021-8
Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in	Crawfordsville,
Indiana.
First	printing,	July	2016

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To	the	loving	memory	of	my	mother,	Zubaida	Begum,
and	my	father,	Mohammed	Azim

—K.A.M.

For	Olivia	E.	Rasmussen	and
Louise	J.	Dahlmo

—R.W.R.

Contents	Overview

Figures

Tables

Examples

Foreword

Preface

1	Basics	of	Java	Programming

2	Language	Fundamentals

3	Declarations

4	Access	Control

5	Operators	and	Expressions

6	Control	Flow

7	Object-Oriented	Programming

8	Fundamental	Classes

9	Object	Lifetime

10	The	ArrayList<E>	Class	and	Lambda	Expressions

11	Date	and	Time

A	Taking	the	Java	SE	8	Programmer	I	Exam

B	Exam	Topics:	Java	SE	8	Programmer	I

C	Annotated	Answers	to	Review	Questions

D	Solutions	to	Programming	Exercises

E	Mock	Exam:	Java	SE	8	Programmer	I

F	Annotated	Answers	to	Mock	Exam	I

Index

Contents

Figures

Tables

Examples

Foreword

Preface

1	Basics	of	Java	Programming

1.1	Introduction

1.2	Classes

Declaring	Members:	Fields	and	Methods

1.3	Objects

Class	Instantiation,	Reference	Values,	and	References

Object	Aliases

1.4	Instance	Members

Invoking	Methods

1.5	Static	Members

1.6	Inheritance

1.7	Associations:	Aggregation	and	Composition

1.8	Tenets	of	Java

Review	Questions

1.9	Java	Programs

1.10	Sample	Java	Application

Essential	Elements	of	a	Java	Application

Compiling	and	Running	an	Application

1.11	Program	Output

Formatted	Output

1.12	The	Java	Ecosystem

Object-Oriented	Paradigm

Interpreted:	The	JVM

Architecture-Neutral	and	Portable	Bytecode

Simplicity

Dynamic	and	Distributed

Robust	and	Secure

High	Performance	and	Multithreaded

Review	Questions

Chapter	Summary

Programming	Exercise

2	Language	Fundamentals

2.1	Basic	Language	Elements

Lexical	Tokens

Identifiers

Keywords

Separators

Literals

Integer	Literals

Floating-Point	Literals

Underscores	in	Numerical	Literals

Boolean	Literals

Character	Literals

String	Literals

Whitespace

Comments

Review	Questions

2.2	Primitive	Data	Types

The	Integer	Types

The	char	Type

The	Floating-Point	Types

The	boolean	Type

Review	Questions

2.3	Variable	Declarations

Declaring	and	Initializing	Variables

Reference	Variables

2.4	Initial	Values	for	Variables

Default	Values	for	Fields

Initializing	Local	Variables	of	Primitive	Data	Types

Initializing	Local	Reference	Variables

Lifetime	of	Variables

Review	Questions

Chapter	Summary

Programming	Exercise

3	Declarations

3.1	Class	Declarations

3.2	Method	Declarations

Statements

Instance	Methods	and	the	Object	Reference	this

Method	Overloading

3.3	Constructors

The	Default	Constructor

Overloaded	Constructors

Review	Questions

3.4	Arrays

Declaring	Array	Variables

Constructing	an	Array

Initializing	an	Array

Using	an	Array

Anonymous	Arrays

Multidimensional	Arrays

Sorting	Arrays

Searching	Arrays

Review	Questions

3.5	Parameter	Passing

Passing	Primitive	Data	Values

Passing	Reference	Values

Passing	Arrays

Array	Elements	as	Actual	Parameters

final	Parameters

3.6	Variable	Arity	Methods

Calling	a	Variable	Arity	Method

Variable	Arity	and	Fixed	Arity	Method	Calls

3.7	The	main()	Method

Program	Arguments

3.8	Enumerated	Types

Declaring	Type-safe	Enums

Using	Type-safe	Enums

Selected	Methods	for	Enum	Types

Review	Questions

Chapter	Summary

Programming	Exercise

4	Access	Control

4.1	Java	Source	File	Structure

4.2	Packages

Defining	Packages

Using	Packages

Compiling	Code	into	Packages

Running	Code	from	Packages

4.3	Searching	for	Classes

Review	Questions

4.4	Scope	Rules

Class	Scope	for	Members

Block	Scope	for	Local	Variables

4.5	Accessibility	Modifiers	for	Top-Level	Type	Declarations

4.6	Non-Accessibility	Modifiers	for	Classes

abstract	Classes

final	Classes

Review	Questions

4.7	Member	Accessibility	Modifiers

public	Members

protected	Members

Default	Accessibility	for	Members

private	Members

Review	Questions

4.8	Non-Accessibility	Modifiers	for	Members

static	Members

final	Members

abstract	Methods

synchronized	Methods

native	Methods

transient	Fields

volatile	Fields

Review	Questions

Chapter	Summary

Programming	Exercise

5	Operators	and	Expressions

5.1	Conversions

Widening	and	Narrowing	Primitive	Conversions

Widening	and	Narrowing	Reference	Conversions

Boxing	and	Unboxing	Conversions

Other	Conversions

5.2	Type	Conversion	Contexts

Assignment	Context

Method	Invocation	Context

Casting	Context	of	the	Unary	Type	Cast	Operator:	(type)

Numeric	Promotion	Context

5.3	Precedence	and	Associativity	Rules	for	Operators

5.4	Evaluation	Order	of	Operands

Left-Hand	Operand	Evaluation	First

Operand	Evaluation	before	Operation	Execution

Left-to-Right	Evaluation	of	Argument	Lists

5.5	Representing	Integers

Calculating	Two’s	Complement

Converting	Binary	Numbers	to	Decimals

Converting	Decimals	to	Binary	Numbers

Relationships	among	Binary,	Octal,	and	Hexadecimal	Numbers

5.6	The	Simple	Assignment	Operator	=

Assigning	Primitive	Values

Assigning	References

Multiple	Assignments

Type	Conversions	in	an	Assignment	Context

Review	Questions

5.7	Arithmetic	Operators:	*,	/,	%,	+,	-

Arithmetic	Operator	Precedence	and	Associativity

Evaluation	Order	in	Arithmetic	Expressions

Range	of	Numeric	Values

Unary	Arithmetic	Operators:	-,	+

Multiplicative	Binary	Operators:	*,	/,	%

Additive	Binary	Operators:	+,	-

Numeric	Promotions	in	Arithmetic	Expressions

Arithmetic	Compound	Assignment	Operators:	*=,	/=,	%=,	+=,	-=

Review	Questions

5.8	The	Binary	String	Concatenation	Operator	+

5.9	Variable	Increment	and	Decrement	Operators:	++,	--

The	Increment	Operator	++

The	Decrement	Operator	--

Review	Questions

5.10	Boolean	Expressions

5.11	Relational	Operators:	<,	<=,	>,	>=

5.12	Equality

Primitive	Data	Value	Equality:	==,	!=

Object	Reference	Equality:	==,	!=

Object	Value	Equality

5.13	Boolean	Logical	Operators:	!,	^,	&,	|

Operand	Evaluation	for	Boolean	Logical	Operators

Boolean	Logical	Compound	Assignment	Operators:	&=,	^=,	|=

5.14	Conditional	Operators:	&&,	||

Short-Circuit	Evaluation

5.15	Integer	Bitwise	Operators:	~,	&,	|,	^

Bitwise	Compound	Assignment	Operators:	&=,	^=,	|=

Review	Questions

5.16	The	Conditional	Operator:	?:

5.17	Other	Operators:	new,	[],	instanceof,	->

Review	Questions

Chapter	Summary

Programming	Exercise

6	Control	Flow

6.1	Overview	of	Control	Flow	Statements

6.2	Selection	Statements

The	Simple	if	Statement

The	if-else	Statement

The	switch	Statement

Review	Questions

6.3	Iteration	Statements

The	while	Statement

The	do-while	Statement

The	for(;;)	Statement

The	for(:)	Statement

6.4	Transfer	Statements

Labeled	Statements

The	break	Statement

The	continue	Statement

The	return	Statement

Review	Questions

6.5	Stack-Based	Execution	and	Exception	Propagation

6.6	Exception	Types

The	Exception	Class

The	RuntimeException	Class

The	Error	Class

Checked	and	Unchecked	Exceptions

Defining	Customized	Exceptions

6.7	Exception	Handling:	try,	catch,	and	finally

The	try	Block

The	catch	Clause

The	finally	Clause

6.8	The	throw	Statement

6.9	The	throws	Clause

Overriding	the	throws	Clause

6.10	Advantages	of	Exception	Handling

Review	Questions

Chapter	Summary

Programming	Exercises

7	Object-Oriented	Programming

7.1	Single	Implementation	Inheritance

Relationships:	is-a	and	has-a

The	Supertype–Subtype	Relationship

7.2	Overriding	Methods

Instance	Method	Overriding

Covariant	return	in	Overriding	Methods

Overriding	versus	Overloading

7.3	Hiding	Members

Field	Hiding

Static	Method	Hiding

7.4	The	Object	Reference	super

Review	Questions

7.5	Chaining	Constructors	Using	this()	and	super()

The	this()	Constructor	Call

The	super()	Constructor	Call

Review	Questions

7.6	Interfaces

Defining	Interfaces

Abstract	Methods	in	Interfaces

Implementing	Interfaces

Extending	Interfaces

Interface	References

Default	Methods	in	Interfaces

Static	Methods	in	Interfaces

Constants	in	Interfaces

Review	Questions

7.7	Arrays	and	Subtyping

Arrays	and	Subtype	Covariance

Array	Store	Check

7.8	Reference	Values	and	Conversions

7.9	Reference	Value	Assignment	Conversions

7.10	Method	Invocation	Conversions	Involving	References

Overloaded	Method	Resolution

7.11	Reference	Casting	and	the	instanceof	Operator

The	Cast	Operator

The	instanceof	Operator

Review	Questions

7.12	Polymorphism	and	Dynamic	Method	Lookup

7.13	Inheritance	versus	Aggregation

7.14	Basic	Concepts	in	Object-Oriented	Design

Encapsulation

Cohesion

Coupling

Review	Questions

Chapter	Summary

Programming	Exercises

8	Fundamental	Classes

8.1	Overview	of	the	java.lang	Package

8.2	The	Object	Class

Review	Questions

8.3	The	Wrapper	Classes

Common	Wrapper	Class	Constructors

Common	Wrapper	Class	Utility	Methods

Numeric	Wrapper	Classes

The	Character	Class

The	Boolean	Class

Review	Questions

8.4	The	String	Class

Immutability

Creating	and	Initializing	Strings

The	CharSequence	Interface

Reading	Characters	from	a	String

Comparing	Strings

Character	Case	in	a	String

Concatenation	of	Strings

Joining	of	CharSequence	Objects

Searching	for	Characters	and	Substrings

Extracting	Substrings

Converting	Primitive	Values	and	Objects	to	Strings

Formatted	Strings

Review	Questions

8.5	The	StringBuilder	and	StringBuffer	Classes

Thread-Safety

Mutability

Constructing	String	Builders

Reading	and	Changing	Characters	in	String	Builders

Constructing	Strings	from	String	Builders

Appending,	Inserting,	and	Deleting	Characters	in	String	Builders

Controlling	String	Builder	Capacity

Review	Questions

Chapter	Summary

Programming	Exercises

9	Object	Lifetime

9.1	Garbage	Collection

9.2	Reachable	Objects

9.3	Facilitating	Garbage	Collection

9.4	Object	Finalization

9.5	Finalizer	Chaining

9.6	Invoking	Garbage	Collection	Programmatically

Review	Questions

9.7	Initializers

9.8	Field	Initializer	Expressions

Declaration	Order	of	Initializer	Expressions

9.9	Static	Initializer	Blocks

Declaration	Order	of	Static	Initializers

9.10	Instance	Initializer	Blocks

Declaration	Order	of	Instance	Initializers

9.11	Constructing	Initial	Object	State

Review	Questions

Chapter	Summary

10	The	ArrayList<E>	Class	and	Lambda	Expressions

10.1	The	ArrayList<E>	Class

Lists

Declaring	References	and	Constructing	ArrayLists

Modifying	an	ArrayList

Querying	an	ArrayList

Traversing	an	ArrayList

Converting	an	ArrayList	to	an	Array

Sorting	an	ArrayList

Arrays	versus	ArrayList

Review	Questions

10.2	Lambda	Expressions

Behavior	Parameterization

Functional	Interfaces

Defining	Lambda	Expressions

Type	Checking	and	Execution	of	Lambda	Expressions

Filtering	Revisited:	The	Predicate<T>	Functional	Interface

Review	Questions

Chapter	Summary

Programming	Exercise

11	Date	and	Time

11.1	Basic	Date	and	Time	Concepts

11.2	Working	with	Temporal	Classes

Creating	Temporal	Objects

Querying	Temporal	Objects

Comparing	Temporal	Objects

Creating	Modified	Copies	of	Temporal	Objects

Temporal	Arithmetic

11.3	Working	with	Periods

Creating	Periods

Querying	Periods

Creating	Modified	Copies	of	Periods

More	Temporal	Arithmetic

Review	Questions

11.4	Formatting	and	Parsing

Default	Formatters

Predefined	Formatters

Localized	Formatters

Customized	Formatters

Review	Questions

Chapter	Summary

Programming	Exercise

A	Taking	the	Java	SE	8	Programmer	I	Exam

A.1	Preparing	for	the	Exam

A.2	Registering	for	the	Exam

Contact	Information

Obtaining	an	Exam	Voucher

Signing	Up	for	the	Test

After	Taking	the	Exam

A.3	How	the	Exam	Is	Conducted

The	Testing	Locations

Utilizing	the	Allotted	Time

The	Exam	Program

The	Exam	Result

A.4	The	Questions

Assumptions	about	the	Exam	Questions

Types	of	Questions	Asked

Types	of	Answers	Expected

Topics	Covered	by	the	Questions

B	Exam	Topics:	Java	SE	8	Programmer	I

C	Annotated	Answers	to	Review	Questions

D	Solutions	to	Programming	Exercises

E	Mock	Exam:	Java	SE	8	Programmer	I

F	Annotated	Answers	to	Mock	Exam	I

Index

Figures

1.1	UML	Notation	for	Classes

1.2	UML	Notation	for	Objects

1.3	Aliases

1.4	Class	Diagram	Showing	Static	Members	of	a	Class

1.5	Members	of	a	Class

1.6	Class	Diagram	Depicting	Inheritance	Relationship

1.7	Class	Diagram	Depicting	Associations

1.8	Class	Diagram	Depicting	Composition

2.1	Primitive	Data	Types	in	Java

3.1	Array	of	Arrays

3.2	Parameter	Passing:	Primitive	Data	Values

3.3	Parameter	Passing:	Reference	Values

3.4	Parameter	Passing:	Arrays

4.1	Java	Source	File	Structure

4.2	Package	Hierarchy

4.3	File	Hierarchy

4.4	Searching	for	Classes

4.5	Block	Scope

4.6	Public	Accessibility	for	Members

4.7	Protected	Accessibility	for	Members

4.8	Default	Accessibility	for	Members

4.9	Private	Accessibility	for	Members

5.1	Widening	Primitive	Conversions

5.2	Converting	among	Binary,	Octal,	and	Hexadecimal	Numbers

5.3	Overflow	and	Underflow	in	Floating-Point	Arithmetic

5.4	Numeric	Promotion	in	Arithmetic	Expressions

6.1	Activity	Diagram	for	if	Statements

6.2	Activity	Diagram	for	a	switch	Statement

6.3	Activity	Diagram	for	the	while	Statement

6.4	Activity	Diagram	for	the	do-while	Statement

6.5	Activity	Diagram	for	the	for	Statement

6.6	Enhanced	for	Statement

6.7	Method	Execution

6.8	Exception	Propagation

6.9	Partial	Exception	Inheritance	Hierarchy

6.10	The	try-catch-finally	Construct

6.11	Exception	Handling	(Scenario	1)

6.12	Exception	Handling	(Scenario	2)

6.13	Exception	Handling	(Scenario	3)

7.1	Inheritance	Hierarchy

7.2	Inheritance	Hierarchy	for	Example	7.2	and	Example	7.3

7.3	Inheritance	Hierarchies

7.4	Inheritance	Relationships	for	Interface	Constants

7.5	Reference	Type	Hierarchy:	Arrays	and	Subtype	Covariance

7.6	Type	Hierarchy	That	Illustrates	Polymorphism

7.7	Implementing	Data	Structures	by	Inheritance	and	Aggregation

8.1	Partial	Inheritance	Hierarchy	in	the	java.lang	Package

8.2	Converting	Values	among	Primitive,	Wrapper,	and	String	Types

9.1	Memory	Organization	at	Runtime

10.1	Partial	ArrayList	Inheritance	Hierarchy

Tables

1.1	Terminology	for	Class	Members

1.2	Format	Specifier	Examples

2.1	Keywords	in	Java

2.2	Reserved	Literals	in	Java

2.3	Reserved	Keywords	Not	Currently	in	Use

2.4	Separators	in	Java

2.5	Examples	of	Literals

2.6	Examples	of	Decimal,	Binary,	Octal,	and	Hexadecimal	Literals

2.7	Examples	of	Character	Literals

2.8	Escape	Sequences

2.9	Examples	of	Escape	Sequence	\ddd

2.10	Range	of	Integer	Values

2.11	Range	of	Character	Values

2.12	Range	of	Floating-Point	Values

2.13	Boolean	Values

2.14	Summary	of	Primitive	Data	Types

2.15	Default	Values

3.1	Parameter	Passing	by	Value

4.1	Accessing	Members	within	a	Class

4.2	Summary	of	Accessibility	Modifiers	for	Top-Level	Types

4.3	Summary	of	Non-Accessibility	Modifiers	for	Classes

4.4	Summary	of	Accessibility	Modifiers	for	Members

4.5	Summary	of	Non-Accessibility	Modifiers	for	Members

5.1	Selected	Conversion	Contexts	and	Conversion	Categories

5.2	Operator	Summary

5.3	Representing	Signed	byte	Values	Using	Two’s	Complement

5.4	Examples	of	Truncated	Values

5.5	Arithmetic	Operators

5.6	Examples	of	Arithmetic	Expression	Evaluation

5.7	Arithmetic	Compound	Assignment	Operators

5.8	Relational	Operators

5.9	Primitive	Data	Value	Equality	Operators

5.10	Reference	Equality	Operators

5.11	Truth	Values	for	Boolean	Logical	Operators

5.12	Boolean	Logical	Compound	Assignment	Operators

5.13	Conditional	Operators

5.14	Truth	Values	for	Conditional	Operators

5.15	Integer	Bitwise	Operators

5.16	Result	Table	for	Bitwise	Operators

5.17	Examples	of	Bitwise	Operations

5.18	Bitwise	Compound	Assignment	Operators

6.1	The	return	Statement

7.1	Overriding	versus	Overloading

7.2	Same	Signature	for	Subclass	and	Superclass	Method

7.3	Types	and	Values

10.1	Summary	of	Arrays	versus	ArrayLists

10.2	Selected	Functional	Interfaces	from	the	java.util.function	Package

11.1	Selected	Common	Method	Prefix	of	the	Temporal	Classes

11.2	Selected	ISO-Based	Predefined	Formatters	for	Date	and	Time

11.3	Format	Styles	for	Date	and	Time

11.4	Combination	of	Format	Styles	and	Localized	Formatters

11.5	Selected	Date/Time	Pattern	Letters

Examples

1.1	Basic	Elements	of	a	Class	Declaration

1.2	Static	Members	in	Class	Declaration

1.3	Defining	a	Subclass

1.4	An	Application

1.5	Formatted	Output

2.1	Default	Values	for	Fields

2.2	Flagging	Uninitialized	Local	Variables	of	Primitive	Data	Types

2.3	Flagging	Uninitialized	Local	Reference	Variables

3.1	Using	the	this	Reference

3.2	Namespaces

3.3	Using	Arrays

3.4	Using	Anonymous	Arrays

3.5	Using	Multidimensional	Arrays

3.6	Passing	Primitive	Values

3.7	Passing	Reference	Values

3.8	Passing	Arrays

3.9	Array	Elements	as	Primitive	Data	Values

3.10	Array	Elements	as	Reference	Values

3.11	Calling	a	Variable	Arity	Method

3.12	Passing	Program	Arguments

3.13	Using	Enums

4.1	Defining	Packages	and	Using	Type	Import

4.2	Single	Static	Import

4.3	Avoiding	the	Interface	Constant	Antipattern

4.4	Importing	Enum	Constants

4.5	Shadowing	Static	Import

4.6	Conflict	in	Importing	Static	Method	with	the	Same	Signature

4.7	Class	Scope

4.8	Accessibility	Modifiers	for	Classes	and	Interfaces

4.9	Abstract	Classes

4.10	Public	Accessibility	of	Members

4.11	Accessing	Static	Members

4.12	Using	final	Modifier

4.13	Synchronized	Methods

5.1	Evaluation	Order	of	Operands	and	Arguments

5.2	Numeric	Promotion	in	Arithmetic	Expressions

5.3	Short-Circuit	Evaluation	Involving	Conditional	Operators

5.4	Bitwise	Operations

6.1	Fall-Through	in	a	switch	Statement

6.2	Using	break	in	a	switch	Statement

6.3	Nested	switch	Statement

6.4	Strings	in	switch	Statement

6.5	Enums	in	switch	Statement

6.6	The	break	Statement

6.7	Labeled	break	Statement

6.8	continue	Statement

6.9	Labeled	continue	Statement

6.10	The	return	Statement

6.11	Method	Execution

6.12	The	try-catch	Construct

6.13	Exception	Propagation

6.14	The	try-catch-finally	Construct

6.15	The	try-finally	Construct

6.16	The	finally	Clause	and	the	return	Statement

6.17	Throwing	Exceptions

6.18	The	throws	Clause

7.1	Extending	Classes:	Inheritance	and	Accessibility

7.2	Overriding,	Overloading,	and	Hiding

7.3	Using	the	super	Keyword

7.4	Constructor	Overloading

7.5	The	this()	Constructor	Call

7.6	The	super()	Constructor	Call

7.7	Implementing	Interfaces

7.8	Default	Methods	in	Interfaces

7.9	Default	Methods	and	Multiple	Inheritance

7.10	Static	Methods	in	Interfaces

7.11	Constants	in	Interfaces

7.12	Inheriting	Constants	in	Interfaces

7.13	Assigning	and	Passing	Reference	Values

7.14	Choosing	the	Most	Specific	Method	(Simple	Case)

7.15	Overloaded	Method	Resolution

7.16	The	instanceof	and	Cast	Operators

7.17	Using	the	instanceof	Operator

7.18	Polymorphism	and	Dynamic	Method	Lookup

7.19	Implementing	Data	Structures	by	Inheritance	and	Aggregation

8.1	Methods	in	the	Object	Class

8.2	String	Representation	of	Integers

8.3	String	Construction	and	Equality

8.4	Reading	Characters	from	a	String

9.1	Garbage	Collection	Eligibility

9.2	Using	Finalizers

9.3	Invoking	Garbage	Collection

9.4	Initializer	Expression	Order	and	Method	Calls

9.5	Static	Initializers	and	Forward	References

9.6	Instance	Initializers	and	Forward	References

9.7	Object	State	Construction

9.8	Initialization	Anomaly	under	Object	State	Construction

10.1	Using	an	ArrayList

10.2	Implementing	Customized	Methods	for	Filtering	an	ArrayList

10.3	Implementing	an	Interface	for	Filtering	an	ArrayList

10.4	User-Defined	Functional	Interface	for	Filtering	an	ArrayList

10.5	Using	the	Predicate<T>	Functional	Interface	for	Filtering	an	ArrayList

10.6	Accessing	Members	in	an	Enclosing	Object

10.7	Accessing	Local	Variables	in	an	Enclosing	Method

10.8	Filtering	an	ArrayList

11.1	Creating	Temporal	Objects

11.2	Using	Temporal	Objects

11.3	Temporal	Arithmetic

11.4	Period-Based	Loop

11.5	More	Temporal	Arithmetic

11.6	Using	Default	Date	and	Time	Formatters

11.7	Using	Predefined	Format	Styles	with	Time-Based	Values

11.8	Using	Predefined	Format	Styles	with	Date-Based	Values

11.9	Using	Predefined	Format	Styles	with	Date	and	Time-Based	Values

11.10	Formatting	and	Parsing	with	Letter	Patterns

11.11	Formatting	with	Date/Time	Letter	Patterns

Foreword

Java	is	now	over	twenty	years	old	and	the	current	release,	JDK	8,	despite	its	name,	is
really	the	eleventh	significant	release	of	the	platform.	Whilst	staying	true	to	the	original
ideas	of	the	platform,	there	have	been	numerous	developments	adding	a	variety	of	features
to	the	language	syntax	as	well	as	a	huge	number	of	APIs	to	the	core	class	libraries.	This
has	enabled	developers	to	become	substantially	more	productive	and	has	helped	to
eliminate	a	variety	of	common	situations	that	can	easily	result	in	bugs.

Java	has	continued	to	grow	in	popularity,	which	is	in	large	part	attributable	to	the
continued	evolution	of	the	platform,	which	keeps	it	fresh	and	addresses	things	that
developers	want.	According	to	some	sources,	there	are	more	than	nine	million	Java
programmers	across	the	globe	and	this	number	looks	set	to	continue	to	grow	as	most
universities	use	Java	as	a	primary	teaching	language.

With	so	many	Java	programmers	available	to	employers,	how	do	they	ensure	that
candidates	have	the	necessary	skills	to	develop	high-quality,	reliable	code?	The	answer	is
certification:	a	standardized	test	of	a	developer’s	knowledge	about	the	wide	variety	of
features	and	techniques	required	to	use	Java	efficiently	and	effectively.	Originally
introduced	by	Sun	Microsystems,	the	certification	process	and	exam	has	been	updated	to
match	the	features	of	each	release	of	Java.	Oracle	has	continued	this	since	acquiring	Sun
in	2010.

Taking	and	passing	the	exams	is	not	a	simple	task.	To	ensure	that	developers	meet	a	high
standard	of	knowledge	about	Java,	the	candidate	must	demonstrate	the	ability	to
understand	a	wide	variety	of	programming	techniques,	a	clear	grasp	of	the	Java	syntax,
and	a	comprehensive	knowledge	of	the	standard	class	library	APIs.	With	the	release	of
JDK	8,	not	only	do	Java	developers	need	to	understand	the	details	of	imperative	and
object-oriented	programming,	they	now	need	to	have	a	grasp	of	functional	programming
so	they	can	effectively	use	the	key	new	features:	lambda	expressions	and	the	Streams	API.

Which	is	why,	ultimately,	you	need	this	book	to	help	you	prepare	for	the	exam.	The
authors	have	done	a	great	job	of	presenting	the	material	you	need	to	know	to	pass	the
exam	in	an	approachable	and	easy-to-grasp	way.	The	book	starts	with	the	fundamental
concepts	and	language	syntax	and	works	its	way	through	what	you	need	to	know	about
object-oriented	programming	before	addressing	more	complex	topics	like	generic	types.
The	latter	part	of	the	book	addresses	the	most	recent	changes	in	JDK	8,	that	of	lambda
expressions,	the	Streams	API,	and	the	new	Date	and	Time	API.

Having	worked	with	Java	almost	since	it	was	first	released,	both	at	Sun	Microsystems	and
then	at	Oracle	Corporation,	I	think	you	will	find	this	book	an	invaluable	guide	to	help	you
pass	the	Oracle	Certified	Associate	Exam	for	Java	SE	8.	I	wish	you	the	best	of	luck!

—Simon	Ritter
Deputy	CTO,	Azul	Systems

Preface

Writing	This	Book
Dear	Reader,	what	you	hold	in	your	hand	is	the	result	of	a	meticulous	high-tech	operation
that	took	many	months	and	required	inspecting	many	parts,	removing	certain	parts,
retrofitting	some	old	parts,	and	adding	many	new	parts	to	our	previous	book	on	an	earlier
Java	programmer	certification	exam,	until	we	were	completely	satisfied	with	the	result.
After	you	have	read	the	book	and	passed	the	exam,	we	hope	that	you	will	appreciate	the
TLC	(tender	loving	care)	that	has	gone	into	this	operation.	This	is	how	it	all	came	about.

Learning	the	names	of	Java	certifications	and	the	required	exams	is	the	first	item	on	the
agenda.	This	book	provides	coverage	for	the	exam	to	earn	Oracle	Certified	Associate
(OCA),	Java	SE	8	Programmer	Certification	(also	know	as	OCAJP8).	The	exam	required
for	this	certification	has	the	name	Java	SE	8	Programmer	I	Exam	(Exam	number	1Z0-
808).	It	is	the	first	of	two	exams	required	to	obtain	Oracle	Certified	Professional	(OCP),
Java	SE	8	Programmer	Certification	(also	known	as	OCPJP8).	The	second	exam	required
for	this	professional	certification	has	the	name	Java	SE	8	Programmer	II	Exam	(Exam
number	1Z0-809).	To	reiterate,	this	book	covers	only	the	topics	for	the	Java	SE	8
Programmer	I	Exam	that	is	required	to	obtain	OCAJP8	certification.

A	book	on	the	new	Java	SE	8	certification	was	a	long	time	coming.	The	mantle	of	Java
had	been	passed	on	to	Oracle	and	Java	7	had	hit	the	newsstand.	We	started	out	to	write	a
book	to	cover	the	topics	for	the	two	exams	required	to	earn	the	Oracle	Certified
Professional,	Java	SE	7	Programmer	Certification.	Soon	after	the	release	of	Java	8,
Oracle	announced	the	certification	for	Java	SE	8.	We	decided	to	switch	to	the	new	version.
It	was	not	a	difficult	decision	to	make.	Java	8	marks	a	watershed	when	the	language	went
from	being	a	pure	object-oriented	language	to	one	that	also	incorporates	features	of
functional-style	programming.	As	the	saying	goes,	Java	8	changed	the	whole	ballgame.
Java	passed	its	twentieth	birthday	in	2015.	Java	8,	released	a	year	earlier,	represented	a
significant	milestone	in	its	history.	There	was	little	reason	to	dwell	on	earlier	versions.

The	next	decision	concerned	whether	it	would	be	best	to	provide	coverage	for	the	two
Java	SE	8	Programmer	Certification	exams	in	one	or	two	books.	Pragmatic	reasons
dictated	two	books.	It	would	take	far	too	long	to	complete	a	book	that	covered	both
exams,	mainly	because	the	second	exam	was	largely	revamped	and	would	require	a	lot	of
new	material.	We	decided	to	complete	the	book	for	the	first	exam.	Once	that	decision	was
made,	our	draft	manuscript	went	back	on	the	operating	table.

Our	approach	to	writing	this	book	has	not	changed	from	the	one	we	employed	for	our
previous	books,	mainly	because	it	has	proved	successful.	No	stones	were	left	unturned	to
create	this	book,	as	we	explain	here.

The	most	noticeable	changes	in	the	exam	for	OCAJP8	are	the	inclusion	of	the	core	classes
in	the	new	Date	and	Time	API	and	the	writing	of	predicates	using	lambda	expressions.
The	emphasis	remains	on	analyzing	code	scenarios,	rather	than	individual	language
constructs.	The	exam	continues	to	require	actual	experience	with	the	language,	not	just
mere	recitation	of	facts.	We	still	claim	that	proficiency	in	the	language	is	the	key	to

success.

Since	the	exam	emphasizes	the	core	features	of	Java,	this	book	provides	in-depth	coverage
of	topics	related	to	those	features.	As	in	our	earlier	books,	supplementary	topics	are	also
included	to	aid	in	mastering	the	exam	topics.

This	book	is	no	different	from	our	previous	books	in	one	other	important	aspect:	It	is	a
one-stop	guide,	providing	a	mixture	of	theory	and	practice	that	enables	readers	to	prepare
for	the	exam.	It	can	be	used	to	learn	Java	and	to	prepare	for	the	exam.	After	the	exam	is
passed,	it	can	also	come	in	handy	as	a	language	guide.

Apart	from	including	coverage	of	the	new	topics,	our	discussions	of	numerous	topics	from
the	previous	exam	were	extensively	revised.	All	elements	found	in	our	previous	books
(e.g.,	sections,	examples,	figures,	tables,	review	questions,	mock	exam	questions)	were
closely	scrutinized.	New	examples,	figures,	tables,	and	review	questions	were	specifically
created	for	the	new	topics	as	well	as	for	the	revised	ones.	We	continue	to	use	UML
(Unified	Modeling	Language)	extensively	to	illustrate	concepts	and	language	constructs,
and	all	numbered	examples	continue	to	be	complete	Java	programs	ready	for
experimenting.

Feedback	from	readers	regarding	our	previous	books	was	invaluable	in	shaping	this	book.
Every	question,	suggestion,	and	comment	received	was	deliberated	upon.	We	are	grateful
for	every	single	email	we	have	received	over	the	years;	that	input	proved	invaluable	in
improving	this	book.

Dear	Reader,	we	wish	you	all	the	best	should	you	decide	to	go	down	the	path	of	Java
certification.	May	your	loops	terminate	and	your	exceptions	get	caught!

About	This	Book
This	book	provides	extensive	coverage	of	the	core	features	of	the	Java	programming
language	and	its	core	application	programming	interface	(API),	with	particular	emphasis
on	its	syntax	and	usage.	The	book	is	primarily	intended	for	professionals	who	want	to
prepare	for	the	Java	SE	8	Programmer	I	exam,	but	it	is	readily	accessible	to	any
programmer	who	wants	to	master	the	language.	For	both	purposes,	it	provides	in-depth
coverage	of	essential	features	of	the	language	and	its	core	API.

The	demand	for	well-trained	and	highly	skilled	Java	programmers	remains	unabated.
Oracle	offers	many	Java	certifications	that	professionals	can	take	to	validate	their	skills
(see	http://education.oracle.com).	The	certification	provides	members	of	the
IT	industry	with	a	standard	to	use	when	hiring	such	professionals,	and	it	allows
professionals	to	turn	their	Java	skills	into	credentials	that	are	important	for	career
advancement.

The	book	provides	extensive	coverage	of	all	the	objectives	defined	by	Oracle	for	the	Java
SE	8	Programmer	I	exam.	The	exam	objectives	are	selective,	however,	and	do	not	include
many	of	the	essential	features	of	Java.	This	book	covers	many	additional	topics	that	every
Java	programmer	should	master	to	be	truly	proficient.	In	this	regard,	the	book	is	a
comprehensive	primer	for	learning	the	Java	programming	language.	After	mastering	the
language	by	working	through	this	book,	the	reader	can	confidently	sit	for	the	exam.

http://education.oracle.com

This	book	is	not	a	complete	reference	for	Java,	as	it	does	not	attempt	to	list	every	member
of	every	class	from	the	Java	SE	platform	API	documentation.	The	purpose	is	not	to
document	the	Java	SE	platform	API.	The	emphasis	is	more	on	the	Java	programming
language	features—their	syntax	and	correct	usage	through	code	examples—and	less	on
teaching	programming	techniques.

The	book	assumes	little	background	in	programming.	We	believe	the	exam	is	accessible	to
any	programmer	who	works	through	the	book.	A	Java	programmer	can	easily	skip	over
material	that	is	well	understood	and	concentrate	on	parts	that	need	reinforcing,	whereas	a
programmer	new	to	Java	will	find	the	concepts	explained	from	basic	principles.

Each	topic	is	explained	and	discussed	thoroughly	with	examples,	and	backed	by	review
questions	and	exercises	to	reinforce	the	concepts.	The	book	is	not	biased	toward	any
particular	platform,	but	provides	platform-specific	details	where	necessary.

Using	This	Book
The	reader	can	choose	a	linear	or	a	nonlinear	route	through	the	book,	depending	on	his	or
her	programming	background.	Non-Java	programmers	wishing	to	migrate	to	Java	can	read
Chapter	1,	which	provides	a	short	introduction	to	object-oriented	programming	concepts,
and	the	procedure	for	compiling	and	running	Java	applications.	For	those	preparing	for
Java	SE	8	Programmer	I	exam,	the	book	has	a	separate	appendix	(Appendix	A)	providing
all	the	pertinent	information	on	preparing	for	and	taking	the	exam.

Cross-references	are	provided	where	necessary	to	indicate	the	relationships	among	the
various	constructs	of	the	language.	To	understand	a	language	construct,	all	pertinent
details	are	provided	where	the	construct	is	covered,	but	in	addition,	cross-references	are
provided	to	indicate	its	relationship	to	other	constructs.	Sometimes	it	is	necessary	to
postpone	discussion	of	certain	aspects	of	a	topic	if	they	depend	on	concepts	that	have	not
yet	been	covered	in	the	book.	A	typical	example	is	the	consequences	of	object-oriented
programming	concepts	(for	example,	inheritance)	on	the	member	declarations	that	can
occur	in	a	class.	This	approach	can	result	in	forward	references	in	the	initial	chapters	of
the	book.

The	table	of	contents;	listings	of	tables,	examples,	and	figures;	and	a	comprehensive	index
facilitate	locating	topics	discussed	in	the	book.

In	particular,	we	draw	attention	to	the	following	features	of	the	book:

Programmer	I	Exam	Objectives

0.1	Exam	objectives	are	stated	clearly	at	the	beginning	of	every	chapter.

0.2	The	number	in	front	of	the	objective	identifies	the	exam	objective,	as	defined
by	Oracle,	and	can	be	found	in	Appendix	B.

0.3	The	objectives	are	organized	into	major	sections,	detailing	the	curriculum	for
the	exam.

0.4	The	objectives	for	the	Java	SE	8	Programmer	I	exam	are	reproduced	verbatim
in	Appendix	B,	where	for	each	section	of	the	syllabus,	references	are	included	to
point	the	reader	to	relevant	topics	in	the	book.

Supplementary	Objectives

•	Supplementary	objectives	cover	topics	that	are	not	on	the	exam,	but	which	we
believe	are	important	for	mastering	the	topics	that	are	on	the	exam.

•	Any	supplementary	objective	is	listed	as	a	bullet	at	the	beginning	of	the	chapter.

	Review	Questions

Review	questions	are	provided	after	every	major	topic	to	test	and	reinforce	the	material.
The	review	questions	predominantly	reflect	the	kind	of	multiple-choice	questions	that	can
be	asked	on	the	actual	exam.	On	the	exam,	the	exact	number	of	answers	to	choose	for	each
question	is	explicitly	stated.	The	review	questions	in	this	book	follow	that	practice.

Many	questions	on	the	actual	exam	contain	code	snippets	with	line	numbers	to	indicate
that	complete	implementation	is	not	provided,	and	that	the	necessary	missing	code	to
compile	and	run	the	code	snippets	can	be	assumed.	The	review	questions	in	this	book
provide	complete	code	implementations	where	possible,	so	that	the	code	can	be	readily
compiled	and	run.

Annotated	answers	to	the	review	questions	are	provided	in	Appendix	C.

Example	0.1	Example	Source	Code

We	encourage	readers	to	experiment	with	the	code	examples	to	reinforce	the	material	from
the	book.	These	examples	can	be	downloaded	from	the	book	website	(see	p.	xxxiv).

Java	code	is	presented	in	a	monospaced	font.	Lines	of	code	in	the	examples	or	in
code	snippets	are	referenced	in	the	text	by	a	number,	which	is	specified	by	using	a	single-
line	comment	in	the	code.	For	example,	in	the	following	code	snippet,	the	call	to	the
method	doSomethingInteresting()	at	(1)	does	something	interesting:
Click	here	to	view	code	image

//	…
doSomethingInteresting();																																																	//
(1)
//	…

Names	of	classes	and	interfaces	start	with	an	uppercase	letter.	Names	of	packages,
variables,	and	methods	start	with	a	lowercase	letter.	Constants	are	in	all	uppercase	letters.
Interface	names	begin	with	the	prefix	I,	when	it	makes	sense	to	distinguish	them	from
class	names.	Coding	conventions	are	followed,	except	when	we	have	had	to	deviate	from
these	conventions	in	the	interest	of	space	or	clarity.

	Chapter	Summary

Each	chapter	concludes	with	a	summary	of	the	topics	covered	in	the	chapter,	pointing	out
the	major	concepts	that	were	introduced.

	Programming	Exercises

Programming	exercises	at	the	end	of	each	chapter	provide	the	opportunity	to	put	concepts
into	practice.	Solutions	to	the	programming	exercises	are	provided	in	Appendix	D.

Mock	Exam
The	mock	exam	in	Appendix	E	should	be	attempted	when	the	reader	feels	confident	about
the	topics	on	the	exam.	It	is	highly	recommended	to	read	Appendix	A	before	attempting
the	mock	exam,	as	Appendix	A	contains	pertinent	information	about	the	questions	to
expect	on	the	actual	exam.	Each	multiple-choice	question	in	the	mock	exam	explicitly
states	how	many	answers	are	applicable	for	a	given	question,	as	is	the	case	on	the	actual
exam.	Annotated	answers	to	the	questions	in	the	mock	exam	are	provided	in	Appendix	F.

Java	SE	Platform	API	Documentation

A	vertical	gray	bar	is	used	to	highlight	methods	and	fields	found	in	the	classes	of
the	Java	SE	Platform	API.

Any	explanation	following	the	API	information	is	also	similarly	highlighted.

To	obtain	the	maximum	benefit	from	using	this	book	in	preparing	for	the	Java	SE	8
Programmer	I	exam,	we	strongly	recommend	installing	the	latest	version	(Release	8	or
newer)	of	the	JDK	and	its	accompanying	API	documentation.	The	book	focuses	solely	on
Java	8,	and	does	not	acknowledge	previous	versions.

Book	Website
This	book	is	backed	by	a	website	providing	auxiliary	material:

www.ii.uib.no/~khalid/ocajp8/

The	contents	of	the	website	include	the	following:

•	Source	code	for	all	the	examples	in	the	book

•	Solutions	to	the	programming	exercises	in	the	book

•	Annotated	answers	to	the	reviews	questions	in	the	book

•	Annotated	answers	to	the	mock	exam	in	the	book

•	Table	of	contents,	sample	chapter,	and	index	from	the	book

•	Errata	for	the	book

•	Links	to	miscellaneous	Java	resources	(e.g.,	certification,	discussion	groups,	tools)

Information	about	the	Java	Standard	Edition	(SE)	and	its	documentation	can	be	found	at
the	following	website:

www.oracle.com/technetwork/java/javase/overview/index.html

The	current	authoritative	technical	reference	for	the	Java	programming	language,	The
Java®	Language	Specification:	Java	SE	8	Edition	(also	published	by	Addison-Wesley),
can	be	found	at	this	website:

http://docs.oracle.com/javase/specs/index.html

Request	for	Feedback
Considerable	effort	has	been	made	to	ensure	the	accuracy	of	the	content	of	this	book.	All
code	examples	(including	code	fragments)	have	been	compiled	and	tested	on	various
platforms.	In	the	final	analysis,	any	errors	remaining	are	the	sole	responsibility	of	the
authors.

Any	questions,	comments,	suggestions,	and	corrections	are	welcome.	Let	us	know
whether	the	book	was	helpful	(or	not)	for	your	purpose.	Any	feedback	is	valuable.	The
principal	author	can	be	reached	at	the	following	email	address:

khalid.mughal@uib.no

Register	your	copy	of	A	Programmer’s	Guide	to	Java®	SE	8	Oracle	Certified	Associate
(OCA)	at	informit.com	for	convenient	access	to	downloads,	updates,	and	corrections	as
they	become	available.	To	start	the	registration	process,	go	to	informit.com/register	and
log	in	or	create	an	account.	Enter	the	product	ISBN	(9780132930215)	and	click	Submit.
Once	the	process	is	complete,	you	will	find	any	available	bonus	content	under	“Registered

http://www.ii.uib.no/~khalid/ocajp8/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://docs.oracle.com/javase/specs/index.html
mailto:khalid.mughal@uib.no
http://informit.com
http://informit.com/register

Products.”

About	the	Authors

Khalid	A.	Mughal
Khalid	A.	Mughal	is	an	associate	professor	at	the	Department	of	Informatics	at	the
University	of	Bergen,	Norway,	where	he	has	been	responsible	for	designing	and
implementing	various	courses	in	informatics.	Over	the	years,	he	has	taught	programming
(primarily	Java),	software	engineering	(object-oriented	system	development),	databases
(data	modeling	and	database	management	systems),	compiler	techniques,	web	application
development,	and	software	security	courses.	For	15	years,	he	was	responsible	for
developing	and	running	web-based	programming	courses	in	Java,	which	were	offered	to
off-campus	students.	He	has	also	given	numerous	courses	and	seminars	at	various	levels
in	object-oriented	programming	and	system	development	using	Java	and	Java-related
technologies,	both	at	the	University	of	Bergen	and	for	the	IT	industry.

Mughal	is	the	principal	author	and	solely	responsible	for	the	contents	of	this	book.	He	is
also	the	principal	author	of	three	books	on	previous	versions	of	the	Java	programmer
certification—A	Programmer’s	Guide	to	Java™	SCJP	Certification:	A	Comprehensive
Primer,	Third	Edition	(0321556054);	A	Programmer’s	Guide	to	Java™	Certification:	A
Comprehensive	Primer,	Second	Edition	(0201728281);	and	A	Programmer’s	Guide	to
Java™	Certification	(0201596148)—and	three	introductory	textbooks	on	programming	in
Java:	Java	Actually:	A	First	Course	in	Programming	(1844804186);	Java	Actually:	A
Comprehensive	Primer	in	Java	Programming	(1844809331);	and	Java	som	første
programmeringsspråk/Java	as	First	Programming	Language,	Third	Edition
(8202245540).

Mughal	currently	works	on	security	issues	related	to	mobile	data	collection	systems	for
delivering	health	services	in	low-	and	middle-income	countries.

Rolf	W.	Rasmussen
Rolf	W.	Rasmussen	is	a	system	development	manager	at	Vizrt,	a	company	that	develops
solutions	for	the	TV	broadcast	industry,	including	real-time	3D	graphic	renderers,	and
content	and	control	systems.	Rasmussen	works	mainly	on	control	and	automation	systems,
video	processing,	typography,	and	real-time	visualization.	He	has	worked	on	clean-room
implementations	of	the	Java	class	libraries	in	the	past	and	is	a	contributor	to	the	Free
Software	Foundation.

Over	the	years,	Rasmussen	has	worked	both	academically	and	professionally	with
numerous	programming	languages,	including	Java.	He	was	primarily	responsible	for
developing	the	review	questions	and	answers,	the	programming	exercises	and	their
solutions,	the	mock	exam,	and	all	the	practical	aspects	related	to	taking	the	exam	in	our
three	previous	books	on	Java	programmer	certification.	Selected	earlier	content	has	been
utilized	in	this	book.	Together	with	Mughal,	he	is	also	a	co-author	of	three	introductory
textbooks	on	programming	in	Java.

Acknowledgments
At	Addison-Wesley,	Greg	Doench	was	again	our	editor,	who	effectively		managed	the
process	of	publishing	this	book.	Regular	dialog	with	him	in	recent	months	helped	to	keep
this	project	on	track.	Julie	Nahil	was	the	in-house	contact	at	Addison-Wesley,	who
professionally	managed	the	production	of	the	book.	Anna	Popick	was	the	project	editor,
who	diligently	handled	the	day-to-day	project	management	for	this	book.	Jill	Hobbs	did	a
truly	marvelous	job	copy	editing	the	book.	The	folks	at	The	CIP	Group	performed	the
typesetting	wizardry	necessary	to	materialize	the	book.	We	would	like	to	extend	our
sincere	thanks	to	Greg,	Julie,	Anna,	Jill,	the	folks	at	The	CIP	Group,	and	all	those	behind
the	scenes	at	Addison-Wesley,	who	helped	to	put	this	publication	on	the	bookshelf.

For	the	technical	review	of	the	book,	we	were	lucky	that	Roel	De	Nijs	agreed	to	take	on
the	task.	If	you	drop	in	on	CodeRanch.com,	you	are	bound	to	find	him	executing	his
duties	as	a	Sheriff,	especially	helping	greenhorns	find	their	bearing	in	the	Java
certification	corrals.	He	is	a	freelance	Java	developer	with	many	IT	companies	as	clients
and	a	multitude	of	Java	certification	accolades	under	his	belt	(SCJA,	SCJP,	SCJD,
OCAJP7).	And	not	least,	he	is	a	Technical	Reviewer	Par	Excellence.	Without	doubt,	Roel
has	a	meticulous	eye	for	detail.	It	is	no	exaggeration	to	say	that	his	exhaustive	feedback
has	been	invaluable	in	improving	the	quality	of	this	book	at	all	levels.	Roel,	you	have	our
most	sincere	thanks	for	your	many	excellent	comments	and	suggestions,	and	above	all,	for
weeding	out	numerous	pesky	errors	in	the	manuscript.

Over	the	years,	we	have	also	been	lucky	to	have	our	own	personal	manuscript	quality
controller:	Marit	Seljeflot	Mughal.	As	diligently	as	with	our	previous	books,	she	tirelessly
proofread	several	chapter	drafts	for	this	book,	and	put	her	finger	on	many	unmentionable
mistakes	and	errors	in	the	manuscript.	Her	valuable	comments	and	suggestions	have	also
been	instrumental	in	improving	the	quality	of	this	book.	If	Marit,	who	has	no	IT
background,	could	make	sense	of	the	Java	jargon	we	wrote,	then	we	were	confident	our
readers	would	as	well.	Our	most	sincere	thanks.

Great	effort	has	been	made	to	eliminate	mistakes	and	errors	in	this	book.	We	accept	full
responsibility	for	any	remaining	oversights.	We	hope	that	when	our	Dear	Readers	find
any,	they	will	bring	them	to	our	attention.

Many	family	occasions	have	been	missed	while	working	on	this	book.	Without	family
support,	this	book	would	not	have	seen	the	light	of	day.	Khalid	is	ever	grateful	to	his
family	for	their	love,	support,	and	understanding—but	especially	when	he	is	working	on	a
book.	Now	that	this	book	is	out	the	door,	he	is	off	to	play	with	his	three	grandchildren.

—Khalid	A.	Mughal

17	May	2016
Bergen,	Norway

http://CodeRanch.com

1.	Basics	of	Java	Programming

1.1	Introduction
Before	embarking	on	the	road	to	Java	programmer	certification,	it	is	important	to
understand	the	basic	terminology	and	concepts	in	object-oriented	programming	(OOP).	In
this	chapter,	the	emphasis	is	on	providing	an	introduction	to	OOP,	rather	than	exhaustive
coverage.	In-depth	coverage	of	the	concepts	follows	in	subsequent	chapters	of	the	book.

Java	supports	the	writing	of	many	different	kinds	of	executables:	applications,	applets,	and
servlets.	The	basic	elements	of	a	Java	application	are	introduced	in	this	chapter.	The	old
adage	that	practice	makes	perfect	is	certainly	true	when	learning	a	programming	language.
To	encourage	programming	on	the	computer,	the	mechanics	of	compiling	and	running	a
Java	application	are	outlined.

1.2	Classes
One	of	the	fundamental	ways	in	which	we	handle	complexity	is	by	using	abstractions.	An
abstraction	denotes	the	essential	properties	and	behaviors	of	an	object	that	differentiate	it
from	other	objects.	The	essence	of	OOP	is	modeling	abstractions,	using	classes	and
objects.	The	hard	part	of	this	endeavor	is	finding	the	right	abstraction.

A	class	denotes	a	category	of	objects,	and	acts	as	a	blueprint	for	creating	objects.	A	class
models	an	abstraction	by	defining	the	properties	and	behaviors	for	the	objects	representing
the	abstraction.	An	object	exhibits	the	properties	and	behaviors	defined	by	its	class.	The
properties	of	an	object	of	a	class	are	also	called	attributes,	and	are	defined	by	fields	in
Java.	A	field	in	a	class	is	a	variable	that	can	store	a	value	that	represents	a	particular

property	of	an	object.	The	behaviors	of	an	object	of	a	class	are	also	known	as	operations,
and	are	defined	using	methods	in	Java.	Fields	and	methods	in	a	class	declaration	are
collectively	called	members.

An	important	distinction	is	made	between	the	contract	and	the	implementation	that	a	class
provides	for	its	objects.	The	contract	defines	which	services	are	provided,	and	the
implementation	defines	how	these	services	are	provided	by	the	class.	Clients	(i.e.,	other
objects)	need	to	know	only	the	contract	of	an	object,	and	not	its	implementation,	to	avail
themselves	of	the	object’s	services.

As	an	example,	we	will	implement	different	versions	of	a	class	that	models	the	abstraction
of	a	stack	that	can	push	and	pop	characters.	The	stack	will	use	an	array	of	characters	to
store	the	characters,	and	a	field	to	indicate	the	top	element	in	the	stack.	Using	Unified
Modeling	Language	(UML)	notation,	a	class	called	CharStack	is	graphically	depicted
in	Figure	1.1,	which	models	the	abstraction.	Both	fields	and	method	names	are	shown	in
Figure	1.1a.

Figure	1.1	UML	Notation	for	Classes

Declaring	Members:	Fields	and	Methods
Example	1.1	shows	the	declaration	of	the	class	CharStack	depicted	in	Figure	1.1.	Its
intention	is	to	illustrate	the	salient	features	of	a	class	declaration	in	Java,	rather	than	an
effective	implementation	of	stacks.	The	character	sequence	//	in	the	code	indicates	the
start	of	a	single-line	comment	that	can	be	used	to	document	the	code.	All	characters	after
this	sequence	and	to	the	end	of	the	line	are	ignored	by	the	compiler.

A	class	declaration	contains	member	declarations	that	define	the	fields	and	the	methods	of
the	objects	the	class	represents.	In	the	case	of	the	class	CharStack,	it	has	two	fields
declared	at	(1):

•	stackArray,	which	is	an	array	to	hold	the	elements	of	the	stack	(in	this	case,
characters)

•	topOfStack,	which	denotes	the	top	element	of	the	stack	(i.e.,	the	index	of	the	last
character	stored	in	the	array)

The	class	CharStack	has	five	methods,	declared	at	(3),	that	implement	the	essential
operations	on	a	stack:

•	push()	pushes	a	character	on	to	the	stack.

•	pop()	removes	and	returns	the	top	element	of	the	stack.

•	peek()	returns	the	top	element	of	the	stack	for	inspection.

•	isEmpty()	determines	whether	the	stack	is	empty.

•	isFull()	determines	whether	the	stack	is	full.

The	class	declaration	also	has	a	method-like	declaration	at	(2)	with	the	same	name	as	the
class.	Such	declarations	are	called	constructors.	As	we	shall	see,	a	constructor	is	executed
when	an	object	is	created	from	the	class.	However,	the	implementation	details	in	the
example	are	not	important	for	the	present	discussion.

Example	1.1	Basic	Elements	of	a	Class	Declaration
Click	here	to	view	code	image

//	File:	CharStack.java
public	class	CharStack	{									//	Class	name
		//	Class	Declarations:

		//	Fields:																																																											(1)
		private	char[]	stackArray;					//	The	array	implementing	the	stack
		private	int				topOfStack;					//	The	top	of	the	stack

		//	Constructor:																																																						(2)
		public	CharStack(int	capacity)	{
				stackArray	=	new	char[capacity];
				topOfStack	=	-1;
		}

		//	Methods:																																																										(3)
		public	void	push(char	element)	{	stackArray[++topOfStack]	=	element;	}
		public	char	pop()														{	return	stackArray[topOfStack—];	}
		public	char	peek()													{	return	stackArray[topOfStack];	}
		public	boolean	isEmpty()							{	return	topOfStack	==	-1;	}
		public	boolean	isFull()								{	return	topOfStack	==	stackArray.length	-
1;	}
}

1.3	Objects

Class	Instantiation,	Reference	Values,	and	References
The	process	of	creating	objects	from	a	class	is	called	instantiation.	An	object	is	an
instance	of	a	class.	The	object	is	constructed	using	the	class	as	a	blueprint	and	is	a
concrete	instance	of	the	abstraction	that	the	class	represents.	An	object	must	be	created
before	it	can	be	used	in	a	program.

A	reference	value	is	returned	when	an	object	is	created.	A	reference	value	denotes	a
particular	object.	A	variable	denotes	a	location	in	memory	where	a	value	can	be	stored.
An	object	reference	(or	simply	reference)	is	a	variable	that	can	store	a	reference	value.

Thus	a	reference	provides	a	handle	to	an	object,	as	it	can	indirectly	denote	an	object	whose
reference	value	it	holds.	In	Java,	an	object	can	be	manipulated	only	via	its	reference	value,
or	equivalently	by	a	reference	that	holds	its	reference	value.
This	setup	for	manipulating	objects	requires	that	a	reference	be	declared,	a	class	be
instantiated	to	create	an	object,	and	the	reference	value	of	the	object	created	be	stored	in
the	reference.	These	steps	are	accomplished	by	a	declaration	statement.
Click	here	to	view	code	image

CharStack	stack1	=	new	CharStack(10);	//	Stack	length:	10	chars

In	the	preceding	declaration	statement,	the	left-hand	side	of	the	=	operator	declares	that
stack1	is	a	reference	of	class	CharStack.	The	reference	stack1,	therefore,	can	refer
to	objects	of	class	CharStack.

The	right-hand	side	of	the	=	operator	creates	an	object	of	class	CharStack.	This	step
involves	using	the	new	operator	in	conjunction	with	a	call	to	a	constructor	of	the	class
(new	CharStack(10)).	The	new	operator	creates	an	instance	of	the	CharStack
class	and	returns	the	reference	value	of	this	instance.	The	=	operator	(called	the
assignment	operator)	stores	the	reference	value	in	the	reference	stack1	declared	on	the
left-hand	side	of	the	assignment	operator.	The	reference	stack1	can	now	be	used	to
manipulate	the	object	whose	reference	value	is	stored	in	it.

Analogously,	the	following	declaration	statement	declares	the	reference	stack2	to	be	of
class	CharStack,	creates	an	object	of	class	CharStack,	and	assigns	its	reference	value
to	the	reference	stack2:
Click	here	to	view	code	image

CharStack	stack2	=	new	CharStack(5);		//	Stack	length:	5	chars

Each	object	that	is	created	has	its	own	copy	of	the	fields	declared	in	the	class	declaration
in	Example	1.1.	That	is,	the	two	stack	objects,	referenced	by	stack1	and	stack2,	will
have	their	own	stackArray	and	topOfStack	fields.

The	purpose	of	the	constructor	call	on	the	right-hand	side	of	the	new	operator	is	to
initialize	the	newly	created	object.	In	this	particular	case,	for	each	new	CharStack
object	created	using	the	new	operator,	the	constructor	at	(2)	in	Example	1.1	creates	an
array	of	characters.	The	length	of	this	array	is	given	by	the	value	of	the	argument	to	the
constructor.	The	constructor	also	initializes	the	topOfStack	field.

Figure	1.2	shows	the	UML	notation	for	objects.	The	graphical	representation	of	an	object
is	very	similar	to	that	of	a	class.	Figure	1.2	shows	the	canonical	notation,	where	the	name
of	the	reference	denoting	the	object	is	prefixed	to	the	class	name	with	a	colon	(:).	If	the
name	of	the	reference	is	omitted,	as	in	Figure	1.2b,	this	denotes	an	anonymous	object.
Since	objects	in	Java	do	not	have	names,	but	rather	are	denoted	by	references,	a	more
elaborate	notation	is	shown	in	Figure	1.2c,	where	references	of	the	CharStack	class
explicitly	refer	to	CharStack	objects.	In	most	cases,	the	more	compact	notation	will
suffice.

Figure	1.2	UML	Notation	for	Objects

Object	Aliases
Several	references	can	refer	to	the	same	object,	meaning	that	they	store	the	reference	value
of	the	same	object.	Such	references	are	called	aliases.	The	object	can	be	manipulated	via
any	one	of	its	aliases,	as	each	one	refers	to	the	same	object.
Click	here	to	view	code	image

//	Create	two	distinct	stacks	of	chars.
CharStack	stackA	=	new	CharStack(12);	//	Stack	length:	12	chars
CharStack	stackB	=	new	CharStack(6);		//	Stack	length:	6	chars

stackB	=	stackA;																						//	(1)	aliases	after	assignment
//	The	stack	previously	referenced	by	stackB	can	now	be	garbage	collected.

Two	stack	objects	are	created	in	the	preceding	code.	Before	the	assignment	at	(1),	the
situation	is	as	depicted	in	Figure	1.3a.	After	the	assignment	at	(1),	the	references	stackA
and	stackB	will	denote	the	same	stack,	as	depicted	in	Figure	1.3b.	The	reference	value
in	stackA	is	assigned	to	stackB.	The	references	stackA	and	stackB	are	aliases
after	the	assignment,	as	they	refer	to	the	same	object.	What	happens	to	the	stack	object
that	was	denoted	by	the	reference	stackB	before	the	assignment?	When	objects	are	no
longer	in	use,	their	memory	is,	if	necessary,	reclaimed	and	reallocated	for	other	objects.
This	process	is	called	automatic	garbage	collection.	Garbage	collection	in	Java	is	taken
care	of	by	the	runtime	environment.

Figure	1.3	Aliases

1.4	Instance	Members
Each	object	created	will	have	its	own	copies	of	the	fields	defined	in	its	class.	The	fields	of
an	object	are	called	instance	variables.	The	values	of	the	instance	variables	in	an	object
constitute	its	state.	Two	distinct	objects	can	have	the	same	state	if	their	instance	variables
have	the	same	values.	The	methods	of	an	object	define	its	behavior;	such	methods	are
called	instance	methods.	It	is	important	to	note	that	these	methods	pertain	to	each	object	of
the	class.	In	contrast,	the	implementation	of	the	methods	is	shared	by	all	instances	of	the
class.	Instance	variables	and	instance	methods,	which	belong	to	objects,	are	collectively
called	instance	members,	to	distinguish	them	from	static	members,	which	belong	to	the
class	only.	Static	members	are	discussed	in	§1.5.

Invoking	Methods
Objects	communicate	by	message	passing.	As	a	consequence,	an	object	can	be	made	to
exhibit	a	particular	behavior	by	sending	the	appropriate	message	to	the	object.	In	Java,	this
is	done	by	calling	a	method	on	the	object	using	the	binary	dot	(.)	operator.	A	method	call
spells	out	the	complete	message:	the	object	that	is	the	receiver	of	the	message,	the	method
to	be	invoked,	and	the	arguments	to	be	passed	to	the	method,	if	any.	The	method	invoked
on	the	receiver	can	also	send	information	back	to	the	sender,	via	a	single	return	value.	The
method	called	must	be	one	that	is	defined	for	the	object;	otherwise,	the	compiler	reports
an	error.
Click	here	to	view	code	image

CharStack	stack	=	new	CharStack(5);						//	Create	a	stack
stack.push(‘J’);												//	(1)	Character	‘J’	pushed
char	c	=	stack.pop();							//	(2)	One	character	popped	and	returned:	‘J’
stack.printStackElements();	//	(3)	Compile-time	error:	No	such	method	in
CharStack

The	sample	code	given	here	invokes	methods	on	the	object	denoted	by	the	reference

stack.	The	method	call	at	(1)	pushes	one	character	on	the	stack,	and	the	method	call	at
(2)	pops	one	character	off	the	stack.	Both	the	push()	and	pop()	methods	are	defined	in
the	class	CharStack.	The	push()	method	does	not	return	any	value,	but	the	pop()
method	returns	the	character	popped.	Trying	to	invoke	a	method	named
printStackElements	on	the	stack	results	in	a	compile-time	error,	as	no	such	method
is	defined	in	the	class	CharStack.

The	dot	(.)	notation	can	also	be	used	with	a	reference	to	access	the	fields	of	an	object.
Use	of	the	dot	notation	is	governed	by	the	accessibility	of	the	member.	The	fields	in	the
class	CharStack	have	private	accessibility,	indicating	that	they	are	not	accessible
from	outside	the	class.	Thus	the	following	code	in	a	client	of	the	CharStack	class	will
not	compile:
Click	here	to	view	code	image

stack.topOfStack++;					//	Compile-time	error:	topOfStack	is	not	visible.

1.5	Static	Members
In	some	cases,	certain	members	should	belong	only	to	the	class;	that	is,	they	should	not	be
part	of	any	instance	of	the	class.	As	an	example,	suppose	a	class	wants	to	keep	track	of
how	many	objects	of	the	class	have	been	created.	Defining	a	counter	as	an	instance
variable	in	the	class	declaration	for	tracking	the	number	of	objects	created	does	not	solve
the	problem.	Each	object	created	will	have	its	own	counter	field.	Which	counter	should
then	be	updated?	The	solution	is	to	declare	the	counter	field	as	being	static.	Such	a
field	is	called	a	static	variable.	It	belongs	to	the	class,	rather	than	to	any	specific	object	of
the	class.	A	static	variable	is	initialized	when	the	class	is	loaded	at	runtime.	Similarly,	a
class	can	have	static	methods	that	belong	to	the	class,	rather	than	to	any	specific	objects	of
the	class.	Static	variables	and	static	methods	are	collectively	known	as	static	members,
and	are	declared	with	the	keyword	static.

Figure	1.4	shows	the	class	diagram	for	the	class	CharStack.	It	has	been	augmented	by
two	static	members,	whose	names	are	underlined.	The	augmented	definition	of	the
CharStack	class	is	given	in	Example	1.2.	The	field	counter	is	a	static	variable
declared	at	(1).	It	will	be	allocated	and	initialized	to	the	default	value	0	when	the	class	is
loaded.	Each	time	an	object	of	the	CharStack	class	is	created,	the	constructor	at	(2)	is
executed.	The	constructor	explicitly	increments	the	counter	in	the	class.	The	method
getInstanceCount()	at	(3)	is	a	static	method	belonging	to	the	class.	It	returns	the
counter	value	when	called.

Figure	1.4	Class	Diagram	Showing	Static	Members	of	a	Class

Example	1.2	Static	Members	in	Class	Declaration
Click	here	to	view	code	image

//	File:	CharStack.java
public	class	CharStack	{
		//	Instance	variables:
		private	char[]	stackArray;					//	The	array	implementing	the	stack
		private	int				topOfStack;					//	The	top	of	the	stack

		//	Static	variable
		private	static	int	counter;																																						//	(1)

		//	Constructor	now	increments	the	counter	for	each	object	created.
		public	CharStack(int	capacity)	{																																	//	(2)
				stackArray	=	new	char[capacity];
				topOfStack	=	-1;
				counter++;
		}

		//	Instance	methods:
		public	void	push(char	element)	{	stackArray[++topOfStack]	=	element;	}
		public	char	pop()														{	return	stackArray[topOfStack—];	}
		public	char	peek()													{	return	stackArray[topOfStack];	}
		public	boolean	isEmpty()							{	return	topOfStack	==	-1;	}
		public	boolean	isFull()								{	return	topOfStack	==	stackArray.length	-
1;	}

		//	Static	method																																																				(3)
		public	static	int	getInstanceCount()	{	return	counter;	}
}

Figure	1.5	shows	the	classification	of	the	members	in	the	class	CharStack,	using	the
terminology	we	have	introduced	so	far.	Table	1.1	provides	a	summary	of	the	terminology
used	in	defining	members	of	a	class.

Figure	1.5	Members	of	a	Class

Table	1.1	Terminology	for	Class	Members

Clients	can	access	static	members	in	the	class	by	using	the	class	name.	The	following	code
invokes	the	getInstanceCount()	method	in	the	class	CharStack:
Click	here	to	view	code	image

int	count	=	CharStack.getInstanceCount();	//	Class	name	to	invoke	static
method

Static	members	can	also	be	accessed	via	object	references,	although	doing	so	is	considered
bad	style:

Click	here	to	view	code	image
CharStack	myStack	=	new	CharStack(20);
int	count	=	myStack.getInstanceCount();			//	Reference	invokes	static	method

Static	members	in	a	class	can	be	accessed	both	by	the	class	name	and	via	object
references,	but	instance	members	can	be	accessed	only	by	object	references.

1.6	Inheritance
There	are	two	fundamental	mechanisms	for	building	new	classes	from	existing	ones:
inheritance	and	aggregation.	It	makes	sense	to	inherit	from	an	existing	class	Vehicle	to
define	a	class	Car,	since	a	car	is	a	vehicle.	The	class	Vehicle	has	several	parts;
therefore,	it	makes	sense	to	define	a	composite	object	of	the	class	Vehicle	that	has
constituent	objects	of	such	classes	as	Engine,	Axle,	and	GearBox,	which	make	up	a
vehicle.

Inheritance	is	illustrated	here	by	an	example	that	implements	a	stack	of	characters	that	can
print	its	elements	on	the	terminal.	This	new	stack	has	all	the	properties	and	behaviors	of
the	CharStack	class,	along	with	the	additional	capability	of	printing	its	elements.	Given
that	this	printable	stack	is	a	stack	of	characters,	it	can	be	derived	from	the	CharStack
class.	This	relationship	is	shown	in	Figure	1.6.	The	class	PrintableCharStack	is
called	the	subclass,	and	the	class	CharStack	is	called	the	superclass.	The	CharStack
class	is	a	generalization	for	all	stacks	of	characters,	whereas	the	class
PrintableCharStack	is	a	specialization	of	stacks	of	characters	that	can	also	print
their	elements.

Figure	1.6	Class	Diagram	Depicting	Inheritance	Relationship

In	Java,	deriving	a	new	class	from	an	existing	class	requires	the	use	of	the	extends
clause	in	the	subclass	declaration.	A	subclass	can	extend	only	one	superclass.	The	subclass
can	inherit	members	of	the	superclass.	The	following	code	fragment	implements	the
PrintableCharStack	class:
Click	here	to	view	code	image

class	PrintableCharStack	extends	CharStack	{																								//	(1)
		//	Instance	method
		public	void	printStackElements()	{																																//	(2)
				//	…	implementation	of	the	method…
		}
		//	The	constructor	calls	the	constructor	of	the	superclass	explicitly.
		public	PrintableCharStack(int	capacity)	{	super(capacity);	}						//	(3)
}

The	PrintableCharStack	class	extends	the	CharStack	class	at	(1).	Implementing
the	printStackElements()	method	in	the	PrintableCharStack	class	requires
access	to	the	field	stackArray	from	the	superclass	CharStack.	However,	this	field	is
private	and,	therefore,	not	accessible	in	the	subclass.	The	subclass	can	access	these	fields
if	the	accessibility	of	the	fields	is	changed	to	protected	in	the	CharStack	class.	Example
1.3	uses	a	version	of	the	class	CharStack,	which	has	been	modified	to	support	this
access.	Implementation	of	the	printStackElements()	method	is	shown	at	(2).	The
constructor	of	the	PrintableCharStack	class	at	(3)	calls	the	constructor	of	the
superclass	CharStack	to	initialize	the	stack	properly.

Example	1.3	Defining	a	Subclass
Click	here	to	view	code	image

//	File:	CharStack.java
public	class	CharStack	{
		//	Instance	variables
		protected	char[]	stackArray;		//	The	array	that	implements	the	stack
		protected	int				topOfStack;		//	The	top	of	the	stack

		//	The	rest	of	the	definition	is	the	same	as	in	Example	1.2.
}

//	File:	PrintableCharStack.java
public	class	PrintableCharStack	extends	CharStack	{																	//	(1)

		//	Instance	method
		public	void	printStackElements()	{																																//	(2)
				for	(int	i	=	0;	i	<=	topOfStack;	i++)
						System.out.print(stackArray[i]);	//	Print	each	char	on	terminal
				System.out.println();
		}

		//	Constructor	calls	the	constructor	of	the	superclass	explicitly.
		PrintableCharStack(int	capacity)	{	super(capacity);	}													//	(3)
}

Objects	of	the	PrintableCharStack	class	will	respond	just	like	the	objects	of	the
CharStack	class,	but	they	also	have	the	additional	functionality	defined	in	the	subclass:
Click	here	to	view	code	image

PrintableCharStack	pcStack	=	new	PrintableCharStack(3);
pcStack.push(‘H’);
pcStack.push(‘i’);
pcStack.push(‘!’);
pcStack.printStackElements();				//	Prints	“Hi!”	on	the	terminal

1.7	Associations:	Aggregation	and	Composition
An	association	defines	a	static	relationship	between	objects	of	two	classes.	One	such
association,	called	aggregation,	expresses	how	an	object	uses	other	objects.	Java	supports
aggregation	of	objects	by	reference,	since	objects	cannot	contain	other	objects	explicitly.
The	aggregate	object	usually	has	fields	that	denote	its	constituent	objects.	A	constituent
object	can	be	shared	with	other	aggregate	objects.

For	example,	an	object	of	class	Airplane	might	have	a	field	that	denotes	an	object	of
class	Pilot.	This	Pilot	object	of	an	Airplane	object	might	be	shared	among	other
aggregate	objects	(not	necessarily	Airplane	objects)	once	the	pilot	has	finished	duty	on
one	airplane.	In	fact,	the	Pilot	object	can	still	be	used	even	when	its	Airplane	object
no	longer	exists.	This	aggregation	relationship	is	depicted	by	the	UML	diagram	in	Figure
1.7	(empty	diamond),	showing	that	each	object	of	the	Airplane	class	has	zero	or	one
object	of	class	Pilot	associated	with	it.

Figure	1.7	Class	Diagram	Depicting	Associations

The	aggregate	association	can	be	made	stronger	if	the	constituent	objects	cannot	be	shared
with	other	aggregate	objects—for	example,	an	Airplane	object	with	two	Wing	objects.
The	Wing	objects	cannot	be	shared	and	can	exist	only	with	their	Airplane	object;	that
is,	the	Airplane	object	has	ownership	of	its	Wing	objects.	Conversely,	the	Wing
objects	are	a	part	of	their	Airplane	object.	This	stronger	aggregation	association	is
called	composition	and	is	depicted	by	the	UML	diagram	in	Figure	1.7	(filled	diamond),
showing	that	each	object	of	the	Airplane	class	owns	two	objects	of	class	Wing.

In	the	case	of	the	CharStack	class	used	in	the	earlier	examples,	each	object	of	this	class
has	a	field	to	store	the	reference	value	of	an	array	object	that	holds	the	characters.	It	would
not	be	a	good	idea	to	share	this	array	with	other	stack	objects.	The	stack	owns	the	array	of
characters.	The	relationship	between	the	stack	object	and	its	constituent	array	object	can
be	expressed	by	composition	(Figure	1.8),	showing	that	each	object	of	the	CharStack
class	will	own	one	array	object	of	type	char	associated	with	it.

Figure	1.8	Class	Diagram	Depicting	Composition

1.8	Tenets	of	Java
•	Code	in	Java	must	be	encapsulated	in	classes.

•	There	are	two	kinds	of	values	in	Java:	objects	that	are	instances	of	classes	or	arrays,
and	atomic	values	of	primitive	data	types.

•	References	store	reference	values	that	denote	objects,	and	are	used	to	manipulate
objects.

•	Objects	in	Java	cannot	contain	other	objects;	they	can	only	have	references	to	other
objects.

•	During	execution,	reclamation	of	objects	that	are	no	longer	in	use	is	managed	by	the
runtime	environment.

	Review	Questions

1.1	Which	statement	is	true	about	methods?

Select	the	one	correct	answer.

(a)	A	method	is	an	implementation	of	an	abstraction.

(b)	A	method	is	an	attribute	defining	the	property	of	a	particular	abstraction.

(c)	A	method	is	a	category	of	objects.

(d)	A	method	is	an	operation	defining	the	behavior	for	a	particular	abstraction.

(e)	A	method	is	a	blueprint	for	making	operations.

1.2	Which	statement	is	true	about	objects?

Select	the	one	correct	answer.

(a)	An	object	is	what	classes	are	instantiated	from.

(b)	An	object	is	an	instance	of	a	class.

(c)	An	object	is	a	blueprint	for	creating	concrete	realization	of	abstractions.

(d)	An	object	is	a	reference.

(e)	An	object	is	a	variable.

1.3	Which	is	the	first	line	of	a	constructor	declaration	in	the	following	code?
Click	here	to	view	code	image

public	class	Counter	{																																													//	(1)
		int	current,	step;
		public	Counter(int	startValue,	int	stepValue)	{																		//	(2)
				setCurrent(startValue);																																								//	(3)
				setStep(stepValue);
		}
		public	int		getCurrent()											{	return	current;	}											//	(4)
		public	void	setCurrent(int	value)		{	current	=	value;	}										//	(5)
		public	void	setStep(int	stepValue)	{	step	=	stepValue;	}									//	(6)
}

Select	the	one	correct	answer.

(a)	(1)

(b)	(2)

(c)	(3)

(d)	(4)

(e)	(5)

(f)	(6)

1.4	Given	that	Thing	is	a	class,	how	many	objects	and	how	many	references	are
created	by	the	following	code?
Thing	item,	stuff;
item	=	new	Thing();
Thing	entity	=	new	Thing();

Select	the	two	correct	answers.

(a)	One	object	is	created.

(b)	Two	objects	are	created.

(c)	Three	objects	are	created.

(d)	One	reference	is	created.

(e)	Two	references	are	created.

(f)	Three	references	are	created.

1.5	Which	statement	is	true	about	instance	members?

Select	the	one	correct	answer.

(a)	An	instance	member	is	also	called	a	static	member.

(b)	An	instance	member	is	always	a	field.

(c)	An	instance	member	is	never	a	method.

(d)	An	instance	member	belongs	to	an	instance,	not	to	the	class	as	a	whole.

(e)	An	instance	member	always	represents	an	operation.

1.6	How	do	objects	communicate	in	Java?

Select	the	one	correct	answer.

(a)	They	communicate	by	modifying	each	other’s	fields.

(b)	They	communicate	by	modifying	the	static	variables	of	each	other’s	classes.

(c)	They	communicate	by	calling	each	other’s	instance	methods.

(d)	They	communicate	by	calling	static	methods	of	each	other’s	classes.

1.7	Given	the	following	code,	which	statements	are	true?
class	A	{
		protected	int	value1;
}

class	B	extends	A	{

		int	value2;
}

Select	the	two	correct	answers.

(a)	Class	A	extends	class	B.

(b)	Class	B	is	the	superclass	of	class	A.

(c)	Class	A	inherits	from	class	B.

(d)	Class	B	is	a	subclass	of	class	A.

(e)	Objects	of	class	A	have	a	field	named	value2.

(f)	Objects	of	class	B	have	a	field	named	value1.

1.8	Given	the	following	code,	which	statements	express	the	most	accurate	association?
Click	here	to	view	code	image

class	Carriage	{	}

class	TrainDriver	{	}

class	Train	{
		private	Carriage[]	carriages;
		private	TrainDriver	driver;
		Train(TrainDriver	trainDriver,	int	noOfCarriages)	{
				carriages	=	new	Carriage[noOfCarriages];
				driver	=	trainDriver;
		}
		void	insertCarriage(Carriage	newCarriage)	{	/*	…	*/	}
}

Select	the	three	correct	answers.

(a)	A	Train	object	has	an	array	of	Carriage	objects.

(b)	A	Train	object	owns	an	array	of	Carriage	objects.

(c)	A	Train	object	owns	Carriage	objects.

(d)	A	Train	object	has	a	TrainDriver	object.

(e)	A	Train	object	owns	a	TrainDriver	object.

(f)	A	TrainDriver	object	is	part	of	a	Train	object.

(g)	An	array	of	Carriage	objects	is	part	of	a	Train	object.

(h)	Carriage	objects	are	part	of	a	Train	object.

1.9	Java	Programs
A	Java	source	file	can	contain	more	than	one	class	declaration.	Each	source	file	name	has
the	extension	.java.	The	JDK	(Java	Development	Kit)	enforces	the	rule	that	any	class	in
the	source	file	that	has	public	accessibility	must	be	declared	in	its	own	file,	meaning
that	such	a	public	class	must	be	declared	in	a	source	file	whose	file	name	comprises	the
name	of	this	public	class	with	.java	as	its	extension.	This	rule	implies	that	a	source	file
can	contain	at	most	one	public	class.	If	the	source	file	contains	a	public	class,	the	file
naming	rule	is	enforced	by	the	JDK.

Each	class	declaration	in	a	source	file	is	compiled	into	a	separate	class	file,	containing
Java	bytecode.	The	name	of	this	file	comprises	the	name	of	the	class	with	.class	as	its
extension.	The	JDK	provides	tools	for	compiling	and	running	programs,	as	explained	in
the	next	section.	The	classes	in	the	Java	SE	platform	API	are	already	compiled,	and	the
JDK	tools	know	where	to	find	them.

1.10	Sample	Java	Application
The	term	application	is	just	a	synonym	for	a	program,	referring	to	source	code	that	is
compiled	and	directly	executed.	To	create	an	application	in	Java,	the	program	must	have	a
class	that	defines	a	method	named	main,	which	is	the	starting	point	for	the	execution	of
any	application.

Essential	Elements	of	a	Java	Application
Example	1.4	is	an	example	of	an	application	in	which	a	client	uses	the	CharStack	class
to	reverse	a	string	of	characters.

Example	1.4	An	Application
Click	here	to	view	code	image

//	File:	CharStack.java
public	class	CharStack	{
		//	Same	as	in	Example	1.2.
}

//	File:	Client.java
public	class	Client	{

		public	static	void	main(String[]	args)	{

				//	Create	a	stack.
				CharStack	stack	=	new	CharStack(40);

				//	Create	a	string	to	push	on	the	stack:
				String	str	=	“!no	tis	ot	nuf	era	skcatS”;
				System.out.println(“Original	string:	”	+	str);													//	(1)
				int	length	=	str.length();

				//	Push	the	string	char	by	char	onto	the	stack:
				for	(int	i	=	0;	i	<	length;	i++)	{
						stack.push(str.charAt(i));
				}

				System.out.print(“Reversed	string:	“);																					//	(2)
				//	Pop	and	print	each	char	from	the	stack:
				while	(!stack.isEmpty())	{	//	Check	if	the	stack	is	not	empty.
						System.out.print(stack.pop());
				}
				System.out.println();																																						//	(3)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Original	string:	!no	tis	ot	nuf	era	skcatS
Reversed	string:	Stacks	are	fun	to	sit	on!

The	public	class	Client	defines	a	method	with	the	name	main.	To	start	the	application,
the	main()	method	in	this	public	class	is	invoked	by	the	Java	interpreter,	also	called	the
Java	Virtual	Machine	(JVM).	The	method	header	of	this	main()	method	must	be
declared	as	shown	in	the	following	method	stub:
Click	here	to	view	code	image

public	static	void	main(String[]	args)			//	Method	header
{	/*	Implementation	*/	}

The	main()	method	has	public	accessibility—that	is,	it	is	accessible	from	any	class.
The	keyword	static	means	the	method	belongs	to	the	class.	The	keyword	void
indicates	that	the	method	does	not	return	any	value.	The	parameter	args	is	an	array	of
strings	that	can	be	used	to	pass	information	to	the	main()	method	when	execution	starts.

Compiling	and	Running	an	Application
Java	source	files	can	be	compiled	using	the	Java	compiler	tool	javac,	which	is	part	of
the	JDK.

The	source	file	Client.java	contains	the	declaration	of	the	Client	class.	This	source
file	can	be	compiled	by	giving	the	following	command	at	the	command	line	(the	character
>	is	the	command	prompt):

>javac	Client.java

This	command	creates	the	class	file	Client.class	containing	the	Java	bytecode	for
the	Client	class.	The	Client	class	uses	the	CharStack	class,	and	if	the	file
CharStack.class	does	not	already	exist,	the	compiler	will	also	compile	the	source
file	CharStack.java.

Compiled	classes	can	be	executed	by	the	Java	interpreter	java,	which	is	also	part	of	the
JDK.	To	run	Example	1.4,	give	the	following	command	on	the	command	line:
Click	here	to	view	code	image

>java	Client
Original	string:	!no	tis	ot	nuf	era	skcatS
Reversed	string:	Stacks	are	fun	to	sit	on!

Note	that	only	the	name	of	the	class	is	specified,	resulting	in	the	execution	starting	in	the
main()	method	of	the	specified	class.	The	application	in	Example	1.4	terminates	when
the	execution	of	the	main()	method	is	completed.

1.11	Program	Output
Data	produced	by	a	program	is	called	output.	This	output	can	be	sent	to	different	devices.
The	examples	presented	in	this	book	send	their	output	to	a	terminal	window,	where	the
output	is	printed	as	line	of	characters	with	a	cursor	that	advances	as	characters	are	printed.
A	Java	program	can	send	its	output	to	the	terminal	window	using	an	object	called	standard
out.	This	object,	which	can	be	accessed	using	the	public	static	final	field	out	in	the
System	class,	is	an	object	of	the	class	java.io.PrintStream	that	provides	methods
for	printing	values.	These	methods	convert	values	to	their	string	representation	and	print
the	resulting	string.

Example	1.4	illustrates	the	process	of	printing	values	to	the	terminal	window.	The
argument	in	the	call	to	the	println()	method	at	(1)	is	first	evaluated,	and	the	resulting
string	is	printed	to	the	terminal	window.	This	method	always	terminates	the	current	line,
which	results	in	the	cursor	being	moved	to	the	beginning	of	the	next	line:
Click	here	to	view	code	image

System.out.println(“Original	string:	”	+	str);													//	(1)

The	print()	method	at	(2)	prints	its	argument	to	the	terminal	window,	but	it	does	not
terminate	the	current	line:
Click	here	to	view	code	image

System.out.print(“Reversed	string:	“);																					//	(2)

To	terminate	a	line,	without	printing	any	values,	we	can	use	the	no-argument	println()
method:
Click	here	to	view	code	image

System.out.println();																																						//	(3)

Formatted	Output
To	have	more	control	over	how	the	values	are	printed,	we	can	create	formatted	output.	The
following	method	of	the	java.io.PrintStream	class	can	be	used	for	this	purpose:

Click	here	to	view	code	image
PrintStream	printf(String	format,	Object…	args)

The	String	parameter	format	specifies	how	formatting	will	be	done.	It	contains
format	specifications	that	determine	how	each	subsequent	value	in	the	parameter
args	will	be	formatted	and	printed.	The	parameter	declaration	Object…	args
represents	an	array	of	zero	or	more	arguments	to	be	formatted	and	printed.	The
resulting	string	from	the	formatting	will	be	printed	to	the	destination	stream.
(System.out	will	print	to	the	standard	out	object.)

Any	error	in	the	format	string	will	result	in	a	runtime	exception.

The	following	call	to	the	printf()	method	on	the	standard	out	object	formats	and	prints
three	values:
Click	here	to	view	code	image

System.out.printf(“Formatted	values|%5d|%8.3f|%5s|%n”,	//	Format	string
																			2016,	Math.PI,	“Hi”);															//	Values	to	format

At	runtime,	the	following	line	is	printed	in	the	terminal	window:
Click	here	to	view	code	image

Formatted	values|	2016|		3.142|			Hi|

The	format	string	is	the	first	argument	in	the	method	call.	It	contains	four	format
specifiers.	The	first	three	are	%5d,	%8.3f,	and	%5s,	which	specify	how	the	three
arguments	should	be	processed.	The	letter	in	the	format	specifier	indicates	the	type	of
value	to	format.	Their	location	in	the	format	string	specifies	where	the	textual
representation	of	the	arguments	should	be	inserted.	The	fourth	format	specifier,	%n,	is		a
platform-specific	line	separator.	Its	occurrence	causes	the	current	line	to	be	terminated,
with	the	cursor	moving	to	the	start	of	the	next	line.	All	other	text	in	the	format	string	is
fixed,	including	any	other	spaces	or	punctuation,	and	is	printed	verbatim.

In	the	preceding	example,	the	first	value	is	formatted	according	to	the	first	format
specifier,	the	second	value	is	formatted	according	to	the	second	format	specifier,	and	so
on.	The	|	character	has	been	used	in	the	format	string	to	show	how	many	character
positions	are	taken	up	by	the	text	representation	of	each	value.	The	output	shows	that	the
int	value	was	written	right-justified,	spanning	five	character	positions	using	the	format
specifier	%5d;	the	double	value	of	Math.PI	took	up	eight	character	positions	and	was
rounded	to	three	decimal	places	using	the	format	specifier	%8.3f;	and	the	String	value

was	written	right-justified,	spanning	five	character	positions	using	the	format	specifier
%5s.	The	format	specifier	%n	terminates	the	current	line.	All	other	characters	in	the
format	string	are	printed	verbatim.

Table	1.2	shows	examples	of	some	selected	format	specifiers	that	can	be	used	to	format
values.	Their	usage	is	illustrated	in	Example	1.5,	which	prints	a	simple	invoice.

Table	1.2	Format	Specifier	Examples

At	the	top	of	the	invoice	printed	by	Example	1.5,	the	company	name	is	printed	at	(1)	with
a	format	string	that	contains	only	fixed	text.	The	date	and	time	of	day	are	printed	on	the
same	line,	with	leading	zeros	at	(2).	A	header	is	then	printed	at	(3).	The	column	names

Item,	Price,	Quantity,	and	Amount	are	positioned	appropriately	with	the	format
specifications	%-20s,	%7s,		%9s,	and	%8s,	respectively.

Beneath	the	heading,	the	items	purchased	are	printed	at	(5),	(6),	and	(7)	using	the	same
field	widths	as	the	column	headings.	The	format	for	each	item	is	defined	by	the	format
string	at	(4).	The	item	name	is	printed	with	the	format	string	"%-20s",	resulting	in	a	20-
character-wide	string,	left-justified.	The	item	price	and	the	total	amount	for	each	type	of
item	are	printed	as	floating-point	values	using	the	format	specifications	%7.2f	and
%8.2f,	respectively.	The	quantity	is	printed	as	an	integer	using	the	format	specification
%9d.	The	strings	are	left-justified,	while	all	numbers	are	right-justified.	The	character	s	is
the	conversion	code	for	objects,	while	floating-point	and	integer	values	are	printed	using
the	codes	f	and	d,	respectively.

At	(8),	the	total	cost	of	all	items	is	printed	using	the	format	specification	%8.2f.	To
position	this	value	correctly	under	the	column	Amount,	we	print	the	string	"Total:"
using	the	format	%-36s.	The	width	of	36	characters	is	found	by	adding	the	width	of	the
first	three	columns	of	the	invoice.

Example	1.5	Formatted	Output
Click	here	to	view	code	image

//	File:	Invoice.java
public	class	Invoice	{
		public	static	void	main(String[]	args)	{
				System.out.printf(“Secure	Data	Inc.							”);																					//	(1)
				System.out.printf(“%02d/%02d/%04d,	%02d:%02d%n%n”,																//	(2)
																							2,	13,	2016,	11,	5);
				System.out.printf(“%-20s%7s%9s%8s%n”,																													//	(3)
																						“Item”,	“Price”,	“Quantity”,	“Amount”);

				int	quantity	=	4;
				double	price	=	120.25,	amount	=	quantity*price,	total	=	amount;
				String	itemFormat	=	“%-20s%7.2f%9d%8.2f%n”;																							//	(4)
				System.out.printf(itemFormat,
																						“FlashDrive,	250GB”,	price,	quantity,	amount);		//	(5)
				quantity	=	2;
				price	=	455.0;	amount	=	quantity*price;	total	=	total	+	amount;
				System.out.printf(itemFormat,
																						“Ultra	HD,	4TB”,	price,	quantity,	amount);						//	(6)
				quantity	=	1;
				price	=	8.50;	amount	=	quantity*price;	total	=	total	+	amount;
				System.out.printf(itemFormat,
																						“USB	3.0	cable”,	price,	quantity,	amount);						//	(7)

				System.out.printf(“%-36s%8.2f%n”,	“Total:”,	total);															//	(8)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Secure	Data	Inc.							02/13/2016,	11:05

Item																		Price	Quantity		Amount
FlashDrive,	250GB				120.25								4		481.00
Ultra	HD,	4TB								455.00								2		910.00
USB	3.0	cable										8.50								1				8.50
Total:																															1399.50

1.12	The	Java	Ecosystem
Since	its	initial	release	as	Java	Development	Kit	1.0	(JDK	1.0)	in	1996,	the	name	Java	has
become	synonymous	with	a	thriving	ecosystem	that	provides	the	components	and	the	tools
necessary	for	developing	systems	for	today’s	multicore	world.	Its	diverse	community,
comprising	a	multitude	of	volunteers,	organizations,	and	corporations,	continues	to	fuel	its
evolution	and	grow	with	its	success.	Many	free	open-source	technologies	now	exist	that
are	well	proven,	mature,	and	supported,	making	their	adoption	less	daunting.	These	tools
and	frameworks	provide	support	for	all	phases	of	the	software	development	life	cycle	and
beyond.

There	are	three	major	Java	Platforms	for	the	Java	programming	language:

•	Java	SE	(Standard	Edition)

•	Java	EE	(Enterprise	Edition)

•	Java	ME	(Micro	Edition)

Each	platform	provides	a	hardware/operating	system–specific	JVM	and	an	API
(application	programming	interface)	to	develop	applications	for	that	platform.	The	Java
SE	platform	provides	the	core	functionality	of	the	language.	The	Java	EE	platform	is	a
superset	of	the	Java	SE	platform	and,	as	the	most	extensive	of	the	three	platforms,	targets
enterprise	application	development.	The	Java	ME	platform	is	a	subset	of	the	Java	SE
platform,	having	the	smallest	footprint,	and	is	suitable	for	developing	mobile	and
embedded	applications.	The	upshot	of	this	classification	is	that	a	Java	program	developed
for	one	Java	platform	will	not	necessary	run	under	the	JVM	of	another	Java	platform.	The
JVM	must	be	compatible	with	the	Java	platform	that	was	used	to	develop	the	program.

The	API	and	the	tools	for	developing	and	running	Java	applications	are	bundled	together
as	JDK.	Just	the	JVM	and	the	runtime	libraries	are	also	bundled	separately	as	JRE	(Java
Runtime	Environment).

The	subject	of	this	book	is	Java	SE	8.	We	recommend	installing	the	appropriate	JDK	for
Java	SE	8	(or	a	newer	version)	depending	on	the	hardware	and	operating	system.

The	rest	of	this	section	summarizes	some	of	the	factors	that	have	contributed	to	the
evolution	of	Java	from	an	object-oriented	programming	language	to	a	full-fledged
ecosystem	for	developing	all	sorts	of	systems,	including	large-scale	business	systems	and
embedded	systems	for	portable	computing	devices.	A	lot	of	jargon	is	used	in	this	section,
and	might	be	difficult	to	understand	at	the	first	reading,	but	we	recommend	coming	back
after	working	through	the	book	to	appreciate	the	factors	that	have	contributed	to	the
success	of	Java.

Object-Oriented	Paradigm
The	Java	programming	language	supports	the	object-oriented	paradigm,	in	which	the
properties	of	an	object	and	its	behavior	are	encapsulated	in	the	object.	The	properties	and
the	behavior	are	represented	by	the	fields	and	the	methods	of	the	object,	respectively.	The
objects	communicate	through	method	calls	in	a	procedural	manner.	Encapsulation	ensures
that	objects	are	immune	to	tampering	except	when	manipulated	through	their	public
interface.	Encapsulation	exposes	only	what	an	object	does	and	not	how	it	does	it,	so	that
its	implementation	can	be	changed	with	minimum	impact	on	its	clients.	Some	basic
concepts	of	object-oriented	programming,	such	as	inheritance	and	aggregation,	were
introduced	earlier	in	this	chapter,	and	subsequent	chapters	will	expand	on	this	topic.

Above	all,	object-oriented	system	development	promotes	code	reuse	where	existing
objects	can	be	reused	to	implement	new	objects.	It	also	facilitates	implementation	of	large
systems,	allowing	their	decomposition	into	manageable	subsystems.

Interpreted:	The	JVM
Java	programs	are	compiled	to	bytecode	that	is	interpreted	by	the	JVM.	Various
optimization	technologies	(e.g.,	just-in-time	[JIT]	delivery)	have	led	to	the	JVM	becoming
a	lean	and	mean	virtual	machine	with	regard	to	performance,	stability,	and	security.	Many
other	languages,	such	as	Scala,	Groovy,	and	Clojure,	now	compile	to	bytecode	and
seamlessly	execute	on	the	JVM.	The	JVM	has	thus	evolved	into	an	ecosystem	in	its	own
right.

Architecture-Neutral	and	Portable	Bytecode
The	often-cited	slogan	“Write	once,	run	everywhere”	is	true	only	if	a	compatible	JVM	is
available	for	the	hardware	and	software	platform.	In	other	words,	to	run	Java	SE
applications	under	Windows	10	on	a	64-bit	hardware	architecture,	the	right	JVM	must	be
installed.	Fortunately,	the	JVM	has	been	ported	to	run	under	most	platforms	and	operative
systems	that	exist	today,	including	hardware	devices	such	as	smart	cards,	mobile	devices,
and	home	appliances.

The	specification	of	the	bytecode	is	architecture	neutral,	meaning	it	is	independent	of	any
hardware	architecture.	It	is	executed	by	a	readily	available	hardware	and	operating
system–specific	JVM.	The	portability	of	the	Java	bytecode	thus	eases	the	burden	of	cross-
platform	system	development.

Simplicity
Language	design	of	Java	has	been	driven	by	a	desire	to	simplify	the	programming	process.
Although	Java	borrows	heavily	from	the	C++	programming	language,	certain	features	that
were	deemed	problematic	were	not	incorporated	into	its	design.	For	example,	Java	does
not	have	a	preprocessor,	and	it	does	not	allow	pointer	handling,	user-defined	operator
overloading,	or	multiple	class	inheritance.

Java	opted	for	automatic	garbage	collection,	which	frees	the	programmer	from	dealing
with	many	issues	related	to	memory	management,	such	as	memory	leaks.

However,	the	jury	is	still	out	on	whether	the	syntax	of	nested	classes	or	introduction	of
wild	cards	for	generics	can	be	considered	simple.

Dynamic	and	Distributed
The	JVM	can	dynamically	load	class	libraries	from	the	local	file	system	as	well	as	from
machines	on	the	network,	when	those	libraries	are	needed	at	runtime.	This	feature
facilitates	linking	the	code	as	and	when	necessary	during	the	execution	of	a	program.	It	is
also	possible	to	query	programmatically	a	class	or	an	object	at	runtime	about	its	meta-
information,	such	as	its	methods	and	fields.

Java	provides	extensive	support	for	networking	to	build	distributed	systems,	where	objects
are	able	to	communicate	across	networks	using	various	communication	protocols	and
technologies,	such	as	Remote	Method	Invocation	(RMI)	and	socket	connections.

Robust	and	Secure
Java	promotes	the	development	of	reliable,	robust,	and	secure	systems.	It	is	a	strong
statically	typed	language:	The	compiler	guarantees	runtime	execution	if	the	code	compiles
without	errors.	Elimination	of	pointers,	runtime	index	checks	for	arrays	and	strings,	and
automatic	garbage	collection	are	some	of	the	features	of	Java	that	promote	reliability.	The
exception	handling	feature	of	Java	is	without	doubt	the	main	factor	that	facilitates	the
development	of	robust	systems.

Java	provides	multilevel	protection	from	malicious	code.	The	language	does	not	allow
direct	access	to	memory.	A	bytecode	verifier	determines	whether	any	untrusted	code
loaded	in	the	JVM	is	safe.	The	sandbox	model	is	used	to	confine	and	execute	any
untrusted	code,	limiting	the	damage	that	such	code	can	cause.	These	features,	among
others,	are	provided	by	a	comprehensive	Java	security	model	to	ensure	that	application
code	executes	securely	in	the	JVM.

High	Performance	and	Multithreaded
The	performance	of	Java	programs	has	improved	significantly	with	various	optimizations
that	are	applied	to	the	bytecode	at	runtime	by	the	JVM.	The	JIT	feature	monitors	the
program	at	runtime	to	identify	performance-critical	bytecode	(called	hotspots)	that	can	be
optimized.	Such	code	is	usually	translated	to	machine	code	to	boost	performance.	The
performance	achieved	by	the	JVM	is	a	balance	between	native	code	execution	and
interpretation	of	fully	scripted	languages,	which	fortunately	is	adequate	for	many
applications.

Java	has	always	provided	high-level	support	for	multithreading,	allowing	multiple	threads
of	execution	to	perform	different	tasks	concurrently	in	an	application.	It	has	risen	to	the
new	challenges	that	have	emerged	in	recent	years	to	harness	the	increased	computing
power	made	available	by	multicore	architectures.	Functional	programming,	in	which
computation	is	treated	as	side-effects–free	evaluation	of	functions,	is	seen	as	a	boon	to
meet	these	challenges.	Java	8	brings	elements	of	functional-style	programming	into	the
language,	providing	language	constructs	(lambda	expressions	and	functional	interfaces)
and	API	support	(through	its	Fork	&	Join	Framework	and	Stream	API)	to	efficiently
utilize	the	many	cores	to	process	large	amounts	of	data	in	parallel.

	Review	Questions

1.9	Which	command	from	the	JDK	should	be	used	to	compile	the	following	source
code	contained	in	a	file	named	SmallProg.java?

Click	here	to	view	code	image
public	class	SmallProg	{
		public	static	void	main(String[]	args)	{	System.out.println(“Good
luck!”);	}
}

Select	the	one	correct	answer.

(a)	java	SmallProg

(b)	javac	SmallProg

(c)	java	SmallProg.java

(d)	javac	SmallProg.java

(e)	java	SmallProg	main

1.10	Which	command	from	the	JDK	should	be	used	to	execute	the	main()	method	of
a	class	named	SmallProg?

Select	the	one	correct	answer.

(a)	java	SmallProg

(b)	javac	SmallProg

(c)	java	SmallProg.java

(d)	java	SmallProg.class

(e)	java	SmallProg.main()

1.11	Which	statement	is	true	about	Java?

Select	the	one	correct	answer.

(a)	A	Java	program	can	be	executed	by	any	JVM.

(b)	Java	bytecode	cannot	be	translated	to	machine	code.

(c)	Only	Java	programs	can	be	executed	by	a	JVM.

(d)	A	Java	program	can	create	and	destroy	objects.

(e)	None	of	the	above

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	Essential	elements	of	a	Java	application

•	Accessing	object	fields	and	calling	methods

•	Compiling	and	running	Java	applications

•	Formatting	and	printing	values	to	the	terminal	window

•	Basic	terminology	and	concepts	in	OOP,	and	how	these	concepts	are	supported	in
Java

•	Factors	and	features	of	the	Java	ecosystem	that	have	contributed	to	its	evolution	and
success

	Programming	Exercise

1.1	Modify	the	Client	class	from	Example	1.4	to	use	the	PrintableCharStack
class,	rather	than	the	CharStack	class	from	Example	1.2.	Utilize	the
printStackElements()	method	from	the	PrintableCharStack	class.	Is
the	new	program	behavior-wise	any	different	from	Example	1.4?

2.	Language	Fundamentals

2.1	Basic	Language	Elements
Like	any	other	programming	language,	the	Java	programming	language	is	defined	by
grammar	rules	that	specify	how	syntactically	legal	constructs	can	be	formed	using	the
language	elements,	and	by	a	semantic	definition	that	specifies	the	meaning	of	syntactically
legal	constructs.

Lexical	Tokens
The	low-level	language	elements	are	called	lexical	tokens	(or	just	tokens)	and	are	the
building	blocks	for	more	complex	constructs.	Identifiers,	numbers,	operators,	and	special
characters	are	all	examples	of	tokens	that	can	be	used	to	build	high-level	constructs	like
expressions,	statements,	methods,	and	classes.

Identifiers
A	name	in	a	program	is	called	an	identifier.	Identifiers	can	be	used	to	denote	classes,
methods,	variables,	and	labels.

In	Java,	an	identifier	is	composed	of	a	sequence	of	characters,	where	each	character	can	be
either	a	letter	or	a	digit.	However,	the	first	character	in	an	identifier	must	always	be	a
letter,	as	explained	later.

Since	Java	programs	are	written	in	the	Unicode	character	set	(p.	32),	characters	allowed	in
identifier	names	are	interpreted	according	to	this	character	set.	Use	of	the	Unicode
character	set	opens	up	the	possibility	of	writing	identifier	names	in	many	writing	scripts
used	around	the	world.	As	one	would	expect,	the	characters	A-Z	and	a-z	are	letters,	and
characters	from	0-9	are	digits.	A	connecting	punctuation	character	(such	as	underscore
_)	and	any	currency	symbol	(such	as	$,	¢,	¥,	or	£)	are	also	allowed	as	letters	in	identifier
names,	but	these	characters	should	be	used	judiciously.

Identifiers	in	Java	are	case	sensitive.	For	example,	price	and	Price	are	two	different
identifiers.

Examples	of	Legal	Identifiers
Click	here	to	view	code	image

number,	Number,	sum_$,	bingo,	$$_100,	_007,	mål,	grüß

Examples	of	Illegal	Identifiers
48chevy,	all@hands,	grand-sum

The	name	48chevy	is	not	a	legal	identifier	because	it	starts	with	a	digit.	The	character	@
is	not	a	legal	character	in	an	identifier.	It	is	also	not	a	legal	operator,	so	that	all@hands
cannot	be	interpreted	as	a	legal	expression	with	two	operands.	The	character	-	is	not	a
legal	character	in	an	identifier,	but	it	is	a	legal	operator;	thus	grand-sum	could	be
interpreted	as	a	legal	expression	with	two	operands.

Keywords
Keywords	are	reserved	words	that	are	predefined	in	the	language	and	cannot	be	used	to
denote	other	entities.	All	Java	keywords	are	lowercase,	and	incorrect	usage	results	in
compile-time	errors.

Keywords	currently	defined	in	the	language	are	listed	in	Table	2.1.	In	addition,	three
identifiers	are	reserved	as	predefined	literals	in	the	language:	the	null	reference,	and	the
boolean	literals	true	and	false	(Table	2.2).	Keywords	currently	reserved,	but	not	in
use,	are	listed	in	Table	2.3.	A	reserved	word	cannot	be	used	as	an	identifier.	The	index
contains	references	to	relevant	sections	where	currently	used	keywords	are	explained.

Table	2.1	Keywords	in	Java

Table	2.2	Reserved	Literals	in	Java

Table	2.3	Reserved	Keywords	Not	Currently	in	Use

Separators
Separators	(also	known	as	punctuators)	are	tokens	that	have	meaning	depending	on	the
context	in	which	they	are	used;	they	aid	the	compiler	in	performing	syntax	and	semantic
analysis	of	a	program	(Table	2.4).	Depending	on	the	context,	brackets	([]),	parentheses
(()),	and	the	dot	operator	(.)	can	also	be	interpreted	as	operators	(§5.3,	p.	150).	See	the
index	entries	for	these	separators	for	more	details.

Table	2.4	Separators	in	Java

Literals
A	literal	denotes	a	constant	value;	in	other	words,	the	value	that	a	literal	represents
remains	unchanged	in	the	program.	Literals	represent	numerical	(integer	or	floating-
point),	character,	boolean,	or	string	values.	In	addition,	the	literal	null	represents	the	null
reference.	Table	2.5	shows	examples	of	literals	in	Java.

Table	2.5	Examples	of	Literals

Integer	Literals
Integer	data	types	comprise	the	following	primitive	data	types:	int,	long,	byte,	and
short	(§2.2,	p.	37).

The	default	data	type	of	an	integer	literal	is	always	int,	but	it	can	be	specified	as	long
by	appending	the	suffix	L	(or	l)	to	the	integer	value.	The	suffix	L	is	often	preferred
because	the	suffix	l	and	the	digit	1	can	be	hard	to	distinguish.	Without	the	suffix,	the
long	literals	2000L	and	0L	will	be	interpreted	as	int	literals.	There	is	no	direct	way	to
specify	a	short	or	a	byte	literal.

In	addition	to	the	decimal	number	system,	integer	literals	can	be	specified	in	the	binary
(base	2,	digits	0-1),	octal	(base	8,	digits	0-7),	and	hexadecimal	(base	16,	digits	0-9	and
a-f)	number	systems.	The	digits	a	to	f	in	the	hexadecimal	system	correspond	to	decimal
values	10	to	15.	Binary,	octal,	and	hexadecimal	numbers	are	specified	with	0b	(or	0B),

0,	and	0x	(or	0X)	as	the	base	or	radix	prefix,	respectively.	Examples	of	decimal,	binary,
octal,	and	hexadecimal	literals	are	shown	in	Table	2.6.	Note	that	the	leading	0	(zero)	digit
is	not	the	uppercase	letter	O.	The	hexadecimal	digits	from	a	to	f	can	also	be	specified
with	the	corresponding	uppercase	forms	(A	to	F).	Negative	integers	(e.g.,	-90)	can	be
specified	by	prefixing	the	minus	sign	(-)	to	the	magnitude	of	the	integer	regardless	of	the
number	system	(e.g.,	-0b1011010,	-0132,	or	-0X5A).	Integer	representation	is
discussed	in	§5.5,	p.	154.

Table	2.6	Examples	of	Decimal,	Binary,	Octal,	and	Hexadecimal	Literals

Floating-Point	Literals
Floating-point	data	types	come	in	two	flavors:	float	or	double.

The	default	data	type	of	a	floating-point	literal	is	double,	but	it	can	be	explicitly
designated	by	appending	the	suffix	D	(or	d)	to	the	value.	A	floating-point	literal	can	also
be	specified	to	be	a	float	by	appending	the	suffix	F	(or	f).

Floating-point	literals	can	also	be	specified	in	scientific	notation,	where	E	(or	e)	stands	for
exponent.	For	example,	the	double	literal	194.9E-2	in	scientific	notation	is	interpreted
as	194.9	×	10-2	(i.e.,	1.949).

Examples	of	double	Literals
Click	here	to	view	code	image

0.0							0.0d							0D
0.49						.49								.49D
49.0						49.								49D
4.9E+1				4.9E+1D				4.9e1d			4900e-2		.49E2

Examples	of	float	Literals
0.0F						0f
0.49F					.49F
49.0F					49.F							49F
4.9E+1F			4900e-2f			.49E2F

Note	that	the	decimal	point	and	the	exponent	are	optional,	and	that	at	least	one	digit	must
be	specified.	Also,	for	the	examples	of	float	literals	presented	here,	the	suffix	F	is
mandatory;	if	it	was	omitted,	they	would	be	interpreted	as	double	literals.

Underscores	in	Numerical	Literals
The	underscore	character	(_)	can	be	used	to	improve	the	readability	of	numerical	literals
in	the	source	code.	Any	number	of	underscores	can	be	inserted	between	the	digits	that
make	up	the	numerical	literal.	This	rules	out	underscores	adjacent	to	the	sign	(+,	-),	the
radix	prefix	(0b,	0B,	0x,	0X),	the	decimal	point	(.),	the	exponent	(e,	E),	and	the	data
type	suffix	(l,	L,	d,	D,	f,	F),	as	well	as	before	the	first	digit	and	after	the	last	digit.	Note
that	octal	radix	prefix	0	is	part	of	the	definition	of	an	octal	literal	and	is	therefore
considered	the	first	digit	of	an	octal	literal.

Underscores	in	identifiers	are	treated	as	letters.	For	example,	the	names	_XXL	and	_XXL_
are	two	distinct	legal	identifiers.	In	contrast,	underscores	are	used	as	a	notational
convenience	for	numerical	literals,	being	ignored	by	the	compiler	when	used	in	such
literals.	In	other	words,	a	numerical	literal	can	be	specified	in	the	source	code	using
underscores	between	digits,	such	that	2_0_1_5	and	20__15	represent	the	same
numerical	literal	2015	in	source	code.

Examples	of	Legal	Use	of	Underscores	in	Numerical	Literals
Click	here	to	view	code	image

0b0111_1111_1111_1111_1111_1111_1111_1111
0_377_777_777												0xff_ff_ff_ff
-123_456.00														1_2.345_678e1_2
2009__08__13													49_03_01d

Examples	of	Illegal	Use	of	Underscores	in	Numerical	Literals
Click	here	to	view	code	image

_0_b_01111111111111111111111111111111_
0377777777													_0_x_ffffffff_
+_123456_._00_											_12_._345678_e_12_
20090813															_490301_d_

Boolean	Literals
The	primitive	data	type	boolean	represents	the	truth	values	true	and	false	that	are
denoted	by	the	reserved	literals	true	and	false,	respectively.

Character	Literals
A	character	literal	is	quoted	in	single	quotes	(').	All	character	literals	have	the	primitive
data	type	char.

A	character	literal	is	represented	according	to	the	16-bit	Unicode	character	set,	which
subsumes	the	8-bit	ISO-Latin-1	and	the	7-bit	ASCII	characters.	In	Table	2.7,	note	that
digits	(0	to	9),	uppercase	letters	(A	to	Z),	and	lowercase	letters	(a	to	z)	have	contiguous
Unicode	values.	A	Unicode	character	can	always	be	specified	as	a	four-digit	hexadecimal
number	(i.e.,	16	bits)	with	the	prefix	\u.

Table	2.7	Examples	of	Character	Literals

Escape	Sequences

Certain	escape	sequences	define	special	characters,	as	shown	in	Table	2.8.	These	escape
sequences	can	be	single-quoted	to	define	character	literals.	For	example,	the	character
literals	\t	and	\u0009	are	equivalent.	However,	the	character	literals	\u000a	and
\u000d	should	not	be	used	to	represent	newline	and	carriage	return	in	the	source	code.
These	values	are	interpreted	as	line-terminator	characters	by	the	compiler,	and	will	cause
compile-time	errors.	You	should	use	the	escape	sequences	\n	and	\r,	respectively,	for
correct	interpretation	of	these	characters	in	the	source	code.

Table	2.8	Escape	Sequences

We	can	also	use	the	escape	sequence	\ddd	to	specify	a	character	literal	as	an	octal	value,
where	each	digit	d	can	be	any	octal	digit	(0–7),	as	shown	in	Table	2.9.	The	number	of
digits	must	be	three	or	fewer,	and	the	octal	value	cannot	exceed	\377;	in	other	words,
only	the	first	256	characters	can	be	specified	with	this	notation.

Table	2.9	Examples	of	Escape	Sequence	\ddd

String	Literals
A	string	literal	is	a	sequence	of	characters	that	must	be	enclosed	in	double	quotes	and
must	occur	on	a	single	line.	All	string	literals	are	objects	of	the	class	String	(§8.4,	p.
357).

Escape	sequences	as	well	as	Unicode	values	can	appear	in	string	literals:
Click	here	to	view	code	image

“Here	comes	a	tab.\t	And	here	comes	another	one\u0009!”										(1)
“What’s	on	the	menu?”																																												(2)
“"String	literals	are	double-quoted."”																									(3)
“Left!\nRight!”																																																		(4)
“Don’t	split																																																					(5)
me	up!”

In	(1),	the	tab	character	is	specified	using	the	escape	sequence	and	the	Unicode	value,
respectively.	In	(2),	the	single	apostrophe	need	not	be	escaped	in	strings,	but	it	would	be	if

specified	as	a	character	literal	('\'').	In	(3),	the	double	quotes	in	the	string	must	be
escaped.	In	(4),	we	use	the	escape	sequence	\n	to	insert	a	newline.	The	expression	in	(5)
generates	a	compile-time	error,	as	the	string	literal	is	split	over	several	lines.	Printing	the
strings	from	(1)	to	(4)	will	give	the	following	result:
Click	here	to	view	code	image

Here	comes	a	tab.				And	here	comes	another	one				!
What’s	on	the	menu?
“String	literals	are	double-quoted.”
Left!
Right!

One	should	also	use	the	escape	sequences	\n	and	\r,	respectively,	for	correct
interpretation	of	the	characters	\u000a	(newline)	and	\u000d	(form	feed)	in	string
literals.

Whitespace
A	whitespace	is	a	sequence	of	spaces,	tabs,	form	feeds,	and	line	terminator	characters	in	a
Java	source	file.	Line	terminators	include	the	newline,	carriage	return,	or	a	carriage
return–newline	sequence.

A	Java	program	is	a	free-format	sequence	of	characters	that	is	tokenized	by	the	compiler—
that	is,	broken	into	a	stream	of	tokens	for	further	analysis.	Separators	and	operators	help	to
distinguish	tokens,	but	sometimes	whitespace	has	to	be	inserted	explicitly	as	a	separator.
For	example,	the	identifier	classRoom	will	be	interpreted	as	a	single	token,	unless
whitespace	is	inserted	to	distinguish	the	keyword	class	from	the	identifier	Room.

Whitespace	aids	not	only	in	separating	tokens,	but	also	in	formatting	the	program	so	that	it
is	easy	to	read.	The	compiler	ignores	the	whitespace	once	the	tokens	are	identified.

Comments
A	program	can	be	documented	by	inserting	comments	at	relevant	places	in	the	source
code.	These	comments	are	for	documentation	purposes	only	and	are	ignored	by	the
compiler.

Java	provides	three	types	of	comments	that	can	be	used	to	document	a	program:

•	A	single-line	comment:	//	...	to	the	end	of	the	line

•	A	multiple-line	comment:	/*	...	*/

•	A	documentation	(Javadoc)	comment:	/**	...	*/'

Single-Line	Comment

All	characters	after	the	comment-start	sequence	//	through	to	the	end	of	the	line
constitute	a	single-line	comment.
Click	here	to	view	code	image

//	This	comment	ends	at	the	end	of	this	line.
int	age;								//	From	comment-start	sequence	to	the	end	of	the	line	is	a
comment.

Multiple-Line	Comment

A	multiple-line	comment,	as	the	name	suggests,	can	span	several	lines.	Such	a	comment
starts	with	the	sequence	/*	and	ends	with	the	sequence	*/.

/*	A	comment
			on	several
			lines.
*/

The	comment-start	sequences	(//,	/*,	/**)	are	not	treated	differently	from	other
characters	when	occurring	within	comments,	so	they	are	ignored.	This	means	that	trying	to
nest	multiple-line	comments	will	result	in	a	compile-time	error:
Click	here	to	view	code	image

/*	Formula	for	alchemy.
			gold	=	wizard.makeGold(stone);
			/*	But	it	only	works	on	Sundays.	*/
*/

The	second	occurrence	of	the	comment-start	sequence	/*	is	ignored.	The	last	occurrence
of	the	sequence	*/	in	the	code	is	now	unmatched,	resulting	in	a	syntax	error.

Documentation	Comment

A	documentation	comment	is	a	special-purpose	multiple-line	comment	that	is	used	by	the
javadoc	tool	to	generate	HTML	documentation	for	the	program.	Documentation
comments	are	usually	placed	in	front	of	classes,	interfaces,	methods,	and	field	definitions.
Special	tags	can	be	used	inside	a	documentation	comment	to	provide	more	specific
information.	Such	a	comment	starts	with	the	sequence	/**	and	ends	with	the	sequence
*/:
Click	here	to	view	code	image

/**
	*		This	class	implements	a	gizmo.
	*		@author	K.A.M.
	*		@version	4.0
	*/

For	details	on	the	javadoc	tool,	see	the	tools	documentation	provided	by	the	JDK.

	Review	Questions

2.1	Which	of	the	following	is	not	a	legal	identifier?

Select	the	one	correct	answer.

(a)	a2z

(b)	ödipus

(c)	52pickup

(d)	_class

(e)	ca$h

(f)	_8to5

2.2	Which	of	the	following	are	not	legal	literals	in	Java?

Select	the	four	correct	answers.

(a)	0Xbad

(b)	0B_101_101

(c)	09

(d)	+_825

(e)	1_2e4f

(f)	'\x'

(g)	"what\'s	your	fancy?"

2.3	Which	statement	is	true?

Select	the	one	correct	answer.

(a)	new	and	delete	are	keywords	in	the	Java	language.

(b)	try,	catch,	and	thrown	are	keywords	in	the	Java	language.

(c)	static,	unsigned,	and	long	are	keywords	in	the	Java	language.

(d)	exit,	class,	and	while	are	keywords	in	the	Java	language.

(e)	return,	goto,	and	default	are	keywords	in	the	Java	language.

(f)	for,	while,	and	next	are	keywords	in	the	Java	language.

2.4	Which	of	the	following	is	not	a	legal	comment	in	Java?

Select	the	one	correct	answer.

(a)	/*	//	*/

(b)	/*	*/	//

(c)	//	/*	*/

(d)	/*	/*	*/

(e)	/*	/*	*/	*/

(f)	//	//

2.2	Primitive	Data	Types
Figure	2.1	gives	an	overview	of	the	primitive	data	types	in	Java.

Figure	2.1	Primitive	Data	Types	in	Java

Primitive	data	types	in	Java	can	be	divided	into	three	main	categories:

•	Integral	types—represent	signed	integers	(byte,	short,	int,	long)	and
unsigned	character	values	(char)

•	Floating-point	types	(float,	double)—represent	fractional	signed	numbers

•	Boolean	type	(boolean)—represents	logical	values

Primitive	data	values	are	not	objects.	Each	primitive	data	type	defines	the	range	of	values
in	the	data	type,	and	operations	on	these	values	are	defined	by	special	operators	in	the
language	(Chapter	5,	p.	143).

Each	primitive	data	type	also	has	a	corresponding	wrapper	class	that	can	be	used	to
represent	a	primitive	value	as	an	object.	Wrapper	classes	are	discussed	in	§8.3,	p.	346.

The	Integer	Types
The	integer	data	types	are	byte,	short,	int,	and	long	(Table	2.10).	Their	values	are
signed	integers	represented	by	two’s	complement	(§5.5,	p.	155).

Table	2.10	Range	of	Integer	Values

The	 	Type
The	data	type	char	represents	characters	(Table	2.11).	Their	values	are	unsigned	integers
that	denote	all	of	the	65536	(216)	characters	in	the	16-bit	Unicode	character	set.	This	set
includes	letters,	digits,	and	special	characters.

Table	2.11	Range	of	Character	Values

The	first	128	characters	of	the	Unicode	set	are	the	same	as	the	128	characters	of	the	7-bit
ASCII	character	set,	and	the	first	256	characters	of	the	Unicode	set	correspond	to	the	256
characters	of	the	8-bit	ISO	Latin-1	character	set.

The	integer	types	and	the	char	type	are	collectively	called	integral	types.

The	Floating-Point	Types
Floating-point	numbers	are	represented	by	the	float	and	double	data	types.

Floating-point	numbers	conform	to	the	IEEE	754-1985	binary	floating-point	standard.
Table	2.12	shows	the	range	of	values	for	positive	floating-point	numbers,	but	these	apply
equally	to	negative	floating-point	numbers	with	the	minus	sign	(-)	as	a	prefix.	Zero	can	be
either	0.0	or	-0.0.

Table	2.12	Range	of	Floating-Point	Values

Since	the	size	for	representation	is	a	finite	number	of	bits,	certain	floating-point	numbers
can	be	represented	only	as	approximations.	For	example,	the	value	of	the	expression
(1.0/3.0)	is	represented	as	an	approximation	due	to	the	finite	number	of	bits	used	to
represent	floating-point	numbers.

The	 	Type
The	data	type	boolean	represents	the	two	logical	values	denoted	by	the	literals	true
and	false	(Table	2.13).

Table	2.13	Boolean	Values

Boolean	values	are	produced	by	all	relational	(§5.11,	p.	180),	conditional	(§5.14,	p.	186),
and	boolean	logical	operators	(§5.13,	p.	184),	and	are	primarily	used	to	govern	the	flow
of	control	during	program	execution.

Table	2.14	summarizes	the	pertinent	facts	about	the	primitive	data	types:	their	width	or

size,	which	indicates	the	number	of	bits	required	to	store	a	primitive	value;	their	range	of
legal	values,	which	is	specified	by	the	minimum	and	the	maximum	values	permissible;
and	the	name	of	the	corresponding	wrapper	class	(§8.3,	p.	346).

Table	2.14	Summary	of	Primitive	Data	Types

	Review	Questions

2.5	Which	of	the	following	do	not	denote	a	primitive	data	value	in	Java?

Select	the	two	correct	answers.

(a)	"t"

(b)	'k'

(c)	50.5F

(d)	"hello"

(e)	false

2.6	Which	of	the	following	primitive	data	types	are	not	integer	types?

Select	the	three	correct	answers.

(a)	boolean

(b)	byte

(c)	float

(d)	short

(e)	double

2.7	Which	integral	type	in	Java	has	the	exact	range	from	-2147483648	(i.e.,	-231)	to

2147483647	(i.e.,	231-1),	inclusive?

Select	the	one	correct	answer.

(a)	byte

(b)	short

(c)	int

(d)	long

(e)	char

2.3	Variable	Declarations
A	variable	stores	a	value	of	a	particular	type.	A	variable	has	a	name,	a	type,	and	a	value
associated	with	it.	In	Java,	variables	can	store	only	values	of	primitive	data	types	and
reference	values	of	objects.	Variables	that	store	reference	values	of	objects	are	called
reference	variables	(or	object	references	or	simply	references).

Declaring	and	Initializing	Variables
Variable	declarations	are	used	to	specify	the	type	and	the	name	of	variables.	This
implicitly	determines	their	memory	allocation	and	the	values	that	can	be	stored	in	them.
Examples	of	declaring	variables	that	can	store	primitive	values	follow:
Click	here	to	view	code	image

char	a,	b,	c;												//	a,	b	and	c	are	character	variables.
double	area;													//	area	is	a	floating-point	variable.
boolean	flag;												//	flag	is	a	boolean	variable.

The	first	declaration	is	equivalent	to	the	following	three	declarations:
char	a;
char	b;
char	c;

A	declaration	can	also	be	combined	with	an	initialization	expression	to	specify	an
appropriate	initial	value	for	the	variable.	Such	declarations	are	called	declaration
statements.
Click	here	to	view	code	image

int	i	=	10,														//	i	is	an	int	variable	with	initial	value	10.
				j	=	0b101;											//	j	is	an	int	variable	with	initial	value	5.
long	big	=	2147483648L;		//	big	is	a	long	variable	with	specified	initial
value.

Reference	Variables
A	reference	variable	can	store	the	reference	value	of	an	object,	and	can	be	used	to
manipulate	the	object	denoted	by	the	reference	value.

A	variable	declaration	that	specifies	a	reference	type	(i.e.,	a	class,	an	array,	an	interface
name,	or	an	enum	type)	declares	a	reference	variable.	Analogous	to	the	declaration	of
variables	of	primitive	data	types,	the	simplest	form	of	reference	variable	declaration

specifies	the	name	and	the	reference	type	only.	The	declaration	determines	which	objects
can	be	referenced	by	a	reference	variable.	Before	we	can	use	a	reference	variable	to
manipulate	an	object,	it	must	be	declared	and	initialized	with	the	reference	value	of	the
object.
Click	here	to	view	code	image

Pizza	yummyPizza;			//	Variable	yummyPizza	can	reference	objects	of	class
Pizza.
Hamburger	bigOne,			//	Variable	bigOne	can	reference	objects	of	class
Hamburger,
										smallOne;	//	and	so	can	variable	smallOne.

It	is	important	to	note	that	the	preceding	declarations	do	not	create	any	objects	of	class
Pizza	or	Hamburger.	Rather,	they	simply	create	variables	that	can	store	reference
values	of	objects	of	the	specified	classes.

A	declaration	can	also	be	combined	with	an	initializer	expression	to	create	an	object
whose	reference	value	can	be	assigned	to	the	reference	variable:
Click	here	to	view	code	image

Pizza	yummyPizza	=	new	Pizza(“Hot&Spicy”);	//	Declaration	statement

The	reference	variable	yummyPizza	can	reference	objects	of	class	Pizza.	The	keyword
new,	together	with	the	constructor	call	Pizza("Hot&Spicy"),	creates	an	object	of
the	class	Pizza.	The	reference	value	of	this	object	is	assigned	to	the	variable
yummyPizza.	The	newly	created	object	of	class	Pizza	can	now	be	manipulated
through	the	reference	variable	yummyPizza.

2.4	Initial	Values	for	Variables
This	section	discusses	what	value,	if	any,	is	assigned	to	a	variable	when	no	explicit	initial
value	is	provided	in	the	declaration.

Default	Values	for	Fields
Default	values	for	fields	of	primitive	data	types	and	reference	types	are	listed	in	Table
2.15.	The	value	assigned	depends	on	the	type	of	the	field.

Table	2.15	Default	Values

If	no	explicit	initialization	is	provided	for	a	static	variable,	it	is	initialized	with	the	default
value	of	its	type	when	the	class	is	loaded.	Similarly,	if	no	initialization	is	provided	for	an
instance	variable,	it	is	initialized	with	the	default	value	of	its	type	when	the	class	is

instantiated.	The	fields	of	reference	types	are	always	initialized	with	the	null	reference
value	if	no	initialization	is	provided.

Example	2.1	illustrates	the	default	initialization	of	fields.	Note	that	static	variables	are
initialized	when	the	class	is	loaded	the	first	time,	and	instance	variables	are	initialized
accordingly	in	every	object	created	from	the	class	Light.

Example	2.1	Default	Values	for	Fields
Click	here	to	view	code	image

public	class	Light	{
		//	Static	variable
		static	int	counter;						//	Default	value	0	when	class	is	loaded

		//	Instance	variables:
		int					noOfWatts	=	100;	//	Explicitly	set	to	100
		boolean	indicator;							//	Implicitly	set	to	default	value	false
		String		location;								//	Implicitly	set	to	default	value	null

		public	static	void	main(String[]	args)	{
				Light	bulb	=	new	Light();
				System.out.println(“Static	variable	counter:					”	+	Light.counter);
				System.out.println(“Instance	variable	noOfWatts:	”	+	bulb.noOfWatts);
				System.out.println(“Instance	variable	indicator:	”	+	bulb.indicator);
				System.out.println(“Instance	variable	location:		”	+	bulb.location);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Static	variable	counter:					0
Instance	variable	noOfWatts:	100
Instance	variable	indicator:	false
Instance	variable	location:		null

Initializing	Local	Variables	of	Primitive	Data	Types
Local	variables	are	variables	that	are	declared	in	methods,	constructors,	and	blocks
(Chapter	3,	p.	47).	They	are	not	initialized	implicitly	when	they	are	allocated	memory	at
method	invocation—that	is,	when	the	execution	of	a	method	begins.	The	same	applies	to
local	variables	in	constructors	and	blocks.	Local	variables	must	be	explicitly	initialized
before	being	used.	The	compiler	will	report	an	error	only	if	an	attempt	is	made	to	use	an
uninitialized	local	variable.

Example	2.2	Flagging	Uninitialized	Local	Variables	of	Primitive	Data	Types
Click	here	to	view	code	image

public	class	TooSmartClass	{
		public	static	void	main(String[]	args)	{
				int	weight	=	10,	thePrice;																									//	(1)	Local	variables

				if	(weight	<		10)	thePrice	=	1000;
				if	(weight	>		50)	thePrice	=	5000;
				if	(weight	>=	10)	thePrice	=	weight*10;												//	(2)	Always	executed
				System.out.println(“The	price	is:	”	+	thePrice);			//	(3)	Compile-time
error!
		}
}

In	Example	2.2,	the	compiler	complains	that	the	local	variable	thePrice	used	in	the
println	statement	at	(3)	may	not	be	initialized.	However,	at	runtime,	the	local	variable
thePrice	will	get	the	value	100	in	the	last	if	statement	at	(2),	before	it	is	used	in	the
println	statement.	The	compiler	does	not	perform	a	rigorous	analysis	of	the	program	in
this	regard.	It	compiles	the	body	of	a	conditional	statement	only	if	it	can	deduce	that	the
condition	is	true.	The	program	will	compile	correctly	if	the	variable	is	initialized	in	the
declaration,	or	if	an	unconditional	assignment	is	made	to	the	variable.

Replacing	the	declaration	of	the	local	variables	at	(1)	in	Example	2.2	with	the	following
declaration	solves	the	problem:
Click	here	to	view	code	image

int	weight	=	10,	thePrice	=	0;									//	(1’)	Both	local	variables
initialized

Initializing	Local	Reference	Variables
Local	reference	variables	are	bound	by	the	same	initialization	rules	as	local	variables	of
primitive	data	types.

Example	2.3	Flagging	Uninitialized	Local	Reference	Variables
Click	here	to	view	code	image

public	class	VerySmartClass	{
		public	static	void	main(String[]	args)	{
				String	importantMessage;							//	Local	reference	variable

				System.out.println(“The	message	length	is:	”	+
																								importantMessage.length());		//	Compile-time	error!
		}
}

In	Example	2.3,	the	compiler	complains	that	the	local	variable	importantMessage
used	in	the	println	statement	may	not	be	initialized.	If	the	variable	important-
Message	is	set	to	the	value	null,	the	program	will	compile.	However,	a	runtime	error
(NullPointerException)	will	occur	when	the	code	is	executed,	because	the	variable
importantMessage	will	not	denote	any	object.	The	golden	rule	is	to	ensure	that	a

reference	variable,	whether	local	or	not,	is	assigned	a	reference	value	denoting	an	object
before	it	is	used—that	is,	to	ensure	that	it	does	not	have	the	value	null.

The	program	compiles	and	runs	if	we	replace	the	declaration	with	the	following
declaration	of	the	local	variable,	which	creates	a	string	literal	and	assigns	its	reference
value	to	the	local	reference	variable	importantMessage:
Click	here	to	view	code	image

String	importantMessage	=	“Initialize	before	use!”;

Arrays	and	their	default	values	are	discussed	in	§3.4,	p.	58.

Lifetime	of	Variables
The	lifetime	of	a	variable—that	is,	the	time	a	variable	is	accessible	during	execution—is
determined	by	the	context	in	which	it	is	declared.	The	lifetime	of	a	variable,	which	is	also
called	its	scope,	is	discussed	in	more	detail	in	§4.4,	p.	114.	We	distinguish	among	the
lifetimes	of	variables	in	three	contexts:

•	Instance	variables—members	of	a	class,	which	are	created	for	each	object	of	the
class.	In	other	words,	every	object	of	the	class	will	have	its	own	copies	of	these
variables,	which	are	local	to	the	object.	The	values	of	these	variables	at	any	given
time	constitute	the	state	of	the	object.	Instance	variables	exist	as	long	as	the	object
they	belong	to	is	in	use	at	runtime.

•	Static	variables—members	of	a	class,	but	which	are	not	created	for	any	specific
object	of	the	class	and,	therefore,	belong	only	to	the	class	(§4.4,	p.	114).	They	are
created	when	the	class	is	loaded	at	runtime,	and	exist	as	long	as	the	class	is	available
at	runtime.

•	Local	variables	(also	called	method	automatic	variables)—declared	in	methods,
constructors,	and	blocks;	and	created	for	each	execution	of	the	method,	constructor,
or	block.	After	the	execution	of	the	method,	constructor,	or	block	completes,	local
(non-final)	variables	are	no	longer	accessible.

	Review	Questions

2.8	Which	of	the	following	declarations	are	valid?

Select	the	three	correct	answers.

(a)	char	a	=	'\u0061';

(b)	char	'a'	=	'a';

(c)	char	\u0061	=	'a';

(d)	ch\u0061r	a	=	'a';

(e)	ch'a'r	a	=	'a';

2.9	Given	the	following	code	within	a	method,	which	statement	is	true?
int	i,	j;

j	=	5;

Select	the	one	correct	answer.

(a)	Local	variable	i	is	not	declared.

(b)	Local	variable	j	is	not	declared.

(c)	Local	variable	i	is	declared	but	not	initialized.

(d)	Local	variable	j	is	declared	but	not	initialized.

(e)	Local	variable	j	is	initialized	but	not	declared.

2.10	In	which	of	these	variable	declarations	will	the	variable	remain	uninitialized	unless
it	is	explicitly	initialized?

Select	the	one	correct	answer.

(a)	Declaration	of	an	instance	variable	of	type	int

(b)	Declaration	of	a	static	variable	of	type	float

(c)	Declaration	of	a	local	variable	of	type	float

(d)	Declaration	of	a	static	variable	of	type	Object

(e)	Declaration	of	an	instance	variable	of	type	int[]

2.11	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Init	{

		String	title;
		boolean	published;

		static	int	total;
		static	double	maxPrice;

		public	static	void	main(String[]	args)	{
				Init	initMe	=	new	Init();
				double	price;
				if	(true)
						price	=	100.00;
				System.out.println(“|”	+	initMe.title	+	“|”	+	initMe.published	+	“|”
+
																							Init.total	+	“|”	+	Init.maxPrice	+	“|”	+	price	+
“|”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	and	print	|null|false|0|0.0|0.0|	at
runtime.

(c)	The	program	will	compile,	and	print	|null|true|0|0.0|100.0|	at
runtime.

(d)	The	program	will	compile,	and	print	|	|false|0|0.0|0.0|	at	runtime.

(e)	The	program	will	compile,	and	print	|null|false|0|0.0|100.0|	at
runtime.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	Basic	language	elements:	identifiers,	keywords,	separators,	literals,	whitespace,	and
comments

•	Primitive	data	types:	integral,	floating-point,	and	boolean

•	Notational	representation	of	numbers	in	decimal,	binary,	octal,	and	hexadecimal
systems

•	Declaration	and	initialization	of	variables,	including	reference	variables

•	Usage	of	default	values	for	instance	variables	and	static	variables

•	Lifetime	of	instance	variables,	static	variables,	and	local	variables

	Programming	Exercise

2.1	The	following	program	has	several	errors.	Modify	the	program	so	that	it	will
compile	and	run	without	errors.

Click	here	to	view	code	image
//	File:	Temperature.java
PUBLIC	CLASS	temperature	{
		PUBLIC	void	main(string	args)	{
				double	fahrenheit	=	62.5;
				/	Convert	/
				double	celsius	=	f2c(fahrenheit);
				System.out.println(fahrenheit	+	‘F’	+	”	=	”	+	Celsius	+	‘C’);
		}

		double	f2c(float	fahr)	{
				RETURN	(fahr	-	32.0)	*	5.0	/	9.0;
		}

}

3.	Declarations

3.1	Class	Declarations
A	class	declaration	introduces	a	new	reference	type.	For	the	purpose	of	this	book,	we	will
use	the	following	simplified	syntax	of	a	class	declaration:

Click	here	to	view	code	image

class_modifiers	class	class_name
																																						extends_clause
																																						implements_clause	//	Class	header
{	//	Class	body
										field_declarations
										method_declarations
										constructor_declarations
}

In	the	class	header,	the	name	of	the	class	is	preceded	by	the	keyword	class.	In	addition,
the	class	header	can	specify	the	following	information:

•	An	accessibility	modifier	(§4.5,	p.	118)

•	Additional	class	modifiers	(§4.6,	p.	120)

•	Any	class	it	extends	(§7.1,	p.	264)

•	Any	interfaces	it	implements	(§7.6,	p.	290)

The	class	body,	enclosed	in	braces	({}),	can	contain	member	declarations.	In	this	book,
we	discuss	the	following	two	kinds	of	member	declarations:

•	Field	declarations	(§2.3,	p.	40)

•	Method	declarations	(§3.2,	p.	49)

Members	declared	static	belong	to	the	class	and	are	called	static	members.	Non-static
members	belong	to	the	objects	of	the	class	and	are	called	instance	members.	In	addition,
the	following	declarations	can	be	included	in	a	class	body:

•	Constructor	declarations	(§3.3,	p.	53)

The	declarations	can	appear	in	any	order	in	the	class	body.	The	only	mandatory	parts	of
the	class	declaration	syntax	are	the	keyword	class,	the	class	name,	and	the	class	body
braces	({}),	as	exemplified	by	the	following	class	declaration:

class	X	{	}

To	understand	which	code	can	be	legally	declared	in	a	class,	we	distinguish	between	static
context	and	non-static	context.	A	static	context	is	defined	by	static	methods,	static	field
initializers,	and	static	initializer	blocks.	A	non-static	context	is	defined	by	instance
methods,	non-static	field	initializers,	instance	initializer	blocks,	and	constructors.	By	static
code,	we	mean	expressions	and	statements	in	a	static	context;	by	non-static	code,	we	mean
expressions	and	statements	in	a	non-static	context.	One	crucial	difference	between	the	two
contexts	is	that	static	code	can	refer	only	to	other	static	members.

3.2	Method	Declarations
For	the	purpose	of	this	book,	we	will	use	the	following	simplified	syntax	of	a	method
declaration:
Click	here	to	view	code	image

method_modifiers	return_type	method_name
																																	(formal_parameter_list)	throws_clause	//	Method	header
{	//	Method	body
										local_variable_declarations
										statements
}

In	addition	to	the	name	of	the	method,	the	method	header	can	specify	the	following
information:

•	Scope	or	accessibility	modifier	(§4.7,	p.	123)

•	Additional	method	modifiers	(§4.8,	p.	131)

•	The	type	of	the	return	value,	or	void	if	the	method	does	not	return	any	value	(§6.4,
p.	224)

•	A	formal	parameter	list

•	Any	exceptions	thrown	by	the	method,	which	are	specified	in	a	throws	clause
(§6.9,	p.	251)

The	formal	parameter	list	is	a	comma-separated	list	of	parameters	for	passing	information
to	the	method	when	the	method	is	invoked	by	a	method	call	(§3.5,	p.	72).	An	empty
parameter	list	must	be	specified	by	().	Each	parameter	is	a	simple	variable	declaration
consisting	of	its	type	and	name:
Click	here	to	view	code	image

optional_parameter_modifier	type	parameter_name

The	parameter	names	are	local	to	the	method	(§4.4,	p.	117).	The	optional	parameter
modifier	final	is	discussed	in	§3.5,	p.	80.	It	is	recommended	to	use	the	@param	tag	in	a
Javadoc	comment	to	document	the	formal	parameters	of	a	method.

The	signature	of	a	method	comprises	the	name	of	the	method	and	the	types	of	the	formal
parameters	only.

The	method	body	is	a	block	containing	the	local	variable	declarations	(§2.3,	p.	40)	and
the	statements	of	the	method.

The	mandatory	parts	of	a	method	declaration	are	the	return	type,	the	method	name,	and	the
method	body	braces	({}),	as	exemplified	by	the	following	method	declaration:

void	noAction()	{}

Like	member	variables,	member	methods	can	be	characterized	as	one	of	two	types:

•	Instance	methods,	which	are	discussed	later	in	this	section

•	Static	methods,	which	are	discussed	in	§4.8,	p.	132

Statements
Statements	in	Java	can	be	grouped	into	various	categories.	Variable	declarations	with
explicit	initialization	of	the	variables	are	called	declaration	statements	(§2.3,	p.	40,	and
§3.4,	p.	60).	Other	basic	forms	of	statements	are	control	flow	statements	(§6.1,	p.	200)	and
expression	statements.

An	expression	statement	is	an	expression	terminated	by	a	semicolon.	Any	value	returned
by	the	expression	is	discarded.	Only	certain	types	of	expressions	have	meaning	as
statements:

•	Assignments	(§5.6,	p.	158)

•	Increment	and	decrement	operators	(§5.9,	p.	176)

•	Method	calls	(§3.5,	p.	72)

•	Object	creation	expressions	with	the	new	operator	(§5.17,	p.	195)

A	solitary	semicolon	denotes	the	empty	statement,	which	does	nothing.

A	block,	{},	is	a	compound	statement	that	can	be	used	to	group	zero	or	more	local
declarations	and	statements	(§4.4,	p.	117).	Blocks	can	be	nested,	since	a	block	is	a
statement	that	can	contain	other	statements.	A	block	can	be	used	in	any	context	where	a
simple	statement	is	permitted.	The	compound	statement	that	is	embodied	in	a	block	begins
at	the	left	brace,	{,	and	ends	with	a	matching	right	brace,	}.	Such	a	block	must	not	be
confused	with	an	array	initializer	in	declaration	statements	(§3.4,	p.	60).

Labeled	statements	are	discussed	in	§6.4	on	page	220.

Instance	Methods	and	the	Object	Reference	
Instance	methods	belong	to	every	object	of	the	class	and	can	be	invoked	only	on	objects.
All	members	defined	in	the	class,	both	static	and	non-static,	are	accessible	in	the	context
of	an	instance	method.	The	reason	is	that	all	instance	methods	are	passed	an	implicit
reference	to	the	current	object—that	is,	the	object	on	which	the	method	is	being	invoked.
The	current	object	can	be	referenced	in	the	body	of	the	instance	method	by	the	keyword
this.	In	the	body	of	the	method,	the	this	reference	can	be	used	like	any	other	object
reference	to	access	members	of	the	object.	In	fact,	the	keyword	this	can	be	used	in	any
non-static	context.	The	this	reference	can	be	used	as	a	normal	reference	to	reference	the
current	object,	but	the	reference	cannot	be	modified—it	is	a	final	reference	(§4.8,	p.
133).

The	this	reference	to	the	current	object	is	useful	in	situations	where	a	local	variable
hides,	or	shadows,	a	field	with	the	same	name.	In	Example	3.1,	the	two	parameters
noOfWatts	and	indicator	in	the	constructor	of	the	Light	class	have	the	same
names	as	the	fields	in	the	class.	The	example	also	declares	a	local	variable	location,
which	has	the	same	name	as	one	of	the	fields.	The	reference	this	can	be	used	to
distinguish	the	fields	from	the	local	variables.	At	(1),	the	this	reference	is	used	to
identify	the	field	noOfWatts,	which	is	assigned	the	value	of	the	parameter
noOfWatts.	Without	the	this	reference	at	(2),	the	value	of	the	parameter	indicator

is	assigned	back	to	this	parameter,	and	not	to	the	field	by	the	same	name,	resulting	in	a
logical	error.	Similarly	at	(3),	without	the	this	reference,	it	is	the	local	variable
location	that	is	assigned	the	value	of	the	parameter	site,	and	not	the	field	with	the
same	name.

Example	3.1	Using	the	this	Reference
Click	here	to	view	code	image

public	class	Light	{
		//	Fields:
		int					noOfWatts;						//	Wattage
		boolean	indicator;						//	On	or	off
		String		location;							//	Placement

		//	Constructor
		public	Light(int	noOfWatts,	boolean	indicator,	String	site)	{
				String	location;

				this.noOfWatts	=	noOfWatts;			//	(1)	Assignment	to	field
				indicator	=	indicator;								//	(2)	Assignment	to	parameter
				location	=	site;														//	(3)	Assignment	to	local	variable
				this.superfluous();											//	(4)
				superfluous();																//	equivalent	to	call	at	(4)
		}

		public	void	superfluous()	{
				System.out.printf(“Current	object:	%s%n”,	this);	//	(5)
		}

		public	static	void	main(String[]	args)	{
				Light	light	=	new	Light(100,	true,	“loft”);
				System.out.println(“No.	of	watts:	”	+	light.noOfWatts);
				System.out.println(“Indicator:				”	+	light.indicator);
				System.out.println(“Location:					”	+	light.location);
		}
}

Probable	output	from	the	program:
Current	object:	Light@1bc4459
Current	object:	Light@1bc4459
No.	of	watts:	100
Indicator:				false
Location:					null

If	a	member	is	not	shadowed	by	a	local	declaration,	the	simple	name	member	is
considered	a	short-hand	notation	for	this.member.	In	particular,	the	this	reference
can	be	used	explicitly	to	invoke	other	methods	in	the	class.	This	usage	is	illustrated	at	(4)
in	Example	3.1,	where	the	method	superfluous()	is	called.

If,	for	some	reason,	a	method	needs	to	pass	the	current	object	to	another	method,	it	can	do
so	using	the	this	reference.	This	approach	is	illustrated	at	(5)	in	Example	3.1,	where	the
current	object	is	passed	to	the	printf()	method.	The	printf()	method	prints	the
string	representation	of	the	current	object	(which	comprises	the	name	of	the	class	of	the
current	object	and	the	hexadecimal	representation	of	the	current	object’s	hash	code).	(The
hash	code	of	an	object	is	an	int	value	that	can	be	used	to	store	and	retrieve	the	object

from	special	data	structures	called	hash	tables.)

Note	that	the	this	reference	cannot	be	used	in	a	static	context,	as	static	code	is	not
executed	in	the	context	of	any	object.

Method	Overloading
Each	method	has	a	signature,	which	comprises	the	name	of	the	method	plus	the	types	and
order	of	the	parameters	in	the	formal	parameter	list.	Several	method	implementations	may
have	the	same	name,	as	long	as	the	method	signatures	differ.	This	practice	is	called
method	overloading.	Because	overloaded	methods	have	the	same	name,	their	parameter
lists	must	be	different.

Rather	than	inventing	new	method	names,	method	overloading	can	be	used	when	the	same
logical	operation	requires	multiple	implementations.	The	Java	SE	platform	API	makes
heavy	use	of	method	overloading.	For	example,	the	class	java.lang.Math	contains	an
overloaded	method	min(),	which	returns	the	minimum	of	two	numeric	values.
Click	here	to	view	code	image

public	static	double	min(double	a,	double	b)
public	static	float	min(float	a,	float	b)
public	static	int	min(int	a,	int	b)
public	static	long	min(long	a,	long	b)

In	the	following	examples,	five	implementations	of	the	method	methodA	are	shown:
Click	here	to	view	code	image

void	methodA(int	a,	double	b)	{	/*	…	*/	}						//	(1)
int		methodA(int	a)											{	return	a;	}						//	(2)
int		methodA()																{	return	1;	}						//	(3)
long	methodA(double	a,	int	b)	{	return	b;	}						//	(4)
long	methodA(int	x,	double	y)	{	return	x;	}						//	(5)	Not	OK.

The	corresponding	signatures	of	the	five	methods	are	as	follows:
Click	here	to	view	code	image

methodA(int,	double)													1’
methodA(int)																					2’:	Number	of	parameters
methodA()																								3’:	Number	of	parameters
methodA(double,	int)													4’:	Order	of	parameters
methodA(int,	double)													5’:	Same	as	1’

The	first	four	implementations	of	the	method	named	methodA	are	overloaded	correctly,
each	time	with	a	different	parameter	list	and,	therefore,	different	signatures.	The
declaration	at	(5)	has	the	same	signature	methodA(int,	double)	as	the	declaration
at	(1)	and,	therefore,	is	not	a	valid	overloading	of	this	method.
Click	here	to	view	code	image

void	bake(Cake	k)		{	/*	…	*/	}																	//	(1)
void	bake(Pizza	p)	{	/*	…	*/	}																	//	(2)

int					halfIt(int	a)	{	return	a/2;	}												//	(3)
double		halfIt(int	a)	{	return	a/2.0;	}										//	(4)	Not	OK.	Same
signature.

The	method	named	bake	is	correctly	overloaded	at	(1)	and	(2),	with	two	different

parameter	lists.	In	the	implementation,	changing	just	the	return	type	(as	shown	at	(3)	and
(4)	in	the	preceding	example),	is	not	enough	to	overload	a	method,	and	will	be	flagged	as
a	compile-time	error.	The	parameter	list	in	the	declarations	must	be	different.

Only	methods	declared	in	the	same	class	and	those	that	are	inherited	by	the	class	can	be
overloaded.	Overloaded	methods	should	be	considered	to	be	individual	methods	that	just
happen	to	have	the	same	name.	Methods	with	the	same	name	are	allowed,	since	methods
are	identified	by	their	signature.	At	compile	time,	the	right	implementation	of	an
overloaded	method	is	chosen,	based	on	the	signature	of	the	method	call.	Details	of	method
overloading	resolution	can	be	found	in	§7.10	on	page	316.	Method	overloading	should	not
be	confused	with	method	overriding	(§7.2,	p.	268).

3.3	Constructors
The	main	purpose	of	constructors	is	to	set	the	initial	state	of	an	object,	when	the	object	is
created	by	using	the	new	operator.

For	the	purpose	of	this	book,	we	will	use	the	following	simplified	syntax	of	a	constructor:
Click	here	to	view	code	image

accessibility_modifier	class_name	(formal_parameter_list)
																																																											throws_clause		//	Constructor	header
{	//	Constructor	body
										local_variable_declarations
										statements
}

Constructor	declarations	are	very	much	like	method	declarations.	However,	the	following
restrictions	on	constructors	should	be	noted:

•	Modifiers	other	than	an	accessibility	modifier	are	not	permitted	in	the	constructor
header.	For	accessibility	modifiers	for	constructors,	see	§4.7,	p.	123.

•	Constructors	cannot	return	a	value	and,	therefore,	do	not	specify	a	return	type,	not
even	void,	in	the	constructor	header.	But	their	declaration	can	use	the	return
statement	that	does	not	return	a	value	in	the	constructor	body	(§6.4,	p.	224).

•	The	constructor	name	must	be	the	same	as	the	class	name.

Class	names	and	method	names	exist	in	different	namespaces.	Thus,	there	are	no	name
conflicts	in	Example	3.2,	where	a	method	declared	at	(2)	has	the	same	name	as	the
constructor	declared	at	(1).	A	method	must	always	specify	a	return	type,	whereas	a
constructor	does	not.	However,	using	such	naming	schemes	is	strongly	discouraged.

A	constructor	that	has	no	parameters,	like	the	one	at	(1)	in	Example	3.2,	is	called	a	no-
argument	constructor.

Example	3.2	Namespaces
Click	here	to	view	code	image

public	class	Name	{

		Name()	{																						//	(1)	No-argument	constructor
				System.out.println(“Constructor”);
		}

		void	Name()	{																	//	(2)	Instance	method
				System.out.println(“Method”);
		}

		public	static	void	main(String[]	args)	{
				new	Name().Name();										//	(3)	Constructor	call	followed	by	method
call
		}
}

Output	from	the	program:
Constructor
Method

The	Default	Constructor
If	a	class	does	not	specify	any	constructors,	then	a	default	constructor	is	generated	for	the
class	by	the	compiler.	The	default	constructor	is	equivalent	to	the	following
implementation:
Click	here	to	view	code	image

class_name()	{	super();	}			//	No	parameters.	Calls
superclass	constructor.

A	default	constructor	is	a	no-argument	constructor.	The	only	action	taken	by	the	default
constructor	is	to	call	the	superclass	constructor.	This	ensures	that	the	inherited	state	of	the
object	is	initialized	properly	(§7.5,	p.	282).	In	addition,	all	instance	variables	in	the	object
are	set	to	the	default	value	of	their	type,	barring	those	that	are	initialized	by	an
initialization	expression	in	their	declaration.

In	the	following	code,	the	class	Light	does	not	specify	any	constructors:
Click	here	to	view	code	image

class	Light	{
		//	Fields:
		int					noOfWatts;							//	Wattage
		boolean	indicator;							//	On	or	off
		String		location;								//	Placement
		//	No	constructors
		//…
}

class	Greenhouse	{
		//	…
		Light	oneLight	=	new	Light();					//	(1)	Call	to	default	constructor
}

In	this	code,	the	following	default	constructor	is	called	when	a	Light	object	is	created	by
the	object	creation	expression	at	(1):

Light()	{	super();	}

Creating	an	object	using	the	new	operator	with	the	default	constructor,	as	at	(1),	will
initialize	the	fields	of	the	object	to	their	default	values	(that	is,	the	fields	noOfWatts,
indicator,	and	location	in	a	Light	object	will	be	initialized	to	0,	false,	and
null,	respectively).

A	class	can	choose	to	provide	its	own	constructors,	rather	than	relying	on	the	default
constructor.	In	the	following	example,	the	class	Light	provides	a	no-argument
constructor	at	(1).
Click	here	to	view	code	image

class	Light	{
		//	…
		Light()	{																								//	(1)	No-argument	constructor
				noOfWatts	=	50;
				indicator	=	true;
				location		=	“X”;
		}
		//…
}

class	Greenhouse	{
		//	…
		Light	extraLight	=	new	Light();			//	(2)	Call	of	explicit	default
constructor
}

The	no-argument	constructor	ensures	that	any	object	created	with	the	object	creation
expression	new	Light(),	as	at	(2),	will	have	its	fields	noOfWatts,	indicator,	and
location	initialized	to	50,	true,	and	"X",	respectively.

If	a	class	defines	any	constructor,	it	can	no	longer	rely	on	the	default	constructor	to	set	the
state	of	its	objects.	If	such	a	class	requires	a	no-argument	constructor,	it	must	provide	its
own	implementation,	as	in	the	preceding	example.	In	the	next	example	the	class	Light
does	not	provide	a	no-argument	constructor,	but	rather	includes	a	non-zero	argument
constructor	at	(1).	It	is	called	at	(2)	when	an	object	of	the	class	Light	is	created	with	the
new	operator.	Any	attempt	to	call	the	default	constructor	will	be	flagged	as	a	compile-
time	error,	as	shown	at	(3).
Click	here	to	view	code	image

class	Light	{
		//	…
		//	Only	non-zero	argument	constructor:
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{										//	(1)
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
		}
		//…
}

class	Greenhouse	{

		//	…
		Light	moreLight		=	new	Light(100,	true,	“Greenhouse”);//	(2)	OK
		Light	firstLight	=	new	Light();																							//	(3)	Compile-time
error
}

Overloaded	Constructors
Like	methods,	constructors	can	be	overloaded.	Since	the	constructors	in	a	class	all	have
the	same	name	as	the	class,	their	signatures	are	differentiated	by	their	parameter	lists.	In
the	following	example,	the	class	Light	now	provides	explicit	implementation	of	the	no-
argument	constructor	at	(1)	and	that	of	a	non-zero	argument	constructor	at	(2).	The
constructors	are	overloaded,	as	is	evident	by	their	signatures.	The	non-zero	argument
constructor	at	(2)	is	called	when	an	object	of	the	class	Light	is	created	at	(3),	and	the	no-
argument	constructor	is	likewise	called	at	(4).	Overloading	of	constructors	allows
appropriate	initialization	of	objects	on	creation,	depending	on	the	constructor	invoked	(see
chaining	of	constructors	in	§7.5,	p.	282).	It	is	recommended	to	use	the	@param	tag	in	a
Javadoc	comment	to	document	the	formal	parameters	of	a	constructor.
Click	here	to	view	code	image

class	Light	{
		//	…
		//	No-argument	constructor:
		Light()	{																																																		//	(1)
				noOfWatts	=	50;
				indicator	=	true;
				location		=	“X”;
		}

		//	Non-zero	argument	constructor:
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{	//	(2)
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
		}
		//…
}

class	Greenhouse	{
		//	…
		Light	moreLight		=	new	Light(100,	true,	“Greenhouse”);					//	(3)	OK
		Light	firstLight	=	new	Light();																												//	(4)	OK
}

	Review	Questions

3.1	Which	one	of	these	declarations	is	a	valid	method	declaration?

Select	the	one	correct	answer.

(a)	void	method1									{	/*	...	*/	}

(b)	void	method2()							{	/*	...	*/	}

(c)	void	method3(void)			{	/*	...	*/	}

(d)	method4()												{	/*	...	*/	}

(e)	method5(void)								{	/*	...	*/	}

3.2	Which	statements,	when	inserted	at	(1),	will	not	result	in	compile-time	errors?
Click	here	to	view	code	image

public	class	ThisUsage	{
		int	planets;
		static	int	suns;

		public	void	gaze()	{
				int	i;
				//	(1)	INSERT	STATEMENT	HERE
		}
}

Select	the	three	correct	answers.

(a)	i	=	this.planets;

(b)	i	=	this.suns;

(c)	this	=	new	ThisUsage();

(d)	this.i	=	4;

(e)	this.suns	=	planets;

3.3	Given	the	following	pairs	of	method	declarations,	which	statements	are	true?
Click	here	to	view	code	image

void	fly(int	distance)	{}
int		fly(int	time,	int	speed)	{	return	time*speed;	}

void	fall(int	time)	{}
int		fall(int	distance)	{	return	distance;	}

void	glide(int	time)	{}
void	Glide(int	time)	{}

Select	the	two	correct	answers.

(a)	The	first	pair	of	methods	will	compile,	and	overload	the	method	name	fly.

(b)	The	second	pair	of	methods	will	compile,	and	overload	the	method	name
fall.

(c)	The	third	pair	of	methods	will	compile,	and	overload	the	method	name	glide.

(d)	The	first	pair	of	methods	will	not	compile.

(e)	The	second	pair	of	methods	will	not	compile.

(f)	The	third	pair	of	methods	will	not	compile.

3.4	Given	a	class	named	Book,	which	one	of	these	constructor	declarations	is	valid	for
the	class	Book?

Select	the	one	correct	answer.

(a)	Book(Book	b)	{}

(b)	Book	Book()	{}

(c)	private	final	Book()	{}

(d)	void	Book()	{}

(e)	public	static	void	Book(String[]	args)	{}

(f)	abstract	Book()	{}

3.5	Which	statements	are	true?

Select	the	two	correct	answers.

(a)	A	class	must	define	a	constructor.

(b)	A	constructor	can	be	declared	private.

(c)	A	constructor	can	return	a	value.

(d)	A	constructor	must	initialize	all	fields	when	a	class	is	instantiated.

(e)	A	constructor	can	access	the	non-static	members	of	a	class.

3.6	What	will	be	the	result	of	compiling	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		long	var;

		public	void	MyClass(long	param)	{	var	=	param;	}		//	(1)

		public	static	void	main(String[]	args)	{
				MyClass	a,	b;
				a	=	new	MyClass();																														//	(2)
				b	=	new	MyClass(5);																													//	(3)
		}
}

Select	the	one	correct	answer.

(a)	A	compile-time	error	will	occur	at	(1).

(b)	A	compile-time	error	will	occur	at	(2).

(c)	A	compile-time	error	will	occur	at	(3).

(d)	The	program	will	compile	without	errors.

3.4	Arrays
An	array	is	a	data	structure	that	defines	an	indexed	collection	of	a	fixed	number	of
homogeneous	data	elements.	This	means	that	all	elements	in	the	array	have	the	same	data
type.	A	position	in	the	array	is	indicated	by	a	non-negative	integer	value	called	the	index.
An	element	at	a	given	position	in	the	array	is	accessed	using	the	index.	The	size	of	an
array	is	fixed	and	cannot	be	changed	after	the	array	has	been	created.

In	Java,	arrays	are	objects.	Arrays	can	be	of	primitive	data	types	or	reference	types.	In	the

former	case,	all	elements	in	the	array	are	of	a	specific	primitive	data	type.	In	the	latter
case,	all	elements	are	references	of	a	specific	reference	type.	References	in	the	array	can
then	denote	objects	of	this	reference	type	or	its	subtypes.	Each	array	object	has	a	public
final	field	called	length,	which	specifies	the	array	size	(i.e.,	the	number	of	elements
the	array	can	accommodate).	The	first	element	is	always	at	index	0	and	the	last	element	at
index	n	–	1,	where	n	is	the	value	of	the	length	field	in	the	array.

Simple	arrays	are	one-dimensional	arrays—that	is,	a	simple	list	of	values.	Since	arrays
can	store	reference	values,	the	objects	referenced	can	also	be	array	objects.	Thus,
multidimensional	arrays	are	implemented	as	array	of	arrays.

Passing	array	references	as	parameters	is	discussed	in	§3.5,	p.	72.	Type	conversions	for
array	references	on	assignment	and	on	method	invocation	are	discussed	in	§7.7,	p.	309.

Declaring	Array	Variables
A	one-dimensional	array	variable	declaration	has	either	of	the	following	syntaxes:

element_type[]	array_name;

or

element_type	array_name[];

where	element_type	can	be	a	primitive	data	type	or	a	reference	type.	The	array	variable
array_name	has	the	type	element_type[].	Note	that	the	array	size	is	not	specified.	As	a
consequence,	the	array	variable	array_name	can	be	assigned	the	reference	value	of	an
array	of	any	length,	as	long	as	its	elements	have	element_type.

It	is	important	to	understand	that	the	declaration	does	not	actually	create	an	array.	Instead,
it	simply	declares	a	reference	that	can	refer	to	an	array	object.	The	[]	notation	can	also	be
specified	after	a	variable	name	to	declare	it	as	an	array	variable,	but	then	it	applies	to	just
that	variable.
Click	here	to	view	code	image

int	anIntArray[],	oneInteger;
Pizza[]	mediumPizzas,	largePizzas;

These	two	declarations	declare	anIntArray	and	mediumPizzas	to	be	reference
variables	that	can	refer	to	arrays	of	int	values	and	arrays	of	Pizza	objects,	respectively.
The	variable	largePizzas	can	denote	an	array	of	Pizza	objects,	but	the	variable
oneInteger	cannot	denote	an	array	of	int	values—it	is	a	simple	variable	of	the	type
int.

An	array	variable	that	is	declared	as	a	field	in	a	class,	but	is	not	explicitly	initialized	to	any
array,	will	be	initialized	to	the	default	reference	value	null.	This	default	initialization
does	not	apply	to	local	reference	variables	and,	therefore,	does	not	apply	to	local	array
variables	either	(§2.4,	p.	42).	This	behavior	should	not	be	confused	with	initialization	of
the	elements	of	an	array	during	array	construction.

Constructing	an	Array
An	array	can	be	constructed	for	a	fixed	number	of	elements	of	a	specific	type,	using	the
new	operator.	The	reference	value	of	the	resulting	array	can	be	assigned	to	an	array
variable	of	the	corresponding	type.	The	syntax	of	the	array	creation	expression	is	shown
on	the	right-hand	side	of	the	following	assignment	statement:
Click	here	to	view	code	image

array_name	=	new	element_type[array_size];

The	minimum	value	of	array_size	is	0;	in	other	words	zero-length	arrays	can	be
constructed	in	Java.	If	the	array	size	is	negative,	a	NegativeArraySizeException
is	thrown	at	runtime.

Given	the	declarations
Click	here	to	view	code	image

int	anIntArray[],	oneInteger;
Pizza[]	mediumPizzas,	largePizzas;

the	three	arrays	in	the	declarations	can	be	constructed	as	follows:
Click	here	to	view	code	image

anIntArray			=	new	int[10];										//	array	for	10	integers
mediumPizzas	=	new	Pizza[5];									//	array	of	5	pizzas
largePizzas		=	new	Pizza[3];									//	array	of	3	pizzas

The	array	declaration	and	construction	can	be	combined.
Click	here	to	view	code	image

element_type1[]	array_name	=	new	element_type2[array_size];

In	the	preceding	syntax,	the	array	type	element_type2[]	must	be	assignable	to	the	array
type	element_type1[]	(§7.7,	p.	309).	When	the	array	is	constructed,	all	of	its	elements	are
initialized	to	the	default	value	for	element_type2.	This	is	true	for	both	member	and	local
arrays	when	they	are	constructed.

In	the	next	examples,	the	code	constructs	the	array,	and	the	array	elements	are	implicitly
initialized	to	their	default	values.	For	example,	all	elements	of	the	array	anIntArray	get
the	value	0,	and	all	elements	of	the	array	mediumPizzas	get	the	value	null	when	the
arrays	are	constructed.
Click	here	to	view	code	image

int[]	anIntArray	=	new	int[10];																		//	Default	element	value:	0
Pizza[]	mediumPizzas	=	new	Pizza[5];													//	Default	element	value:
null

The	value	of	the	field	length	in	each	array	is	set	to	the	number	of	elements	specified
during	the	construction	of	the	array;	for	example,	mediumPizzas.length	has	the
value	5.

Once	an	array	has	been	constructed,	its	elements	can	also	be	explicitly	initialized
individually—for	example,	in	a	loop.	The	examples	in	the	rest	of	this	section	make	use	of

a	loop	to	traverse	the	elements	of	an	array	for	various	purposes.

Initializing	an	Array
Java	provides	the	means	of	declaring,	constructing,	and	explicitly	initializing	an	array	in
one	declaration	statement:
Click	here	to	view	code	image

element_type[]	array_name	=	{	array_initialize_list	};

This	form	of	initialization	applies	to	fields	as	well	as	to	local	arrays.	The
array_initialize_list	is	a	comma-separated	list	of	zero	or	more	expressions.	Such	an	array
initializer	results	in	the	construction	and	initialization	of	the	array.
Click	here	to	view	code	image

int[]	anIntArray	=	{13,	49,	267,	15,	215};

In	this	declaration	statement,	the	variable	anIntArray	is	declared	as	a	reference	to	an
array	of	ints.	The	array	initializer	results	in	the	construction	of	an	array	to	hold	five
elements	(equal	to	the	length	of	the	list	of	expressions	in	the	block),	where	the	first
element	is	initialized	to	the	value	of	the	first	expression	(13),	the	second	element	to	the
value	of	the	second	expression	(49),	and	so	on.
Click	here	to	view	code	image

Pizza[]	pizzaOrder	=	{	new	Pizza(),	new	Pizza(),	null	};

In	this	declaration	statement,	the	variable	pizzaOrder	is	declared	as	a	reference	to	an
array	of	Pizza	objects.	The	array	initializer	constructs	an	array	to	hold	three	elements.
The	initialization	code	sets	the	first	two	elements	of	the	array	to	refer	to	two	Pizza
objects,	while	the	last	element	is	initialized	to	the	null	reference.	The	reference	value	of
the	array	of	Pizza	objects	is	assigned	to	the	reference	pizzaOrder.	Note	also	that	this
declaration	statement	actually	creates	three	objects:	the	array	object	with	three	references
and	the	two	Pizza	objects.

The	expressions	in	the	array_initialize_list	are	evaluated	from	left	to	right,	and	the	array
name	obviously	cannot	occur	in	any	of	the	expressions	in	the	list.	In	the	preceding
examples,	the	array_initialize_list	is	terminated	by	the	right	brace,	},	of	the	block.	The	list
can	also	be	legally	terminated	by	a	comma.	The	following	array	has	length	2,	and	not	3:
Click	here	to	view	code	image

Topping[]	pizzaToppings	=	{	new	Topping(“cheese”),	new	Topping(“tomato”),	};

The	declaration	statement	at	(1)	in	the	following	code	defines	an	array	of	four	String
objects,	while	the	declaration	statement	at	(2)	shows	that	a	String	object	is	not	the	same
as	an	array	of	char.
Click	here	to	view	code	image

//	Array	with	4	String	objects:
String[]	pets	=	{“crocodiles”,	“elephants”,	“crocophants”,	“elediles”};	//
(1)

//	Array	of	3	characters:
char[]	charArray	=	{‘a’,	‘h’,	‘a’};				//	(2)	Not	the	same	as	“aha”

Using	an	Array
The	array	object	is	referenced	by	the	array	name,	but	individual	array	elements	are
accessed	by	specifying	an	index	with	the	[]	operator.	The	array	element	access
expression	has	the	following	syntax:

array_name	[index_expression]

Each	individual	element	is	treated	as	a	simple	variable	of	the	element	type.	The	index	is
specified	by	the	index_expression,	whose	value	should	be	promotable	to	an	int	value;
otherwise,	a	compile-time	error	is	flagged.	Since	the	lower	bound	of	an	array	index	is
always	0,	the	upper	bound	is	1	less	than	the	array	size—that	is,	array_name.length-1.
The	ith	element	in	the	array	has	index	(i-1).	At	runtime,	the	index	value	is
automatically	checked	to	ensure	that	it	is	within	the	array	index	bounds.	If	the	index	value
is	less	than	0,	or	greater	than	or	equal	to	array_name.length,	an
ArrayIndexOutOfBoundsException	is	thrown.	A	program	can	either	check	the
index	explicitly	or	catch	the	runtime	exception	(§6.5,	p.	230),	but	an	illegal	index	is
typically	an	indication	of	a	programming	error.

In	the	array	element	access	expression,	the	array_name	can	be	any	expression	that	returns
a	reference	to	an	array.	For	example,	the	expression	on	the	right-hand	side	of	the	following
assignment	statement	returns	the	character	'H'	at	index	1	in	the	character	array	returned
by	a	call	to	the	toCharArray()	method	of	the	String	class:
Click	here	to	view	code	image

char	letter	=	“AHA”.toCharArray()[1];					//	‘H’

The	array	operator	[]	is	used	to	declare	array	types	(Topping[]),	specify	the	array	size
(new	Topping[3]),	and	access	array	elements	(toppings[1]).	This	operator	is	not
used	when	the	array	reference	is	manipulated,	such	as	in	an	array	reference	assignment
(§7.9,	p.	312),	or	when	the	array	reference	is	passed	as	an	actual	parameter	in	a	method
call	(§3.5,	p.	77).

Example	3.3	shows	traversal	of	arrays	using	for	loops	(§6.3,	p.	215	and	p.	217).	A
for(;;)	loop	at	(3)	in	the	main()	method	initializes	the	local	array	trialArray
declared	at	(2)	five	times	with	pseudo-random	numbers	(from	0.0	to	100.0),	by	calling
the	method	randomize()	declared	at	(5).	The	minimum	value	in	the	array	is	found	by
calling	the	method	findMinimum()	declared	at	(6),	and	is	stored	in	the	array
storeMinimum	declared	at	(1).	Both	of	these	methods	also	use	a	for(;;)	loop.	The
loop	variable	is	initialized	to	a	start	value—0	in	(3)	and	(5),	and	1	in	(6).	The	loop
condition	tests	whether	the	loop	variable	is	less	than	the	length	of	the	array;	this
guarantees	that	the	loop	will	terminate	when	the	last	element	has	been	accessed.	The	loop
variable	is	incremented	after	each	iteration	to	access	the	next	element.

A	for(:)	loop	at	(4)	in	the	main()	method	is	used	to	print	the	minimum	values	from
the	trials,	as	elements	are	read	consecutively	from	the	array,	without	keeping	track	of	an
index	value.

Example	3.3	Using	Arrays
Click	here	to	view	code	image

public	class	Trials	{
		public	static	void	main(String[]	args)	{
				//	Declare	and	construct	the	local	arrays:
				double[]	storeMinimum	=	new	double[5];															//	(1)
				double[]	trialArray	=	new	double[15];																//	(2)
				for	(int	i	=	0;	i	<	storeMinimum.length;	++i)	{						//	(3)
						//	Initialize	the	array.
						randomize(trialArray);

						//	Find	and	store	the	minimum	value.
						storeMinimum[i]	=	findMinimum(trialArray);
				}

				//	Print	the	minimum	values:																												(4)
				for	(double	minValue	:	storeMinimum)
						System.out.printf(“%.4f%n”,	minValue);
		}

		public	static	void	randomize(double[]	valArray)	{						//	(5)
				for	(int	i	=	0;	i	<	valArray.length;	++i)
						valArray[i]	=	Math.random()	*	100.0;
		}

		public	static	double	findMinimum(double[]	valArray)	{		//	(6)
				//	Assume	the	array	has	at	least	one	element.
				double	minValue	=	valArray[0];
				for	(int	i	=	1;	i	<	valArray.length;	++i)
						minValue	=	Math.min(minValue,	valArray[i]);
				return	minValue;
		}
}

Probable	output	from	the	program:
6.9330
2.7819
6.7427
18.0849
26.2462

Anonymous	Arrays
As	shown	earlier	in	this	section,	the	following	declaration	statement	can	be	used	to
construct	arrays	using	an	array	creation	expression:
Click	here	to	view	code	image

element_type1[]	array_name	=	new	element_type2[array_size];			//	(1)

int[]	intArray	=	new	int[5];

The	size	of	the	array	is	specified	in	the	array	creation	expression,	which	creates	the	array
and	initializes	the	array	elements	to	their	default	values.	By	comparison,	the	following
declaration	statement	both	creates	the	array	and	initializes	the	array	elements	to	specific
values	given	in	the	array	initializer:

Click	here	to	view	code	image

element_type[]	array_name	=	{	array_initialize_list	};											//	(2)

int[]	intArray	=	{3,	5,	2,	8,	6};

However,	the	array	initializer	is	not	an	expression.	Java	has	another	array	creation
expression,	called	an	anonymous	array,	which	allows	the	concept	of	the	array	creation
expression	from	(1)	to	be	combined	with	the	array	initializer	from	(2),	so	as	to	create	and
initialize	an	array	object:
Click	here	to	view	code	image

new	element_type[]	{	array_initialize_list	}

new	int[]	{3,	5,	2,	8,	6}

This	construct	has	enough	information	to	create	a	nameless	array	of	a	specific	type.
Neither	the	name	of	the	array	nor	the	size	of	the	array	is	specified.	The	construct	returns
the	reference	value	of	the	newly	created	array,	which	can	be	assigned	to	references	and
passed	as	argument	in	method	calls.	In	particular,	the	following	declaration	statements	are
equivalent:
Click	here	to	view	code	image

int[]	intArray	=	{3,	5,	2,	8,	6};																															//	(1)
int[]	intArray	=	new	int[]	{3,	5,	2,	8,	6};																					//	(2)

In	(1),	an	array	initializer	is	used	to	create	and	initialize	the	elements.	In	(2),	an
anonymous	array	expression	is	used.	It	is	tempting	to	use	the	array	initializer	as	an
expression—for	example,	in	an	assignment	statement,	as	a	shortcut	for	assigning	values	to
array	elements	in	one	go.	However,	this	is	illegal;	instead,	an	anonymous	array	expression
should	be	used.	The	concept	of	the	anonymous	array	combines	the	definition	and	the
creation	of	the	array	into	one	operation.
Click	here	to	view	code	image

int[]	daysInMonth;
daysInMonth	=	{31,	28,	31,	30,	31,	30,
															31,	31,	30,	31,	30,	31};																			//	Compile-time
error
daysInMonth	=	new	int[]	{31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31};	//
OK

In	Example	3.4,	an	anonymous	array	is	constructed	at	(1),	and	passed	as	an	actual
parameter	to	the	static	method	findMinimum()	defined	at	(2).	Note	that	no	array	name
or	array	size	is	specified	for	the	anonymous	array.

Example	3.4	Using	Anonymous	Arrays
Click	here	to	view	code	image

public	class	AnonArray	{
		public	static	void	main(String[]	args)	{
				System.out.println(“Minimum	value:	”	+
								findMinimum(new	int[]	{3,	5,	2,	8,	6}));																			//	(1)
		}

		public	static	int	findMinimum(int[]	dataSeq)	{																			//	(2)
				//	Assume	the	array	has	at	least	one	element.
				int	min	=	dataSeq[0];
				for	(int	index	=	1;	index	<	dataSeq.length;	++index)
						if	(dataSeq[index]	<	min)
								min	=	dataSeq[index];
				return	min;
		}
}

Output	from	the	program:
Minimum	value:	2

Multidimensional	Arrays
Since	an	array	element	can	be	an	object	reference	and	arrays	are	objects,	array	elements
can	themselves	refer	to	other	arrays.	In	Java,	an	array	of	arrays	can	be	defined	as	follows:
Click	here	to	view	code	image

element_type[][]...[]	array_name;

or
Click	here	to	view	code	image

element_type	array_name[][]...[];

In	fact,	the	sequence	of	square	bracket	pairs,	[],	indicating	the	number	of	dimensions,	can
be	distributed	as	a	postfix	to	both	the	element	type	and	the	array	name.	Arrays	of	arrays
are	often	called	multidimensional	arrays.

The	following	declarations	are	all	equivalent:
Click	here	to	view	code	image

int[][]	mXnArray;						//	2-dimensional	array
int[]			mXnArray[];				//	2-dimensional	array
int					mXnArray[][];		//	2-dimensional	array

It	is	customary	to	combine	the	declaration	with	the	construction	of	the	multidimensional
array.
Click	here	to	view	code	image

int[][]	mXnArray	=	new	int[4][5];				//	4	x	5	matrix	of	ints

The	previous	declaration	constructs	an	array	mXnArray	of	four	elements,	where	each
element	is	an	array	(row)	of	five	int	values.	The	concept	of	rows	and	columns	is	often
used	to	describe	the	dimensions	of	a	2-dimensional	array,	which	is	often	called	a	matrix.

However,	such	an	interpretation	is	not	dictated	by	the	Java	language.

Each	row	in	the	previous	matrix	is	denoted	by	mXnArray[i],	where	0	≤	i	<	4.	Each
element	in	the	ith	row,	mXnArray[i],	is	accessed	by	mXnArray[i][j],	where	0	≤
j	<	5.	The	number	of	rows	is	given	by	mXnArray.length,	in	this	case	4,	and	the
number	of	values	in	the	ith	row	is	given	by	mXnArray[i].length,	in	this	case	5	for
all	the	rows,	where	0	≤	i	<	4.

Multidimensional	arrays	can	also	be	constructed	and	explicitly	initialized	using	the	array
initializers	discussed	for	simple	arrays.	Note	that	each	row	is	an	array	that	uses	an	array
initializer	to	specify	its	values:
Click	here	to	view	code	image

double[][]	identityMatrix	=	{
		{1.0,	0.0,	0.0,	0.0	},	//	1.	row
		{0.0,	1.0,	0.0,	0.0	},	//	2.	row
		{0.0,	0.0,	1.0,	0.0	},	//	3.	row
		{0.0,	0.0,	0.0,	1.0	}		//	4.	row
};	//	4	x	4	floating-point	matrix

Arrays	in	a	multidimensional	array	need	not	have	the	same	length;	when	they	do	not,	they
are	called	ragged	arrays.	The	array	of	arrays	pizzaGalore	in	the	following	code	has
five	rows;	the	first	four	rows	have	different	lengths	but	the	fifth	row	is	left	unconstructed:
Click	here	to	view	code	image

Pizza[][]	pizzaGalore	=	{
		{	new	Pizza(),	null,	new	Pizza()	},				//	1.	row	is	an	array	of	3	elements.
		{	null,	new	Pizza()},																		//	2.	row	is	an	array	of	2	elements.
		new	Pizza[1],																										//	3.	row	is	an	array	of	1	element.
		{},																																				//	4.	row	is	an	array	of	0	elements.
		null																																			//	5.	row	is	not	constructed.
};

When	constructing	multidimensional	arrays	with	the	new	operator,	the	length	of	the
deeply	nested	arrays	may	be	omitted.	In	such	a	case,	these	arrays	are	left	unconstructed.
For	example,	an	array	of	arrays	to	represent	a	room	on	a	floor	in	a	hotel	on	a	street	in	a
city	can	have	the	type	HotelRoom[][][][].	From	left	to	right,	the	square	brackets
represent	indices	for	street,	hotel,	floor,	and	room,	respectively.	This	4-dimensional	array
of	arrays	can	be	constructed	piecemeal,	starting	with	the	leftmost	dimension	and
proceeding	to	the	rightmost	successively.
Click	here	to	view	code	image

HotelRoom[][][][]	rooms	=	new	HotelRoom[10][5][][];		//	Just	streets	and
hotels.

The	preceding	declaration	constructs	the	array	of	arrays	rooms	partially	with	ten	streets,
where	each	street	has	five	hotels.	Floors	and	rooms	can	be	added	to	a	particular	hotel	on	a
particular	street:
Click	here	to	view	code	image

rooms[0][0]							=	new	HotelRoom[3][];	//	3	floors	in	1st	hotel	on	1st
street.
rooms[0][0][0]				=	new	HotelRoom[8];			//	8	rooms	on	1st	floor	in	this
hotel.
rooms[0][0][0][0]	=	new	HotelRoom();				//	Initializes	1st	room	on	this

floor.

The	next	code	snippet	constructs	an	array	of	arrays	matrix,	where	the	first	row	has	one
element,	the	second	row	has	two	elements,	and	the	third	row	has	three	elements.	Note	that
the	outer	array	is	constructed	first.	The	second	dimension	is	constructed	in	a	loop	that
constructs	the	array	in	each	row.	The	elements	in	the	multidimensional	array	will	be
implicitly	initialized	to	the	default	double	value	(0.0D).	In	Figure	3.1,	the	array	of
arrays	matrix	is	depicted	after	the	elements	have	been	explicitly	initialized.
Click	here	to	view	code	image

double[][]	matrix	=	new	double[3][];						//	Number	of	rows.

for	(int	i	=	0;	i	<	matrix.length;	++i)
		matrix[i]	=	new	double[i	+	1];										//	Construct	a	row.

Figure	3.1	Array	of	Arrays

Two	other	ways	of	initializing	such	an	array	of	arrays	are	shown	next.	The	first	approach
uses	array	initializers,	and	the	second	uses	an	anonymous	array	of	arrays.
Click	here	to	view	code	image

double[][]	matrix2	=	{				//	Using	array	initializers.
		{0.0},																		//	1.	row
		{0.0,	0.0},													//	2.	row
		{0.0,	0.0,	0.0}									//	3.	row
};

double[][]	matrix3	=	new	double[][]	{	//	Using	an	anonymous	array	of	arrays.
		{0.0},																		//	1.	row
		{0.0,	0.0},													//	2.	row
		{0.0,	0.0,	0.0}									//	3.	row
};

The	type	of	the	variable	matrix	is	double[][],	a	two-dimensional	array	of	double
values.	The	type	of	the	variable	matrix[i]	(where	0	≤	i<	matrix.length)	is
double[],	a	one-dimensional	array	of	double	values.	The	type	of	the	variable
matrix[i][j]	(where	0	≤	i<	matrix.length	and	0	≤	j<	matrix[i].length)
is	double,	a	simple	variable	of	type	double.

Nested	loops	are	a	natural	match	for	manipulating	multidimensional	arrays.	In	Example
3.5,	a	rectangular	4	×	3	int	matrix	is	declared	and	constructed	at	(1).	The	program	finds
the	minimum	value	in	the	matrix.	The	outer	loop	at	(2)	traverses	the	rows
(mXnArray[i],	where	0	≤	i<	mXnArray.length),	and	the	inner	loop	at	(3)
traverses	the	elements	in	each	row	in	turn	(mXnArray[i][j],	where	0	≤	j<
mXnArray[i].length).	The	outer	loop	is	executed	mXnArray.length	times,	or	4
times,	and	the	inner	loop	is	executed	(mXnArray.length)	×
(mXnArray[i].length),	or	12	times,	since	all	rows	have	the	same	length	3.

The	for(:)	loop	also	provides	a	safe	and	convenient	way	of	traversing	an	array.	Several
examples	of	its	use	are	provided	in	§6.3,	p.	217.

Example	3.5	Using	Multidimensional	Arrays
Click	here	to	view	code	image

public	class	MultiArrays	{

		public	static	void	main(String[]	args)	{
				//	Declare	and	construct	the	M	X	N	matrix.
				int[][]	mXnArray	=	{																																											//	(1)
								{16,		7,	12},	//	1.	row
								{	9,	20,	18},	//	2.	row
								{14,	11,		5},	//	3.	row
								{	8,		5,	10}		//	4.	row
				};	//	4	x	3	int	matrix

				//	Find	the	minimum	value	in	a	M	X	N	matrix:
				int	min	=	mXnArray[0][0];
				for	(int	i	=	0;	i	<	mXnArray.length;	++i)																						//	(2)
						//	Find	min	in	mXnArray[i],	in	the	row	given	by	index	i:
						for	(int	j	=	0;	j	<	mXnArray[i].length;	++j)																	//	(3)
								min	=	Math.min(min,	mXnArray[i][j]);

				System.out.println(“Minimum	value:	”	+	min);
		}
}

Output	from	the	program:
Minimum	value:	5

Sorting	Arrays
Sorting	implies	ordering	the	elements	according	to	some	ranking	criteria,	usually	based	on
the	values	of	the	elements.	The	values	of	numeric	data	types	can	be	compared	and	ranked
by	using	the	relational	operators.	For	comparing	objects	of	a	class,	the	class	typically
implements	the	compareTo()	method	of	the	Comparable	interface.	The	ordering
defined	by	this	method	is	called	the	natural	ordering	for	the	objects	of	the	class.	The
wrapper	classes	for	primitive	values	and	the	String	class	implement	the
compareTo()	method	(§8.3,	p.	350,	and	§8.4,	p.	363,	respectively).

The	java.util.Arrays	class	provides	many	overloaded	versions	of	the	sort()
method	to	sort	practically	any	type	of	array.

void	sort(type[]	array)

Permitted	type	for	elements	includes	byte,	char,	double,	float,	int,	long,
short,	and	Object.	The	method	sorts	the	elements	in	the	array	according	to	their
natural	ordering.	In	the	case	of	an	array	of	objects	being	passed	as	argument,	the
objects	must	be	mutually	comparable;	that	is,	it	should	be	possible	to	compare	any
two	objects	in	the	array	according	to	the	natural	ordering	defined	by	the
compareTo()	method	of	the	Comparable	interface.

An	appropriate	import	statement	should	be	included	in	the	source	code	to	access	the
java.util.Arrays	class.	In	the	next	code	snippet,	an	array	of	strings	is	sorted
according	to	natural	ordering	for	strings—that	is,	based	on	the	Unicode	values	of	the
characters	in	the	strings:
Click	here	to	view	code	image

String[]	strArray	=		{“biggest”,	“big”,	“bigger”,	“Bigfoot”};
Arrays.sort(strArray);				//	Natural	ordering:	[Bigfoot,	big,	bigger,
biggest]

The	next	examples	illustrate	sorting	an	array	of	primitive	values	(int)	at	(1),	and	an	array
of	type	Object	containing	mutually	comparable	elements	(String)	at	(2).	In	(3),	the
numerical	values	are	autoboxed	into	their	corresponding	wrapper	classes	(§8.3,	p.	346),
but	the	objects	of	different	wrapper	classes	and	the	String	class	are	not	mutually
comparable.	In	(4),	the	numerical	values	are	also	autoboxed	into	their	corresponding
wrapper	classes,	but	again	the	objects	of	different	wrapper	classes	are	not	mutually
comparable.	A	ClassCastException	is	thrown	when	the	elements	are	not	mutually
comparable.
Click	here	to	view	code	image

int[]	intArray	=	{5,	3,	7,	1};														//	int
Arrays.sort(intArray);																						//	(1)	Natural	ordering:	[1,	3,
5,	7]

Object[]	objArray1	=	{“I”,	“am”,	“OK”};					//	String
Arrays.sort(objArray1);																					//	(2)	Natural	ordering:	[I,	OK,
am]

Object[]	objArray2	=	{23,	“ten”,	3.14};					//	Not	mutually	comparable
Arrays.sort(objArray2);																					//	(3)	ClassCastException

Number[]	numbers	=	{23,	3.14,	10L};									//	Not	mutually	comparable
Arrays.sort(numbers);																							//	(4)	ClassCastException

Searching	Arrays
A	common	operation	on	an	array	is	to	search	the	array	for	a	given	element,	called	the	key.
The	java.util.Arrays	class	provides	overloaded	versions	of	the
binarySearch()	method	to	search	in	practically	any	type	of	array	that	is	sorted.

Click	here	to	view	code	image

int	binarySearch(type[]	array,	type	key)

Permitted	type	for	elements	include	byte,	char,	double,	float,	int,	long,
short,	and	Object.	The	array	must	be	sorted	in	ascending	order	before	calling
this	method,	or	the	results	are	unpredictable.	In	the	case	where	an	array	of	objects	is
passed	as	argument,	the	objects	must	be	sorted	in	ascending	order	according	to	their
natural	ordering,	as	defined	by	the	Comparable	interface.

The	method	returns	the	index	to	the	key	in	the	sorted	array,	if	the	key	exists.	The
index	is	then	guaranteed	to	be	greater	or	equal	to	0.	If	the	key	is	not	found,	a
negative	index	is	returned,	corresponding	to	–(insertion	point	+	1),	where	insertion
point	is	the	index	of	the	element	where	the	key	would	have	been	found,	if	it	had
been	in	the	array.	If	there	are	duplicate	elements	equal	to	the	key,	there	is	no
guarantee	which	duplicate’s	index	will	be	returned.	The	elements	and	the	key	must
be	mutually	comparable.

An	appropriate	import	statement	should	be	included	in	the	source	code	to	access	the
java.util.Arrays	class.	In	the	code	that	follows,	the	return	value	–3	indicates	that
the	key	would	have	been	found	at	index	2	had	it	been	in	the	list:
Click	here	to	view	code	image

//	Sorted	String	array	(natural	ordering):	[Bigfoot,	big,	bigger,	biggest]
//	Search	in	natural	ordering:
int	index1	=	Arrays.binarySearch(strArray,	“bigger”);			//	Successful:				2
int	index2	=	Arrays.binarySearch(strArray,	“bigfeet”);		//	Unsuccessful:	-3
int	index3	=	Arrays.binarySearch(strArray,	“bigmouth”);	//	Unsuccessful:	-5

Results	are	unpredictable	if	the	array	is	not	sorted,	or	if	the	ordering	used	in	the	search	is
not	the	same	as	the	sort	ordering.	Searching	in	the	strArray	using	natural	ordering
when	the	array	is	sorted	in	reverse	natural	ordering	gives	the	wrong	result:
Click	here	to	view	code	image

//	Sorted	String	array	(inverse	natural	ordering):	[biggest,	bigger,	big,
Bigfoot]
//	Search	in	natural	ordering:
int	index4	=	Arrays.binarySearch(strArray,	“big”);		//		-1	(INCORRECT)

A	ClassCastException	is	thrown	if	the	key	and	the	elements	are	not	mutually
comparable:
Click	here	to	view	code	image

int	index5	=	Arrays.binarySearch(strArray,	4);	//	Key:	4	=>
ClassCastException

However,	this	incompatibility	is	caught	at	compile	time	in	the	case	of	arrays	with
primitive	values:
Click	here	to	view	code	image

//	Sorted	int	array	(natural	ordering):	[1,	3,	5,	7]
int	index6	=	Arrays.binarySearch(intArray,	4.5);//Key:	4.5	=>	compile-time
error!

The	method	binarySearch()	derives	its	name	from	the	divide-and-conquer	algorithm

that	it	uses	to	perform	the	search.	It	repeatedly	divides	the	remaining	elements	to	be
searched	into	two	halves	and	selects	the	half	containing	the	key	to	continue	the	search	in,
until	either	the	key	is	found	or	there	are	no	more	elements	left	to	search.

	Review	Questions

3.7	Given	the	following	declaration,	which	expression	returns	the	size	of	the	array,
assuming	that	the	array	reference	has	been	properly	initialized?
int[]	array;

Select	the	one	correct	answer.

(a)	array[].length()

(b)	array.length()

(c)	array[].length

(d)	array.length

(e)	array[].size()

(f)	array.size()

(g)	array[].size

(h)	array.size

3.8	Is	it	possible	to	create	arrays	of	length	zero?

Select	the	one	correct	answer.

(a)	Yes,	you	can	create	arrays	of	any	type	with	length	zero.

(b)	Yes,	but	only	for	primitive	data	types.

(c)	Yes,	but	only	for	arrays	of	reference	types.

(d)	No,	you	cannot	create	zero-length	arrays,	but	the	main()	method	may	be
passed	a	zero-length	array	of	Strings	when	no	program	arguments	are
specified.

(e)	No,	it	is	not	possible	to	create	arrays	of	length	zero	in	Java.

3.9	Which	one	of	the	following	array	declaration	statements	is	not	legal?

Select	the	one	correct	answer.

(a)	int	[]a[]	=	new	int	[4][4];

(b)	int	a[][]	=	new	int	[4][4];

(c)	int	a[][]	=	new	int	[][4];

(d)	int	[]a[]	=	new	int	[4][];

(e)	int	[][]a	=	new	int	[4][4];

3.10	Which	of	these	array	declaration	statements	are	not	legal?

Select	the	two	correct	answers.

(a)	int[]	i[]	=	{	{	1,	2	},	{	1	},	{},	{	1,	2,	3	}	};

(b)	int	i[]	=	new	int[2]	{1,	2};

(c)	int	i[][]	=	new	int[][]	{	{1,	2,	3},	{4,	5,	6}	};

(d)	int	i[][]	=	{	{	1,	2	},	new	int[2]	};

(e)	int	i[4]	=	{	1,	2,	3,	4	};

3.11	What	would	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				int	size	=	20;
				int[]	arr	=	new	int[size];

				for	(int	i	=	0;	i	<	size;	++i)	{
						System.out.println(arr[i]);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	not	compile,	because	the	array	type	int[]	is	incorrect.

(b)	The	program	will	compile,	but	will	throw	an
ArrayIndexOutOfBoundsException	when	run.

(c)	The	program	will	compile	and	run	without	error,	but	will	produce	no	output.

(d)	The	program	will	compile	and	run	without	error,	and	will	print	the	numbers	0
through	19.

(e)	The	program	will	compile	and	run	without	error,	and	will	print	0	twenty	times.

(f)	The	program	will	compile	and	run	without	error,	and	will	print	null	twenty
times.

3.12	What	would	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	DefaultValuesTest	{
		int[]	ia	=	new	int[1];
		boolean	b;
		int	i;
		Object	o;

		public	static	void	main(String[]	args)	{
				DefaultValuesTest	instance	=	new	DefaultValuesTest();
				instance.print();
		}

		public	void	print()	{
				System.out.println(ia[0]	+	”	”	+	b	+	”	”	+	i	+	”	”	+	o);

		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile	because	of	uninitialized	variables.

(b)	The	program	will	throw	a	java.lang.NullPointerException	when
run.

(c)	The	program	will	print	0	false	NaN	null.

(d)	The	program	will	print	0	false	0	null.

(e)	The	program	will	print	null	0	0	null.

(f)	The	program	will	print	null	false	0	null.

3.5	Parameter	Passing
Objects	communicate	by	calling	methods	on	each	other.	A	method	call	is	used	to	invoke	a
method	on	an	object.	Parameters	in	the	method	call	provide	one	way	of	exchanging
information	between	the	caller	object	and	the	callee	object	(which	need	not	be	different).

Declaring	methods	is	discussed	in	§3.2,	p.	49.	Invoking	static	methods	on	classes	is
discussed	in	§4.8,	p.	132.

The	syntax	of	a	method	call	can	be	any	one	of	the	following:
Click	here	to	view	code	image

object_reference.method_name(actual_parameter_list)

class_name.static_method_name(actual_parameter_list)

method_name(actual_parameter_list)

The	object_reference	must	be	an	expression	that	evaluates	to	a	reference	value	denoting
the	object	on	which	the	method	is	called.	If	the	caller	and	the	callee	are	the	same,	object
reference	can	be	omitted	(see	the	discussion	of	the	this	reference	in	§3.2,	p.	50).	The
class_name	can	be	the	fully	qualified	name	(§4.2,	p.	97)	of	the	class.	The
actual_parameter_list	is	comma	separated	if	there	is	more	than	one	parameter.	The
parentheses	are	mandatory	even	if	the	actual	parameter	list	is	empty.	This	distinguishes	the
method	call	from	field	access.	One	can	specify	fully	qualified	names	for	classes	and
packages	using	the	dot	operator	(.).
Click	here	to	view	code	image

objRef.doIt(time,	place);									//	Explicit	object	reference
int	i	=	java.lang.Math.abs(-1);			//	Fully	qualified	class	name
int	j	=	Math.abs(-1);													//	Simple	class	name
someMethod(ofValue);														//	Object	or	class	implicitly	implied
someObjRef.make().make().make();		//	make()	returns	a	reference	value

The	dot	operator	(.)	has	left	associativity.	In	the	last	code	line,	the	first	call	of	the
make()	method	returns	a	reference	value	that	denotes	the	object	on	which	to	execute	the

next	call,	and	so	on.	This	is	an	example	of	call	chaining.

Each	actual	parameter	(also	called	an	argument)	is	an	expression	that	is	evaluated,	and
whose	value	is	passed	to	the	method	when	the	method	is	invoked.	Its	value	can	vary	from
invocation	to	invocation.	Formal	parameters	are	parameters	defined	in	the	method
declaration	(§3.2,	p.	49)	and	are	local	to	the	method	(§2.4,	p.	44).

In	Java,	all	parameters	are	passed	by	value—that	is,	an	actual	parameter	is	evaluated	and
its	value	is	assigned	to	the	corresponding	formal	parameter.	Table	3.1	summarizes	the
value	that	is	passed	depending	on	the	type	of	the	parameters.	In	the	case	of	primitive	data
types,	the	data	value	of	the	actual	parameter	is	passed.	If	the	actual	parameter	is	a
reference	to	an	object,	the	reference	value	of	the	denoted	object	is	passed	and	not	the
object	itself.	Analogously,	if	the	actual	parameter	is	an	array	element	of	a	primitive	data
type,	its	data	value	is	passed,	and	if	the	array	element	is	a	reference	to	an	object,	then	its
reference	value	is	passed.

Table	3.1	Parameter	Passing	by	Value

It	should	also	be	stressed	that	each	invocation	of	a	method	has	its	own	copies	of	the	formal
parameters,	as	is	the	case	for	any	local	variables	in	the	method	(§6.5,	p.	230).

The	order	of	evaluation	in	the	actual	parameter	list	is	always	from	left	to	right.	The
evaluation	of	an	actual	parameter	can	be	influenced	by	an	earlier	evaluation	of	an	actual
parameter.	Given	the	following	declaration:

int	i	=	4;

the	method	call
leftRight(i++,	i);

is	effectively	the	same	as
leftRight(4,	5);

and	not	the	same	as
leftRight(4,	4);

An	overview	of	the	conversions	that	can	take	place	in	a	method	invocation	context	is
provided	in	§5.2,	p.	148.	Method	invocation	conversions	for	primitive	values	are
discussed	in	the	next	subsection	(p.	73),	and	those	for	reference	types	are	discussed	in
§7.10,	p.	315.	Calling	variable	arity	methods	is	discussed	in	§3.6,	p.	81.

For	the	sake	of	simplicity,	the	examples	in	subsequent	sections	primarily	show	method
invocation	on	the	same	object	or	the	same	class.	The	parameter	passing	mechanism	is	no
different	when	different	objects	or	classes	are	involved.

Passing	Primitive	Data	Values
An	actual	parameter	is	an	expression	that	is	evaluated	first,	with	the	resulting	value	then
being	assigned	to	the	corresponding	formal	parameter	at	method	invocation.	The	use	of
this	value	in	the	method	has	no	influence	on	the	actual	parameter.	In	particular,	when	the
actual	parameter	is	a	variable	of	a	primitive	data	type,	the	value	of	the	variable	is	copied	to
the	formal	parameter	at	method	invocation.	Since	formal	parameters	are	local	to	the
method,	any	changes	made	to	the	formal	parameter	will	not	be	reflected	in	the	actual
parameter	after	the	call	completes.

Legal	type	conversions	between	actual	parameters	and	formal	parameters	of	primitive	data
types	are	summarized	here	from	Table	5.1,	p.	147:

•	Widening	primitive	conversion

•	Unboxing	conversion,	followed	by	an	optional	widening	primitive	conversion

These	conversions	are	illustrated	by	invoking	the	following	method
Click	here	to	view	code	image

static	void	doIt(long	i)	{	/*	…	*/	}

with	the	following	code:
Click	here	to	view	code	image

Integer	intRef	=	34;
Long	longRef	=	34L;
doIt(34);									//	(1)	Primitive	widening	conversion:	long	<—	int
doIt(longRef);				//	(2)	Unboxing:	long	<—	Long
doIt(intRef);					//	(3)	Unboxing,	followed	by	primitive	widening	conversion:
																		//					long	<—	int	<—	Integer

However,	for	parameter	passing,	there	are	no	implicit	narrowing	conversions	for	integer
constant	expressions	(§5.2,	p.	148).

Example	3.6	Passing	Primitive	Values
Click	here	to	view	code	image

public	class	CustomerOne	{
		public	static	void	main	(String[]	args)	{
				PizzaFactory	pizzaHouse	=	new	PizzaFactory();
				int	pricePrPizza	=	15;
				System.out.println(“Value	of	pricePrPizza	before	call:	”	+	pricePrPizza);
				double	totPrice	=	pizzaHouse.calcPrice(4,	pricePrPizza);													//
(1)
				System.out.println(“Value	of	pricePrPizza	after	call:	”	+	pricePrPizza);
		}
}

class	PizzaFactory	{
		public	double	calcPrice(int	numberOfPizzas,	double	pizzaPrice)	{							//
(2)
				pizzaPrice	=	pizzaPrice	/	2.0;							//	Changes	price.
				System.out.println(“Changed	pizza	price	in	the	method:	”	+	pizzaPrice);
				return	numberOfPizzas	*	pizzaPrice;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Value	of	pricePrPizza	before	call:	15
Changed	pizza	price	in	the	method:	7.5
Value	of	pricePrPizza	after	call:	15

In	Example	3.6,	the	method	calcPrice()	is	defined	in	the	class	PizzaFactory	at
(2).	It	is	called	from	the	CustomerOne.main()	method	at	(1).	The	value	of	the	first
actual	parameter,	4,	is	copied	to	the	int	formal	parameter	numberOfPizzas.	Note	that
the	second	actual	parameter	pricePrPizza	is	of	the	type	int,	while	the	corresponding
formal	parameter	pizzaPrice	is	of	the	type	double.	Before	the	value	of	the	actual
parameter	pricePrPizza	is	copied	to	the	formal	parameter	pizzaPrice,	it	is
implicitly	widened	to	a	double.	The	passing	of	primitive	values	is	illustrated	in	Figure
3.2.

Figure	3.2	Parameter	Passing:	Primitive	Data	Values

The	value	of	the	formal	parameter	pizzaPrice	is	changed	in	the	calcPrice()
method,	but	this	does	not	affect	the	value	of	the	actual	parameter	pricePrPizza	on

return:	It	still	has	the	value	15.	The	bottom	line	is	that	the	formal	parameter	is	a	local
variable,	and	changing	its	value	does	not	affect	the	value	of	the	actual	parameter.

Passing	Reference	Values
If	the	actual	parameter	expression	evaluates	to	a	reference	value,	the	resulting	reference
value	is	assigned	to	the	corresponding	formal	parameter	reference	at	method	invocation.
In	particular,	if	an	actual	parameter	is	a	reference	to	an	object,	the	reference	value	stored
in	the	actual	parameter	is	passed.	Consequently,	both	the	actual	parameter	and	the	formal
parameter	are	aliases	to	the	object	denoted	by	this	reference	value	during	the	invocation	of
the	method.	In	particular,	this	implies	that	changes	made	to	the	object	via	the	formal
parameter	will	be	apparent	after	the	call	returns.

Type	conversions	between	actual	and	formal	parameters	of	reference	types	are	discussed
in	§7.10,	p.	315.

In	Example	3.7,	a	Pizza	object	is	created	at	(1).	Any	object	of	the	class	Pizza	created
using	the	class	declaration	at	(5)	always	results	in	a	beef	pizza.	In	the	call	to	the	bake()
method	at	(2),	the	reference	value	of	the	object	referenced	by	the	actual	parameter
favoritePizza	is	assigned	to	the	formal	parameter	pizzaToBeBaked	in	the
declaration	of	the	bake()	method	at	(3).

Example	3.7	Passing	Reference	Values
Click	here	to	view	code	image

public	class	CustomerTwo	{
		public	static	void	main	(String[]	args)	{
				Pizza	favoritePizza	=	new	Pizza();														//	(1)
				System.out.println(“Meat	on	pizza	before	baking:	”	+	favoritePizza.meat);
				bake(favoritePizza);																												//	(2)
				System.out.println(“Meat	on	pizza	after	baking:	”	+	favoritePizza.meat);
		}

		public	static	void	bake(Pizza	pizzaToBeBaked)	{			//	(3)
				pizzaToBeBaked.meat	=	“chicken”;		//	Change	the	meat	on	the	pizza.
				pizzaToBeBaked	=	null;																										//	(4)
		}
}

class	Pizza	{																																							//	(5)
		String	meat	=	“beef”;
}

Output	from	the	program:
Click	here	to	view	code	image

Meat	on	pizza	before	baking:	beef
Meat	on	pizza	after	baking:	chicken

One	particular	consequence	of	passing	reference	values	to	formal	parameters	is	that	any
changes	made	to	the	object	via	formal	parameters	will	be	reflected	back	in	the	calling
method	when	the	call	returns.	In	this	case,	the	reference	favoritePizza	will	show	that
chicken	has	been	substituted	for	beef	on	the	pizza.	Setting	the	formal	parameter

pizzaToBeBaked	to	null	at	(4)	does	not	change	the	reference	value	in	the	actual
parameter	favoritePizza.	The	situation	at	method	invocation,	and	just	before	the
return	from	method	bake(),	is	illustrated	in	Figure	3.3.

Figure	3.3	Parameter	Passing:	Reference	Values

In	summary,	the	formal	parameter	can	only	change	the	state	of	the	object	whose	reference
value	was	passed	to	the	method.

The	parameter	passing	strategy	in	Java	is	call	by	value	and	not	call	by	reference,
regardless	of	the	type	of	the	parameter.	Call	by	reference	would	have	allowed	values	in	the
actual	parameters	to	be	changed	via	formal	parameters;	that	is,	the	value	in
pricePrPizza	would	be	halved	in	Example	3.6	and	favoritePizza	would	be	set
to	null	in	Example	3.7.	However,	this	cannot	be	directly	implemented	in	Java.

Passing	Arrays
The	discussion	of	passing	reference	values	in	the	previous	section	is	equally	valid	for
arrays,	as	arrays	are	objects	in	Java.	Method	invocation	conversions	for	array	types	are
discussed	along	with	those	for	other	reference	types	in	§7.10,	p.	315.

In	Example	3.8,	the	idea	is	to	repeatedly	swap	neighboring	elements	in	an	integer	array
until	the	largest	element	in	the	array	percolates	to	the	last	position	in	the	array.

Example	3.8	Passing	Arrays
Click	here	to	view	code	image

public	class	Percolate	{

		public	static	void	main	(String[]	args)	{
				int[]	dataSeq	=	{8,4,6,2,1};				//	Create	and	initialize	an	array.

				//	Write	array	before	percolation:
				printIntArray(dataSeq);

				//	Percolate:
				for	(int	index	=	1;	index	<	dataSeq.length;	++index)
						if	(dataSeq[index-1]	>	dataSeq[index])
								swap(dataSeq,	index-1,	index);																				//	(1)

				//	Write	array	after	percolation:
				printIntArray(dataSeq);
		}

		public	static	void	swap(int[]	intArray,	int	i,	int	j)	{	//	(2)
				int	tmp	=	intArray[i];	intArray[i]	=	intArray[j];	intArray[j]	=	tmp;
		}

		public	static	void	swap(int	v1,	int	v2)	{															//	(3)	Logical
error!
				int	tmp	=	v1;	v1	=	v2;	v2	=	tmp;
		}

		public	static	void	printIntArray(int[]	array)	{									//	(4)
				for	(int	value	:	array)
						System.out.print(”	”	+	value);
				System.out.println();
		}
}

Output	from	the	program:
8	4	6	2	1
4	6	2	1	8

Note	that	in	the	declaration	of	the	method	swap()	at	(2),	the	formal	parameter
intArray	is	of	the	array	type	int[].	The	swap()	method	is	called	in	the	main()
method	at	(1),	where	one	of	the	actual	parameters	is	the	array	variable	dataSeq.	The
reference	value	of	the	array	variable	dataSeq	is	assigned	to	the	array	variable
intArray	at	method	invocation.	After	return	from	the	call	to	the	swap()	method,	the
array	variable	dataSeq	will	reflect	the	changes	made	to	the	array	via	the	corresponding
formal	parameter.	This	situation	is	depicted	in	Figure	3.4	at	the	first	call	and	return	from

the	swap()	method,	indicating	how	the	values	of	the	elements	at	indices	0	and	1	in	the
array	have	been	swapped.

Figure	3.4	Parameter	Passing:	Arrays

However,	the	declaration	of	the	swap()	method	at	(3)	will	not	swap	two	values.	The
method	call
Click	here	to	view	code	image

swap(dataSeq[index-1],	dataSeq[index]);

will	have	no	effect	on	the	array	elements,	as	the	swapping	is	done	on	the	values	of	the
formal	parameters.

The	method	printIntArray()	at	(4)	also	has	a	formal	parameter	of	array	type
int[].	Note	that	the	formal	parameter	is	specified	as	an	array	reference	using	the	[]
notation,	but	this	notation	is	not	used	when	an	array	is	passed	as	an	actual	parameter.

Array	Elements	as	Actual	Parameters
Array	elements,	like	other	variables,	can	store	values	of	primitive	data	types	or	reference
values	of	objects.	In	the	latter	case,	they	can	also	be	arrays—that	is,	arrays	of	arrays	(§3.4,
p.	63).	If	an	array	element	is	of	a	primitive	data	type,	its	data	value	is	passed;	if	it	is	a
reference	to	an	object,	the	reference	value	is	passed.	The	method	invocation	conversions
apply	to	the	values	of	array	elements	as	well.

Example	3.9	Array	Elements	as	Primitive	Data	Values
Click	here	to	view	code	image

public	class	FindMinimum	{

		public	static	void	main(String[]	args)	{
				int[]	dataSeq	=	{6,4,8,2,1};

				int	minValue	=	dataSeq[0];
				for	(int	index	=	1;	index	<	dataSeq.length;	++index)
						minValue	=	minimum(minValue,	dataSeq[index]);												//	(1)

				System.out.println(“Minimum	value:	”	+	minValue);
		}

		public	static	int	minimum(int	i,	int	j)	{																				//	(2)
				return	(i	<=	j)	?	i	:	j;
		}
}

Output	from	the	program:
Minimum	value:	1

In	Example	3.9,	the	value	of	all	but	one	element	of	the	array	dataSeq	is	retrieved	and
passed	consecutively	at	(1)	to	the	formal	parameter	j	of	the	minimum()	method	defined
at	(2).	The	discussion	in	§3.5,	p.	73,	on	passing	primitive	values	also	applies	to	array
elements	that	have	primitive	values.

In	Example	3.10,	the	formal	parameter	seq	of	the	findMinimum()	method	defined	at
(4)	is	an	array	variable.	The	variable	matrix	denotes	an	array	of	arrays	declared	at	(1)
simulating	a	multidimensional	array,	which	has	three	rows,	where	each	row	is	a	simple
array.	The	first	row,	denoted	by	matrix[0],	is	passed	to	the	findMinimum()	method
in	the	call	at	(2).	Each	remaining	row	is	passed	by	its	reference	value	in	the	call	to	the
findMinimum()	method	at	(3).

Example	3.10	Array	Elements	as	Reference	Values
Click	here	to	view	code	image

public	class	FindMinimumMxN	{

		public	static	void	main(String[]	args)	{
				int[][]	matrix	=	{	{8,4},{6,3,2},{7}	};																		//	(1)

				int	min	=	findMinimum(matrix[0]);																								//	(2)
				for	(int	i	=	1;	i	<	matrix.length;	++i)	{
						int	minInRow	=	findMinimum(matrix[i]);																	//	(3)
						min	=	Math.min(min,	minInRow);
				}
				System.out.println(“Minimum	value	in	matrix:	”	+	min);
		}

		public	static	int	findMinimum(int[]	seq)	{																	//	(4)
				int	min	=	seq[0];
				for	(int	i	=	1;	i	<	seq.length;	++i)
						min	=	Math.min(min,	seq[i]);
				return	min;
		}
}

Output	from	the	program:
Minimum	value	in	matrix:	2

	Parameters
A	formal	parameter	can	be	declared	with	the	keyword	final	preceding	the	parameter
declaration	in	the	method	declaration.	A	final	parameter	is	also	known	as	a	blank	final
variable;	that	is,	it	is	blank	(uninitialized)	until	a	value	is	assigned	to	it,	(e.g.,	at	method
invocation)	and	then	the	value	in	the	variable	cannot	be	changed	during	the	lifetime	of	the
variable	(see	also	the	discussion	in	§4.8,	p.	133).	The	compiler	can	treat	final	variables
as	constants	for	code	optimization	purposes.	Declaring	parameters	as	final	prevents
their	values	from	being	changed	inadvertently.	A	formal	parameter’s	declaration	as
final	does	not	affect	the	caller’s	code.

The	declaration	of	the	method	calcPrice()	from	Example	3.6	is	shown	next,	with	the
formal	parameter	pizzaPrice	declared	as	final:
Click	here	to	view	code	image

public	double	calcPrice(int	numberOfPizzas,	final	double	pizzaPrice)	{		//
(2’)
		pizzaPrice	=	pizzaPrice/2.0;																							//	(3)	Not	allowed
		return	numberOfPizzas	*	pizzaPrice;
}

If	this	declaration	of	the	calcPrice()	method	is	compiled,	the	compiler	will	not	allow
the	value	of	the	final	parameter	pizzaPrice	to	be	changed	at	(3)	in	the	body	of	the
method.

As	another	example,	the	declaration	of	the	method	bake()	from	Example	3.7	is	shown
here,	with	the	formal	parameter	pizzaToBeBaked	declared	as	final:

Click	here	to	view	code	image
public	static	void	bake(final	Pizza	pizzaToBeBaked)	{	//	(3)
		pizzaToBeBaked.meat	=	“chicken”;																				//	(3a)	Allowed
		pizzaToBeBaked	=	null;																														//	(4)	Not	allowed
}

If	this	declaration	of	the	bake()	method	is	compiled,	the	compiler	will	not	allow	the
reference	value	of	the	final	parameter	pizzaToBeBaked	to	be	changed	at	(4)	in	the
body	of	the	method.	Note	that	this	applies	to	the	reference	value	in	the	final	parameter,
but	not	to	the	object	denoted	by	this	parameter.	The	state	of	the	object	can	be	changed	as
before,	as	shown	at	(3a).

3.6	Variable	Arity	Methods
A	fixed	arity	method	must	be	called	with	the	same	number	of	actual	parameters	(also
called	arguments)	as	the	number	of	formal	parameters	specified	in	its	declaration.	If	the
method	declaration	specifies	two	formal	parameters,	every	call	of	this	method	must
specify	exactly	two	arguments.	We	say	that	the	arity	of	this	method	is	2.	In	other	words,
the	arity	of	such	a	method	is	fixed,	and	it	is	equal	to	the	number	of	formal	parameters
specified	in	the	method	declaration.

Java	also	allows	declaration	of	variable	arity	methods,	meaning	that	the	number	of
arguments	in	its	call	can	be	varied.	As	we	shall	see,	invocations	of	such	a	method	may
contain	more	actual	parameters	than	formal	parameters.	Variable	arity	methods	are	heavily
employed	in	formatting	text	representation	of	values,	as	demonstrated	by	the	variable	arity
method	System.out.printf()	that	is	used	in	many	examples	for	this	purpose.

The	last	formal	parameter	in	a	variable	arity	method	declaration	is	declared	as	follows:

type...	formal_parameter_name

The	ellipsis	(...)	is	specified	between	the	type	and	the	formal_parameter_name.	The
type	can	be	a	primitive	type,	a	reference	type,	or	a	type	parameter.	Whitespace	can	be
specified	on	both	sides	of	the	ellipsis.	Such	a	parameter	is	usually	called	a	variable	arity
parameter	(also	known	as	varargs).

Apart	from	the	variable	arity	parameter,	a	variable	arity	method	is	identical	to	a	fixed	arity
method.	The	method	publish()	is	a	variable	arity	method:
Click	here	to	view	code	image

public	static	void	publish(int	n,	String…	data)	{						//	(int,	String[])
		System.out.println(“n:	”	+	n	+	“,	data	size:	”	+	data.length);
}

The	variable	arity	parameter	in	a	variable	arity	method	is	always	interpreted	as	having	an
array	type:

type[]

In	the	body	of	the	publish()	method,	the	variable	arity	parameter	data	has	the	type
String[],	so	it	is	a	simple	array	of	Strings.

Only	one	variable	arity	parameter	is	permitted	in	the	formal	parameter	list,	and	it	is	always
the	last	parameter	in	the	formal	parameter	list.	Given	that	the	method	declaration	has	n

formal	parameters,	and	the	method	call	has	k	actual	parameters,	k	must	be	equal	to	or
greater	than	n	–	1.	The	last	k	–	n	+	1	actual	parameters	are	evaluated	and	stored	in	an	array
whose	reference	value	is	passed	as	the	value	of	the	actual	parameter.	In	the	case	of	the
publish()	method,	n	is	equal	to	2,	so	k	can	be	1,	2,	3,	and	so	on.	The	following
invocations	of	the	publish()	method	show	which	arguments	are	passed	in	each	method
call:
Click	here	to	view	code	image

publish(1);																		//	(1,	new	String[]	{})
publish(2,	“two”);											//	(2,	new	String[]	{“two”})
publish(3,	“two”,	“three”);		//	(3,	new	String[]	{“two”,	“three”})

Each	method	call	results	in	an	implicit	array	being	created	and	passed	as	an	argument.
This	array	can	contain	zero	or	more	argument	values	that	do	not	correspond	to	the	formal
parameters	preceding	the	variable	arity	parameter.	This	array	is	referenced	by	the	variable
arity	parameter	data	in	the	method	declaration.	The	preceding	calls	would	result	in	the
publish()	method	printing	the	following	output:

n:	1,	data	size:	0
n:	2,	data	size:	1
n:	3,	data	size:	2

To	overload	a	variable	arity	method,	it	is	not	enough	to	change	the	type	of	the	variable
arity	parameter	to	an	explicit	array	type.	The	compiler	will	complain	if	an	attempt	is	made
to	overload	the	method	transmit(),	as	shown	in	the	following	code:
Click	here	to	view	code	image

public	static	void	transmit(String…	data)	{		}		//	Compile-time	error!
public	static	void	transmit(String[]	data)		{		}		//	Compile-time	error!

These	declarations	would	result	in	two	methods	with	equivalent	signatures	in	the	same
class,	which	is	not	permitted.

Overloading	and	overriding	of	methods	with	variable	arity	are	discussed	in	§7.10,	p.	316.

Calling	a	Variable	Arity	Method
Example	3.11	illustrates	various	aspects	of	calling	a	variable	arity	method.	The	method
flexiPrint()	in	the	VarargsDemo	class	has	a	variable	arity	parameter:
Click	here	to	view	code	image

public	static	void	flexiPrint(Object…	data)	{	//	Object[]
		//…
}

The	variable	arity	method	prints	the	name	of	the	Class	object	representing	the	actual
array	that	is	passed	at	runtime.	It	prints	the	number	of	elements	in	this	array	as	well	as	the
text	representation	of	each	element	in	the	array.

The	method	flexiPrint()	is	called	in	the	main()	method.	First	with	the	values	of
primitive	types	and	Strings	((1)	to	(8)),	then	it	is	called	with	the	program	arguments	(p.
85)	supplied	in	the	command	line,	((9)	to	(11)).

Compiling	the	program	results	in	a	warning	at	(9),	which	we	ignore	for	the	time	being.
The	program	can	still	be	run,	as	shown	in	Example	3.11.	The	numbers	at	the	end	of	the

lines	in	the	output	relate	to	numbers	in	the	code,	and	are	not	printed	by	the	program.

Example	3.11	Calling	a	Variable	Arity	Method
Click	here	to	view	code	image

public	class	VarargsDemo	{
		public	static	void	flexiPrint(Object…	data)	{	//	Object[]
				//	Print	the	name	of	the	Class	object	for	the	varargs	parameter.
				System.out.print(“Type:	”	+	data.getClass().getName());

				System.out.println(“		No.	of	elements:	”	+	data.length);

				System.out.print(“Element	values:	“);
				for(Object	element	:	data)
						System.out.print(element	+	”	“);
				System.out.println();
		}

		public	static	void	main(String…	args)	{
				int				day							=	13;
				String	monthName	=	“August”;
				int				year						=	2009;

				//	Passing	primitives	and	non-array	types:
				flexiPrint();																						//	(1)	new	Object[]	{}
				flexiPrint(day);																			//	(2)	new	Object[]
{Integer.valueOf(day)}
				flexiPrint(day,	monthName);								//	(3)	new	Object[]
{Integer.valueOf(day),
																																							//																			monthName}
				flexiPrint(day,	monthName,	year);		//	(4)	new	Object[]
{Integer.valueOf(day),
																																							//																			monthName,
																																							//																			Integer.valueOf(year)}
				System.out.println();

				//	Passing	an	array	type:
				Object[]	dateInfo	=	{day,										//	(5)	new	Object[]
{Integer.valueOf(day),
																									monthName,				//																			monthName,
																									year};								//																			Integer.valueOf(year)}
				flexiPrint(dateInfo);														//	(6)	Non-varargs	call
				flexiPrint((Object)	dateInfo);					//	(7)	new	Object[]	{(Object)
dateInfo}
				flexiPrint(new	Object[]{dateInfo});//	(8)	Non-varargs	call
				System.out.println();

				//	Explicit	varargs	or	non-varargs	call:
				flexiPrint(args);																		//	(9)	Warning!
				flexiPrint((Object)	args);									//	(10)	Explicit	varargs	call
				flexiPrint((Object[])	args);							//	(11)	Explicit	non-varargs	call
		}
}

Compiling	the	program:
Click	here	to	view	code	image

>javac	VarargsDemo.java
VarargsDemo.java:41:	warning:	non-varargs	call	of	varargs	method	with	inexact
argument	type	for	last	parameter;
				flexiPrint(args);																		//	(9)	Warning!

															^
		cast	to	Object	for	a	varargs	call
		cast	to	Object[]	for	a	non-varargs	call	and	to	suppress	this	warning
1	warning

Running	the	program:
Click	here	to	view	code	image

>java	VarargsDemo	To	arg	or	not	to	arg
Type:	[Ljava.lang.Object;		No.	of	elements:	0																(1)
Element	values:
Type:	[Ljava.lang.Object;		No.	of	elements:	1																(2)
Element	values:	13
Type:	[Ljava.lang.Object;		No.	of	elements:	2																(3)
Element	values:	13	August
Type:	[Ljava.lang.Object;		No.	of	elements:	3																(4)
Element	values:	13	August	2009

Type:	[Ljava.lang.Object;		No.	of	elements:	3																(6)
Element	values:	13	August	2009
Type:	[Ljava.lang.Object;		No.	of	elements:	1																(7)
Element	values:	[Ljava.lang.Object;@1eed786
Type:	[Ljava.lang.Object;		No.	of	elements:	1																(8)
Element	values:	[Ljava.lang.Object;@1eed786

Type:	[Ljava.lang.String;		No.	of	elements:	6																(9)
Element	values:	To	arg	or	not	to	arg
Type:	[Ljava.lang.Object;		No.	of	elements:	1																(10)
Element	values:	[Ljava.lang.String;@187aeca
Type:	[Ljava.lang.String;		No.	of	elements:	6																(11)
Element	values:	To	arg	or	not	to	arg

Variable	Arity	and	Fixed	Arity	Method	Calls
The	calls	in	(1)	to	(4)	in	Example	3.11	are	all	variable	arity	calls,	as	an	implicit	Object
array	is	created,	in	which	the	values	of	the	actual	parameters	are	stored.	The	reference
value	of	this	array	is	passed	to	the	method.	The	printout	shows	that	the	type	of	the
parameter	is	actually	an	array	of	Objects	([Ljava.lang.Object;).

The	call	at	(6)	differs	from	the	previous	calls,	in	that	the	actual	parameter	is	an	array	that
has	the	same	type	(Object[])	as	the	variable	arity	parameter,	without	having	to	create
an	implicit	array.	In	such	a	case,	no	implicit	array	is	created,	and	the	reference	value	of	the
array	dateInfo	is	passed	to	the	method.	See	also	the	result	from	this	call	at	(6)	in	the
output.	The	call	at	(6)	is	a	fixed	arity	call	(also	called	a	non-varargs	call),	where	no
implicit	array	is	created:
Click	here	to	view	code	image

flexiPrint(dateInfo);														//	(6)	Non-varargs	call

However,	if	the	actual	parameter	is	cast	to	the	type	Object	as	in	(7),	a	variable	arity	call
is	executed:
Click	here	to	view	code	image

flexiPrint((Object)	dateInfo);					//	(7)	new	Object[]	{(Object)	dateInfo}

The	type	of	the	actual	argument	is	now	not	the	same	as	that	of	the	variable	arity	parameter,

resulting	in	an	array	of	the	type	Object[]	being	created,	in	which	the	array	dateInfo
is	stored	as	an	element.	The	printout	at	(7)	shows	that	only	the	text	representation	of	the
dateInfo	array	is	printed,	and	not	its	elements,	as	it	is	the	sole	element	of	the	implicit
array.
The	call	at	(8)	is	a	fixed	arity	call,	for	the	same	reason	as	the	call	in	(6).	Now,	however,	the
array	dateInfo	is	explicitly	stored	as	an	element	in	an	array	of	the	type	Object[]	that
matches	the	type	of	the	variable	arity	parameter:
Click	here	to	view	code	image

flexiPrint(new	Object[]{dateInfo});//	(8)	Non-varargs	call

The	output	from	(8)	is	the	same	as	the	output	from	(7),	where	the	array	dateInfo	was
passed	as	an	element	in	an	implicitly	created	array	of	type	Object[].

The	compiler	issues	a	warning	for	the	call	at	(9):
Click	here	to	view	code	image

flexiPrint(args);																		//	(9)	Warning!

The	actual	parameter	args	is	an	array	of	the	type	String[],	which	is	a	subtype	of
Object[]—the	type	of	the	variable	arity	parameter.	The	array	args	can	be	passed	in	a
fixed	arity	call	as	an	array	of	the	type	String[],	or	in	a	variable	arity	call	as	an	element
in	an	implicitly	created	array	of	the	type	Object[].	Both	calls	are	feasible	and	valid	in
this	case.	Note	that	the	compiler	chooses	a	fixed	arity	call	rather	than	a	variable	arity	call,
but	also	issues	a	warning.	The	result	at	(9)	confirms	this	course	of	action.

The	array	args	of	the	type	String[]	is	explicitly	passed	as	an	Object	in	a	variable
arity	call	at	(10),	similar	to	the	call	at	(7):
Click	here	to	view	code	image

flexiPrint((Object)	args);									//	(10)	Explicit	varargs	call

The	array	args	of	type	String[]	is	explicitly	passed	as	an	array	of	the	type
Object[]	in	a	fixed	arity	call	at	(11).	This	call	is	equivalent	to	the	call	at	(9),	where	the
widening	reference	conversion	is	implicit,	but	now	without	a	warning	at	compile	time.
The	two	calls	print	the	same	information,	as	is	evident	from	the	output	at	(9)	and	(11):
Click	here	to	view	code	image

flexiPrint((Object[])	args);							//	(11)	Explicit	non-varargs	call

3.7	The	 	Method
The	mechanics	of	compiling	and	running	Java	applications	using	the	JDK	are	outlined	in
§1.10,	p.	16.	The	java	command	executes	a	method	called	main	in	the	class	specified
on	the	command	line.	Any	class	can	have	a	main()	method,	but	only	the	main()
method	of	the	class	specified	in	the	java	command	starts	the	execution	of	a	Java
application.

The	main()	method	must	have	public	accessibility	so	that	the	JVM	can	call	this
method	(§4.7,	p.	123).	It	is	a	static	method	belonging	to	the	class,	so	that	no	object	of
the	class	is	required	to	start	the	execution	(§4.8,	p.	132).	It	does	not	return	a	value;	that	is,

it	is	declared	as	void	(§6.4,	p.	224).	It	always	has	an	array	of	String	objects	as	its	only
formal	parameter.	This	array	contains	any	arguments	passed	to	the	program	on	the
command	line	(see	the	next	subsection).	The	following	method	header	declarations	fit	the
bill,	and	any	one	of	them	can	be	used	for	the	main()	method:
Click	here	to	view	code	image

public	static	void	main(String[]	args)				//	Method	header
public	static	void	main(String…	args)			//	Method	header

The	three	modifiers	can	occur	in	any	order	in	the	method	header.	The	requirements	given
in	these	examples	do	not	exclude	specification	of	additional	modifiers	(§4.8,	p.	131)	or
any	throws	clause	(§6.9,	p.	251).	The	main()	method	can	also	be	overloaded	like	any
other	method	(§3.2,	p.	52).	The	JVM	ensures	that	the	main()	method	having	the
previously	mentioned	method	header	is	the	starting	point	of	program	execution.

Program	Arguments
Any	arguments	passed	to	the	program	on	the	command	line	can	be	accessed	in	the
main()	method	of	the	class	specified	on	the	command	line:

>java	Colors	red	green	blue

These	arguments	are	called	program	arguments.	Note	that	the	command	name,	java,	and
the	class	name	Colors	are	not	passed	to	the	main()	method	of	the	class	Colors,	nor
are	any	other	options	that	are	specified	on	the	command	line	passed	to	this	method.

Since	the	formal	parameter	of	the	main()	method	is	an	array	of	String	objects,
individual	String	elements	in	the	array	can	be	accessed	by	using	the	[]	operator.

In	Example	3.12,	the	three	arguments	red,	green,	and	blue	can	be	accessed	in	the
main()	method	of	the	Colors	class	as	args[0],	args[1],	and	args[2],
respectively.	The	total	number	of	arguments	is	given	by	the	field	length	of	the	String
array	args.	Note	that	program	arguments	can	be	passed	only	as	strings,	and	must	be
explicitly	converted	to	other	values	by	the	program,	if	necessary.

When	no	arguments	are	specified	on	the	command	line,	an	array	of	zero	String
elements	is	created	and	passed	to	the	main()	method.	Thus	the	reference	value	of	the
formal	parameter	in	the	main()	method	is	never	null.

Program	arguments	supply	information	to	the	application,	which	can	be	used	to	tailor	the
runtime	behavior	of	the	application	according	to	user	requirements.

Example	3.12	Passing	Program	Arguments
Click	here	to	view	code	image

public	class	Colors	{
		public	static	void	main(String[]	args)	{
				System.out.println(“No.	of	program	arguments:	”	+	args.length);
				for	(int	i	=	0;	i	<	args.length;	i++)
						System.out.println(“Argument	no.	”	+	i	+	”	(”	+	args[i]	+	“)	has	”	+
																										args[i].length()	+	”	characters.”);
		}
}

Running	the	program:
Click	here	to	view	code	image

>java	Colors	red	green	blue
No.	of	program	arguments:	3
Argument	no.	0	(red)	has	3	characters.
Argument	no.	1	(green)	has	5	characters.
Argument	no.	2	(blue)	has	4	characters.

3.8	Enumerated	Types
In	this	section	we	provide	a	basic	introduction	to	enumerated	types.	An	enumerated	type
defines	a	finite	set	of	symbolic	names	and	their	values.	These	symbolic	names	are	usually
called	enum	constants	or	named	constants.

One	way	to	define	constants	is	to	declare	them	as	final,	static	variables	in	a	class	(or
interface)	declaration:
Click	here	to	view	code	image

public	class	MachineState	{
		public	static	final	int	BUSY	=	1;
		public	static	final	int	IDLE	=	0;
		public	static	final	int	BLOCKED	=	-1;
}

Such	constants	are	not	type-safe,	as	any	int	value	can	be	used	where	we	need	to	use	a
constant	declared	in	the	MachineState	class.	Such	a	constant	must	be	qualified	by	the
class	(or	interface)	name,	unless	the	class	is	extended	(or	the	interface	is	implemented).
When	such	a	constant	is	printed,	only	its	value	(for	example,	0),	and	not	its	name	(for
example,	IDLE),	is	printed.	A	constant	also	needs	recompiling	if	its	value	is	changed,	as
the	values	of	such	constants	are	compiled	into	the	client	code.

An	enumerated	type	in	Java	is	a	special	kind	of	class	type	that	is	much	more	powerful	than
the	approach	outlined	earlier	for	defining	collections	of	named	constants.

Declaring	Type-safe	Enums
The	canonical	form	of	declaring	an	enum	type	is	shown	here:
Click	here	to	view	code	image

public	enum	MachineState								//	Enum	header
{																															//	Enum	body
		BUSY,	IDLE,	BLOCKED											//	Enum	constants

}

The	keyword	enum	is	used	to	declare	an	enum	type,	as	opposed	to	the	keyword	class
for	a	class	declaration.	The	basic	notation	requires	the	enum	type	name	in	enum	header,
and	a	comma-separated	list	of	enum	constants	can	be	specified	in	the	enum	body.
Optionally,	an	access	modifier	can	also	be	specified	in	the	enum	header,	as	for	a	(top-
level)	class.	In	the	example	enum	declaration,	the	name	of	the	enum	type	is
MachineState.	It	defines	three	enum	constants	with	explicit	names.	An	enum	constant
can	be	any	legal	Java	identifier,	but	the	convention	is	to	use	uppercase	letters	in	the	name.
Essentially,	an	enum	declaration	defines	a	reference	type	that	has	a	finite	number	of
permissible	values	referenced	by	the	enum	constants,	and	the	compiler	ensures	they	are
used	in	a	type-safe	manner.

Other	member	declarations	can	be	specified	in	the	body	of	an	enum	type,	but	the
canonical	form	suffices	for	the	purpose	of	this	book.	Analogous	to	a	class	declaration,	an
enum	type	is	compiled	to	Java	bytecode	that	is	placed	in	a	separate	class	file.

The	enum	types	java.time.Month	and	java.time.DayOfWeek	are	two	examples
of	enum	types	from	the	Java	SE	platform	API.	As	we	would	expect,	the	Month	enum
type	represents	the	months	from	JANUARY	to	DECEMBER,	and	the	DayOfWeek	enum
type	represents	the	days	of	the	week	from	MONDAY	to	SUNDAY.	Examples	of	their	usage
can	be	found	in	§11.2,	p.	462.

Some	additional	examples	of	enum	types	follow:
Click	here	to	view	code	image

public	enum	MarchingOrders	{	LEFT,	RIGHT	}

public	enum	TrafficLightState	{	RED,	YELLOW,	GREEN	}

enum	MealType	{	BREAKFAST,	LUNCH,	DINNER	}

Using	Type-safe	Enums
Example	3.13	illustrates	the	use	of	enum	constants.	An	enum	type	is	essentially	used	in
the	same	way	as	any	other	reference	type.	Enum	constants	are	actually	public,
static,	final	fields	of	the	enum	type,	and	they	are	implicitly	initialized	with	instances
of	the	enum	type	when	the	enum	type	is	loaded	at	runtime.	Since	the	enum	constants	are
static	members,	they	can	be	accessed	using	the	name	of	the	enum	type—analogous	to
accessing	static	members	in	a	class	or	an	interface.

Example	3.13	shows	a	machine	client	that	uses	a	machine	whose	state	is	an	enum
constant.	In	this	example,	we	see	that	an	enum	constant	can	be	passed	as	an	argument,	as
shown	as	(1),	and	we	can	declare	references	whose	type	is	an	enum	type,	as	shown	as	(3),
but	we	cannot	create	new	constants	(that	is,	objects)	of	the	enum	type	MachineState.
An	attempt	to	do	so,	at	(5),	results	in	a	compile-time	error.

The	string	representation	of	an	enum	constant	is	its	name,	as	shown	at	(4).	Note	that	it	is
not	possible	to	pass	a	type	of	value	other	than	a	MachineState	enum	constant	in	the
call	to	the	method	setState()	of	the	Machine	class,	as	shown	at	(2).

Example	3.13	Using	Enums
Click	here	to	view	code	image

//	File:	MachineState.java
public	enum	MachineState	{	BUSY,	IDLE,	BLOCKED	}

//	File:	Machine.java
public	class	Machine	{

		private	MachineState	state;

		public	void	setState(MachineState	state)	{	this.state	=	state;	}
		public	MachineState	getState()	{	return	this.state;	}
}

//	File:	MachineClient.java
public	class	MachineClient	{
		public	static	void	main(String[]	args)	{

				Machine	machine	=	new	Machine();
				machine.setState(MachineState.IDLE);												//	(1)	Passed	as	a	value.
				//	machine.setState(1);																									//	(2)	Compile-time
error!

				MachineState	state	=	machine.getState();								//	(3)	Declaring	a
reference.
				System.out.println(
								“Current	machine	state:	”	+	state											//	(4)	Printing	the	enum
name.
);

				//	MachineState	newState	=	new	MachineState();		//	(5)	Compile-time
error!

				System.out.println(“All	machine	states:”);
				for	(MachineState	ms	:	MachineState.values())	{	//	(6)	Traversing	over
enum
						System.out.println(ms	+	“:”	+	ms.ordinal());		//					contants.
				}

				System.out.println(“Comparison:”);
				MachineState	state1	=	MachineState.BUSY;
				MachineState	state2	=	state1;
				MachineState	state3	=	MachineState.BLOCKED;

				System.out.println(state1	+	”	==	”	+	state2	+	“:	”	+
																							(state1	==	state2));																											//	(7)
				System.out.println(state1	+	”	is	equal	to	”	+	state2	+	“:	”	+
																							(state1.equals(state2)));																						//	(8)
				System.out.println(state1	+	”	is	less	than	”	+	state3	+	“:	”	+
																							(state1.compareTo(state3)	<	0));															//	(9)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Current	machine	state:	IDLE
All	machine	states:
BUSY:0
IDLE:1

BLOCKED:2
Comparison:
BUSY	==	BUSY:	true
BUSY	is	equal	to	BUSY:	true
BUSY	is	less	than	BLOCKED:	true

Selected	Methods	for	Enum	Types
All	enum	types	implicitly	have	the	following	useful	method:

Click	here	to	view	code	image

static	EnumTypeName[]	values()

Returns	an	array	containing	the	enum	constants	of	this	enum	type,	in	the	order	they
are	specified.

The	loop	at	(6)	in	Example	3.13	illustrates	traversing	over	all	the	MachineState	enum
constants	in	the	order	they	are	specified.	An	array	containing	all	the	MachineState
constants	is	obtained	by	calling	the	static	method	values()	on	the	enum	type.

All	enum	types	are	subtypes	of	the	java.lang.Enum	class,	which	provides	the	default
behavior.	All	enum	types	inherit	the	following	selected	methods	from	the
java.lang.Enum	class:

Click	here	to	view	code	image
final	boolean	equals(Object	other)

This	method	returns	true	if	the	specified	object	is	equal	to	this	enum	constant.
final	int	compareTo(E	other)

The	natural	order	of	the	enum	constants	in	an	enum	type	is	based	on	their	ordinal
values	(see	the	ordinal()	method	next).	The	compareTo()	method	of	the
Comparable	interface	returns	the	value	zero	if	this	enum	constant	is	equal	to	the
other	enum	constant,	a	value	less	than	zero	if	this	enum	constant	is	less	than	the
other	enum	constant,	or	a	value	greater	than	zero	if	this	enum	constant	is	greater
than	the	other	enum	constant.
final	int	ordinal()

This	method	returns	the	ordinal	value	of	this	enum	constant	(that	is,	its	position	in
its	enum	type	declaration).	The	first	enum	constant	is	assigned	an	ordinal	value	of
zero.	If	the	ordinal	value	of	an	enum	constant	is	less	than	the	ordinal	value	of
another	enum	constant	of	the	same	enum	type,	the	former	occurs	before	the	latter	in
the	enum	type	declaration.

Note	that	the	equality	test	implemented	by	the	equals()	method	is	based	on	reference
equality	(==)	of	the	enum	constants,	not	on	value	equality.	An	enum	type	has	a	finite
number	of	distinct	objects.	Comparing	two	enum	references	for	equality	means
determining	whether	they	store	the	reference	value	of	the	same	enum	constant—in	other
words,	whether	the	references	are	aliases.	Thus,	for	any	two	enum	references	state1

and	state2,	the	expressions	state1.equals(state2)	and	state1	==	state2
are	equivalent,	as	shown	at	(7)	and	(8)	in	Example	3.13.

The	ordinal	value	of	the	constants	in	an	enum	type	determines	the	result	of	comparing
such	constants	with	the	compareTo()	method,	as	shown	at	(9)	in	Example	3.13.

	Review	Questions

3.13	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	ParameterPass	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				addTwo(i++);
				System.out.println(i);
		}

		static	void	addTwo(int	i)	{
				i	+=	2;
		}
}

Select	the	one	correct	answer.

(a)	0

(b)	1

(c)	2

(d)	3

3.14	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Passing	{
		public	static	void	main(String[]	args)	{
				int	a	=	0;	int	b	=	0;
				int[]	bArr	=	new	int[1];	bArr[0]	=	b;

				inc1(a);	inc2(bArr);

				System.out.println(“a=”	+	a	+	”	b=”	+	b	+	”	bArr[0]=”	+	bArr[0]);
		}

		public	static	void	inc1(int	x)	{	x++;	}

		public	static	void	inc2(int[]	x)	{	x[0]++;	}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile,	since	x[0]++;	is	not	a	legal	statement.

(b)	The	code	will	compile	and	will	print	a=1	b=1	bArr[0]=1	at	runtime.

(c)	The	code	will	compile	and	will	print	a=0	b=1	bArr[0]=1	at	runtime.

(d)	The	code	will	compile	and	will	print	a=0	b=0	bArr[0]=1	at	runtime.

(e)	The	code	will	compile	and	will	print	a=0	b=0	bArr[0]=0	at	runtime.

3.15	Which	statements,	when	inserted	at	(1),	will	result	in	a	compile-time	error?
Click	here	to	view	code	image

public	class	ParameterUse	{
		static	void	main(String[]	args)	{
				int	a	=	0;
				final	int	b	=	1;
				int[]	c	=	{	2	};
				final	int[]	d	=	{	3	};
				useArgs(a,	b,	c,	d);
		}

		static	void	useArgs(final	int	a,	int	b,	final	int[]	c,	int[]	d)	{
				//	(1)	INSERT	STATEMENT	HERE.
		}
}

Select	the	two	correct	answers.

(a)	a++;

(b)	b++;

(c)	b	=	a;

(d)	c[0]++;

(e)	d[0]++;

(f)	c	=	d;

3.16	Which	of	the	following	method	declarations	are	valid	declarations?

Select	the	three	correct	answers.

(a)	void	compute(int…	is)	{	}

(b)	void	compute(int	is…)	{	}

(c)	void	compute(int…	is,	int	i,	String…	ss)	{	}

(d)	void	compute(String…	ds)	{	}

(e)	void	compute(String…	ss,	int	len)	{	}

(f)	void	compute(char[]	ca,	int…	is)	{	}

3.17	Given	the	following	code:
Click	here	to	view	code	image

public	class	RQ810A40	{
		static	void	print(Object…	obj)	{
				System.out.println(“Object…:	”	+	obj[0]);
		}
		public	static	void	main(String[]	args)	{
				//	(1)	INSERT	METHOD	CALL	HERE.
		}
}

Which	method	call,	when	inserted	at	(1),	will	not	result	in	the	following	output

from	the	program:
Object…:	9

Select	the	one	correct	answer.

(a)	print("9",	"1",	"1");

(b)	print(9,	1,	1);

(c)	print(new	int[]	{9,	1,	1});

(d)	print(new	Integer[]	{9,	1,	1});

(e)	print(new	String[]	{"9",	"1",	"1"});

(f)	print(new	Object[]	{"9",	"1",	"1"});

(g)	None	of	the	above.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	An	overview	of	declarations	that	can	be	specified	in	a	class

•	Declaration	of	methods,	usage	of	the	this	reference	in	an	instance	method,	and
method	overloading

•	Declaration	of	constructors,	usage	of	the	default	constructor,	and	overloading	of
constructors

•	Explanation	of	declaration,	construction,	initialization,	and	usage	of	both	one-
dimensional	and	multidimensional	arrays,	including	anonymous	arrays

•	Sorting	and	searching	arrays

•	Parameter	passing,	both	primitive	values	and	object	references,	including	arrays	and
array	elements;	and	declaring	final	parameters

•	Declaring	and	calling	methods	with	variable	arity

•	Declaration	of	the	main()	method	whose	execution	starts	the	application

•	Passing	program	arguments	to	the	main()	method

•	Declaring	and	using	simple	enum	types

	Programming	Exercise

3.1	Write	a	program	to	grade	a	short	multiple-choice	quiz.	The	correct	answers	for	the
quiz	are
1.	C				5.	B
2.	A				6.	C
3.	B				7.	C
4.	D				8.	A

Assume	that	the	passing	marks	are	at	least	5	out	of	8.	The	program	stores	the
correct	answers	in	an	array.	The	submitted	answers	are	specified	as	program
arguments.	Let	X	represent	a	question	that	was	not	answered	on	the	quiz.	Use	an
enum	type	to	represent	the	result	of	answering	a	question.

Example	of	running	the	program:
Click	here	to	view	code	image

>java	QuizGrader	C	B	B	D	B	C	A	X
Question		Submitted	Ans.	Correct	Ans.		Result
				1									C														C								CORRECT
				2									B														A										WRONG
				3									B														B								CORRECT
				4									D														D								CORRECT
				5									B														B								CORRECT
				6									C														C								CORRECT
				7									A														C										WRONG
				8									X														A					UNANSWERED
No.	of	correct	answers:						5
No.	of	wrong	answers:								2
No.	of	questions	unanswered:	1
The	candidate	PASSED.

4.	Access	Control

4.1	Java	Source	File	Structure
The	structure	of	a	skeletal	Java	source	file	is	depicted	in	Figure	4.1.	A	Java	source	file	can
have	the	following	elements	that,	if	present,	must	be	specified	in	the	following	order:

1.	An	optional	package	declaration	to	specify	a	package	name.	Packages	are
discussed	in	§4.2.

2.	Zero	or	more	import	declarations.	Since	import	declarations	introduce	type	or
static	member	names	in	the	source	code,	they	must	be	placed	before	any	type
declarations.	Both	type	and	static	import	declarations	are	discussed	in	§4.2.

3.	Any	number	of	top-level	type	declarations.	Class,	enum,	and	interface	declarations
are	collectively	known	as	type	declarations.	Since	these	declarations	belong	to	the
same	package,	they	are	said	to	be	defined	at	the	top	level,	which	is	the	package	level.

The	type	declarations	can	be	defined	in	any	order.	Technically,	a	source	file	need	not
have	any	such	declarations,	but	that	is	hardly	useful.

The	JDK	imposes	the	restriction	that	at	most	one	public	class	declaration	per

source	file	can	be	defined.	If	a	public	class	is	defined,	the	file	name	must	match
this	public	class.	For	example,	if	the	public	class	name	is	NewApp,	the	file
name	must	be	NewApp.java.

Classes	are	discussed	in	§3.1,	p.	48;	enums	are	discussed	in	§3.8,	p.	87;	and
interfaces	are	discussed	in	§7.6,	p.	290.

Figure	4.1	Java	Source	File	Structure

Note	that	except	for	the	package	and	the	import	statements,	all	code	is	encapsulated
in	classes,	interfaces,	and	enums.	No	such	restriction	applies	to	comments	and	whitespace.

4.2	Packages
A	package	in	Java	is	an	encapsulation	mechanism	that	can	be	used	to	group	related
classes,	interfaces,	enums,	and	subpackages.

Figure	4.2	shows	an	example	of	a	package	hierarchy,	comprising	a	package	called
wizard	that	contains	two	other	packages:	pandorasbox	and	spells.	The	package
pandorasbox	has	a	class	called	Clown	that	implements	an	interface	called	Magic,
also	found	in	the	same	package.	In	addition,	the	package	pandorasbox	has	a	class
called	LovePotion	and	a	subpackage	called	artifacts	containing	a	class	called
Ailment.	The	package	spells	has	two	classes:	Baldness	and	LovePotion.	The
class	Baldness	is	a	subclass	of	class	Ailment	found	in	the	subpackage	artifacts
in	the	package	pandorasbox.

Figure	4.2	Package	Hierarchy

The	dot	(.)	notation	is	used	to	uniquely	identify	package	members	in	the	package
hierarchy.	The	class	wizard.pandorasbox.LovePotion,	for	example,	is	different
from	the	class	wizard.spells.LovePotion.	The	Ailment	class	can	be	easily
identified	by	the	name	wizard.pandorasbox.artifacts.Ailment,	which	is
known	as	the	fully	qualified	name	of	the	type.	Note	that	the	fully	qualified	name	of	the
type	in	a	named	package	comprises	the	fully	qualified	name	of	the	package	and	the	simple
name	of	the	type.	The	simple	type	name	Ailment	and	the	fully	qualified	package	name
wizard.pandorasbox.artifacts	together	define	the	fully	qualified	type	name
wizard.pandorasbox.artifacts.Ailment.	Analogously,	the	fully	qualified
name	of	a	subpackage	comprises	the	fully	qualified	name	of	the	parent	package	and	the
simple	name	of	the	subpackage.

Java	programming	environments	usually	map	the	fully	qualified	name	of	packages	to	the
underlying	(hierarchical)	file	system.	For	example,	on	a	Unix	system,	the	class	file
LovePotion.class	corresponding	to	the	fully	qualified	name
wizard.pandorasbox.LovePotion	would	be	found	under	the	directory
wizard/pandorasbox.

Conventionally,	a	global	naming	scheme	based	on	the	Internet	domain	names	is	used	to
uniquely	identify	packages.	If	the	package	wizard	was	implemented	by	a	company
called	Sorcerers	Limited	that	owns	the	domain	sorcerersltd.com,	its	fully	qualified
name	would	be

com.sorcerersltd.wizard

Because	domain	names	are	unique,	packages	with	this	naming	scheme	are	globally
identifiable.	It	is	not	advisable	to	use	the	top-level	package	names	java	and	sun,	as
these	are	reserved	for	the	Java	designers.

The	subpackage	wizard.pandorasbox.artifacts	could	easily	have	been	placed

elsewhere,	as	long	as	it	was	uniquely	identified.	Subpackages	in	a	package	do	not	affect
the	accessibility	of	the	other	package	members.	For	all	intents	and	purposes,	subpackages
are	more	an	organizational	feature	rather	than	a	language	feature.	Accessibility	of
members	in	a	package	is	discussed	in	§4.4.	Accessibility	of	members	defined	in	type
declarations	is	discussed	in	§4.7.

Defining	Packages
A	package	hierarchy	represents	an	organization	of	the	Java	classes	and	interfaces.	It	does
not	represent	the	source	code	organization	of	the	classes	and	interfaces.	The	source	code	is
of	no	consequence	in	this	regard.	Each	Java	source	file	(also	called	compilation	unit)	can
contain	zero	or	more	type	declarations,	but	the	compiler	produces	a	separate	class	file
containing	the	Java	bytecode	for	each	of	them.	A	type	declaration	can	indicate	that	its	Java
bytecode	should	be	placed	in	a	particular	package,	using	a	package	declaration.

The	package	statement	has	the	following	syntax:
Click	here	to	view	code	image

package	fully_qualified_package_name;

At	most	one	package	declaration	can	appear	in	a	source	file,	and	it	must	be	the	first
statement	in	the	source	file.	The	package	name	is	saved	in	the	Java	bytecode	for	the	types
contained	in	the	package.	Java	naming	conventions	recommend	writing	package	names	in
lowercase	letters.

Note	that	this	scheme	has	two	consequences.	First,	all	the	classes	and	interfaces	in	a
source	file	will	be	placed	in	the	same	package.	Second,	several	source	files	can	be	used	to
specify	the	contents	of	a	package.

If	a	package	declaration	is	omitted	in	a	compilation	unit,	the	Java	bytecode	for	the
declarations	in	the	compilation	unit	will	belong	to	an	unnamed	package	(also	called	the
default	package),	which	is	typically	synonymous	with	the	current	working	directory	on	the
host	system.

Example	4.1	illustrates	how	the	packages	in	Figure	4.2	can	be	defined	using	the	package
declaration.	There	are	four	compilation	units.	Each	compilation	unit	has	a	package
declaration,	ensuring	that	the	type	declarations	are	compiled	into	the	correct	package.	The
complete	code	can	be	found	in	Example	4.8	on	page	118.

Example	4.1	Defining	Packages	and	Using	Type	Import
Click	here	to	view	code	image

//	File	name:	Clown.java
package	wizard.pandorasbox;																		//	Package	declaration

import	wizard.pandorasbox.artifacts.Ailment;	//	Importing	specific	class

public	class	Clown	implements	Magic	{	/*	…	*/	}

interface	Magic	{	/*	…	*/	}

//	File	name:	LovePotion.java
package	wizard.pandorasbox;																		//	Package	declaration

public	class	LovePotion	{	/*	…	*/

//	File	name:	Ailment.java
package	wizard.pandorasbox.artifacts;								//	Package	declaration

public	class	Ailment	{	/*	…	*/	}

//	File	name:	Baldness.java
package	wizard.spells;																							//	Package	declaration

import	wizard.pandorasbox.*;																	//	(1)	Type-import-on-demand
import	wizard.pandorasbox.artifacts.*;							//	(2)	Import	from	subpackage

public	class	Baldness	extends	Ailment	{						//	Simple	name	for	Ailment
		wizard.pandorasbox.LovePotion	tlcOne;						//	(3)	Fully	qualified	class
name
		LovePotion	tlcTwo;																									//	Class	in	same	package
		//	…
}

class	LovePotion	{	/*	…	*/	}

Using	Packages
The	import	facility	in	Java	makes	it	easier	to	use	the	contents	of	packages.	This	subsection
discusses	importing	reference	types	and	static	members	of	reference	types	from	packages.

Importing	Reference	Types

The	accessibility	of	types	(classes,	interfaces,	and	enums)	in	a	package	determines	their
access	from	other	packages.	Given	a	reference	type	that	is	accessible	from	outside	a
package,	the	reference	type	can	be	accessed	in	two	ways.	One	way	is	to	use	the	fully
qualified	name	of	the	type.	However,	writing	long	names	can	become	tedious.	The	second
way	is	to	use	the	import	declaration	that	provides	a	shorthand	notation	for	specifying
the	name	of	the	type,	often	called	type	import.

The	import	declarations	must	be	the	first	statement	after	any	package	declaration	in	a
source	file.	The	simple	form	of	the	import	declaration	has	the	following	syntax:
Click	here	to	view	code	image

import	fully_qualified_type_name;

This	is	called	single-type-import.	As	the	name	implies,	such	an	import	declaration
provides	a	shorthand	notation	for	a	single	type.	The	simple	name	of	the	type	(that	is,	its
identifier)	can	now	be	used	to	access	this	particular	type.	Given	the	import	declaration
Click	here	to	view	code	image

import	wizard.pandorasbox.Clown;

the	simple	name	Clown	can	be	used	in	the	source	file	to	refer	to	this	class.

Alternatively,	the	following	form	of	the	import	declaration	can	be	used:
Click	here	to	view	code	image

import	fully_qualified_package_name.*;

This	is	called	type-import-on-demand.	It	allows	any	type	from	the	specified	package	to	be
accessed	by	its	simple	name.

An	import	declaration	does	not	recursively	import	subpackages.	The	declaration	also
does	not	result	in	inclusion	of	the	source	code	of	the	types;	rather,	it	simply	imports	type
names	(that	is,	it	makes	type	names	available	to	the	code	in	a	compilation	unit).

All	compilation	units	implicitly	import	the	java.lang	package	(§8.1,	p.	342).	This	is
the	reason	why	we	can	refer	to	the	class	String	by	its	simple	name,	and	need	not	use	its
fully	qualified	name	java.lang.String	all	the	time.

Example	4.1	shows	several	usages	of	the	import	statement.	Here	we	will	draw	attention
to	the	class	Baldness	in	the	file	Baldness.java.	This	class	relies	on	two	classes	that
have	the	same	simple	name	LovePotion	but	are	in	different	packages:
wizard.pandorasbox	and	wizard.spells,	respectively.	To	distinguish	between
the	two	classes,	we	can	use	their	fully	qualified	names.	However,	since	one	of	them	is	in
the	same	package	as	the	class	Baldness,	it	is	enough	to	fully	qualify	the	class	from	the
other	package.	This	solution	is	used	in	Example	4.1	at	(3).	Note	that	the	import	of	the
wizard.pandorasbox	package	at	(1)	becomes	redundant.	Such	name	conflicts	can
usually	be	resolved	by	using	variations	of	the	import	statement	together	with	fully
qualified	names.

The	class	Baldness	extends	the	class	Ailment,	which	is	in	the	subpackage
artifacts	of	the	wizard.pandorasbox	package.	The	import	declaration	at	(2)
is	used	to	import	the	types	from	the	subpackage	artifacts.

The	following	example	shows	how	a	single-type-import	declaration	can	be	used	to
disambiguate	a	type	name	when	access	to	the	type	is	ambiguous	by	its	simple	name.	The
following	import	statement	allows	the	simple	name	List	to	be	used	as	shorthand	for
the	java.awt.List	type	as	expected:
Click	here	to	view	code	image

import	java.awt.*;											//	imports	all	reference	types	from	java.awt

Given	the	two	import	declarations
Click	here	to	view	code	image

import	java.awt.*;											//	imports	all	type	names	from	java.awt
import	java.util.*;										//	imports	all	type	names	from	java.util

the	simple	name	List	is	now	ambiguous,	because	both	the	types	java.util.List
and	java.awt.List	match.

Adding	a	single-type-import	declaration	for	the	java.awt.List	type	allows	the	simple
name	List	to	be	used	as	a	shorthand	notation	for	this	type:
Click	here	to	view	code	image

import	java.awt.*;											//	imports	all	type	names	from	java.awt
import	java.util.*;										//	imports	all	type	names	from	java.util
import	java.awt.List;								//	imports	the	type	List	from	java.awt
explicitly

Importing	Static	Members	of	Reference	Types

Analogous	to	the	type	import	facility,	Java	also	allows	import	of	static	members	of
reference	types	from	packages,	often	called	static	import.

Static	import	allows	accessible	static	members	declared	in	a	type	to	be	imported,	so	that
they	can	be	used	by	their	simple	names,	and	therefore	need	not	be	qualified.	The	import
applies	to	the	whole	compilation	unit,	and	importing	from	the	unnamed	package	is	not
permissible.

The	two	forms	of	static	import	are	shown	here:
Click	here	to	view	code	image

//	Single-static-import:	imports	a	specific	static	member	from	the	designated
type
import	static	fully_qualified_type_name.static_member_name;

//	Static-import-on-demand:	imports	all	static	members	in	the	designated	type
import	static	fully_qualified_type_name.*;

Both	forms	require	the	use	of	the	keyword	import	followed	by	the	keyword	static,
although	the	feature	is	called	static	import.	In	both	cases,	the	fully	qualified	name	of	the
reference	type	we	are	importing	from	is	required.

The	first	form	allows	single	static	import	of	individual	static	members,	and	is
demonstrated	in	Example	4.2.	The	constant	PI,	which	is	a	static	field	in	the
class			java.lang.Math,	is	imported	at	(1).	Note	the	use	of	the	fully	qualified	name	of
the	type	in	the	static	import	statement.	The	static	method	named	sqrt	from	the
class			java.lang.Math	is	imported	at	(2).	Only	the	name	of	the	static	method	is
specified	in	the	static	import	statement;	no	parameters	are	listed.	Use	of	any	other	static
member	from	the	Math	class	requires	that	the	fully	qualified	name	of	the	class	be
specified.	Since	types	from	the	java.lang	package	are	imported	implicitly,	the	fully
qualified	name	of	the	Math	class	is	not	necessary,	as	shown	at	(3).

Static	import	on	demand	is	easily	demonstrated	by	replacing	the	two	import	statements
in	Example	4.2	by	the	following	import	statement:
Click	here	to	view	code	image

import	static	java.lang.Math.*;

We	can	also	dispense	with	the	use	of	the	class	name	Math	in	(3),	as	all	static	members
from	the	Math	class	are	now	imported:
Click	here	to	view	code	image

double	hypotenuse	=	hypot(x,	y);			//	(3’)	Type	name	can	now	be	omitted.

Example	4.2	Single	Static	Import
Click	here	to	view	code	image

import	static	java.lang.Math.PI;											//	(1)	Static	field
import	static	java.lang.Math.sqrt;									//	(2)	Static	method
//	Only	specified	static	members	are	imported.

public	class	Calculate3	{
		public	static	void	main(String[]	args)	{
				double	x	=	3.0,	y	=	4.0;
				double	squareroot	=	sqrt(y);											//	Simple	name	of	static	method
				double	hypotenuse	=	Math.hypot(x,	y);		//	(3)	Requires	type	name
				double	area	=	PI	*	y	*	y;														//	Simple	name	of	static	field
				System.out.printf(“Square	root:	%.2f,	hypotenuse:	%.2f,	area:	%.2f%n”,
																								squareroot,	hypotenuse,	area);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Square	root:	2.00,	hypotenuse:	5.00,	area:	50.27

Example	4.3	illustrates	how	static	import	can	be	used	to	access	interface	constants	(§7.6,
p.	302).	The	static	import	statement	at	(1)	allows	the	interface	constants	in	the	package
mypkg	to	be	accessed	by	their	simple	names.	The	static	import	facility	avoids	the
MyFactory	class	having	to	implement	the	interface	so	as	to	access	the	constants	by	their
simple	name	(often	referred	to	as	the	interface	constant	antipattern):
Click	here	to	view	code	image

public	class	MyFactory	implements	mypkg.IMachineState	{
	//	…
}

Example	4.3	Avoiding	the	Interface	Constant	Antipattern
Click	here	to	view	code	image

package	mypkg;

public	interface	IMachineState	{
		//	Fields	are	public,	static	and	final.
		int	BUSY	=	1;
		int	IDLE	=	0;
		int	BLOCKED	=	-1;
}

import	static	mypkg.IMachineState.*;					//	(1)	Static	import	interface
constants

public	class	MyFactory	{
		public	static	void	main(String[]	args)	{
				int[]	states	=	{	IDLE,	BUSY,	IDLE,	BLOCKED	};
				for	(int	s	:	states)
						System.out.print(s	+	”	“);
		}
}

Output	from	the	program:
0	1	0	-1

Static	import	is	ideal	for	importing	enum	constants	from	packages,	as	such	constants	are
static	members	of	an	enum	type.	Example	4.4	combines	type	and	static	imports.	The	enum
constants	can	be	accessed	at	(5)	using	their	simple	names	because	of	the	static	import
statement	at	(2).	The	type	import	at	(1)	is	required	to	access	the	enum	type	State	by	its
simple	name	at	(4)	and	(6).

Example	4.4	Importing	Enum	Constants
Click	here	to	view	code	image

package	mypkg;

public	enum	State	{	BUSY,	IDLE,	BLOCKED	}

//	File:	Factory.java	(in	unnamed	package)
import	mypkg.State;																		//	(1)	Single	type	import

import	static	mypkg.State.*;									//	(2)	Static	import	on	demand
import	static	java.lang.System.out;		//	(3)	Single	static	import

public	class	Factory	{
		public	static	void	main(String[]	args)	{
				State[]	states	=	{															//	(4)	Using	type	import	implied	by	(1)
								IDLE,	BUSY,	IDLE,	BLOCKED				//	(5)	Using	static	import	implied	by
(2)
				};
				for	(State	s	:	states)											//	(6)	Using	type	import	implied	by	(1)
						out.print(s	+	”	“);												//	(7)	Using	static	import	implied	by
(3)
		}
}

Output	from	the	program:
IDLE	BUSY	IDLE	BLOCKED

Identifiers	in	a	class	can	shadow	static	members	that	are	imported.	Example	4.5	illustrates
the	case	where	the	parameter	out	of	the	method	writeInfo()	has	the	same	name	as
the	statically	imported	field	java.lang.System.out.	The	type	of	the	parameter	is
ShadowImport	and	that	of	the	statically	imported	field	is	PrintStream.	Both	classes
PrintStream	and	ShadowImport	define	the	method	println()	that	is	called	in
the	program.	The	only	way	to	access	the	imported	field	out	in	the	method
writeInfo()	is	to	use	its	fully	qualified	name.

Example	4.5	Shadowing	Static	Import
Click	here	to	view	code	image

import	static	java.lang.System.out;							//	(1)	Static	import

public	class	ShadowImport	{

		public	static	void	main(String[]	args)	{
				out.println(“Calling	println()	in	java.lang.System.out”);
				ShadowImport	sbi	=	new	ShadowImport();
				writeInfo(sbi);
		}

		//	Parameter	shadows	java.lang.System.out:
		public	static	void	writeInfo(ShadowImport	out)	{
				out.println(“Calling	println()	in	the	parameter	out”);
				System.out.println(“Calling	println()	in	java.lang.System.out”);	//
Qualify
		}

		public	void	println(String	msg)	{
				out.println(msg	+	”	of	type	ShadowImport”);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Calling	println()	in	java.lang.System.out
Calling	println()	in	the	parameter	out	of	type	ShadowImport
Calling	println()	in	java.lang.System.out

The	next	code	snippet	illustrates	a	common	conflict	that	occurs	when	a	static	field	with	the
same	name	is	imported	by	several	static	import	statements.	This	conflict	is	readily
resolved	by	using	the	fully	qualified	name	of	the	field.	In	the	case	shown	here,	we	can	use
the	simple	name	of	class	in	which	the	field	is	declared,	as	the	java.lang	package	is
implicitly	imported	by	all	compilation	units.
Click	here	to	view	code	image

import	static	java.lang.Integer.MAX_VALUE;
import	static	java.lang.Double.MAX_VALUE;

public	class	StaticFieldConflict	{
		public	static	void	main(String[]	args)	{
				System.out.println(MAX_VALUE);										//	(1)	Ambiguous!	Compile-time
error!
				System.out.println(Integer.MAX_VALUE);		//	OK
				System.out.println(Double.MAX_VALUE);			//	OK
		}
}

Conflicts	can	also	occur	when	a	static	method	with	the	same	signature	is	imported	by
several	static	import	statements.	In	Example	4.6,	a	method	named	binarySearch	is
imported	21	times	by	the	static	import	statements.	This	method	is	overloaded	twice	in	the
java.util.Collections	class	and	18	times	in	the	java.util.Arrays	class,	in
addition	to	one	declaration	in	the	mypkg.Auxiliary	class.	The	classes
java.util.Arrays	and	mypkg.Auxiliary	have	a	declaration	of	this	method	with

the	same	signature	that	matches	the	method	call	at	(2),	resulting	in	a	signature	conflict	that
is	flagged	as	a	compile-time	error.	The	conflict	can	again	be	resolved	by	specifying	the
fully	qualified	name	of	the	method.
If	the	static	import	statement	at	(1)	is	removed,	there	is	no	conflict,	as	only	the	class
java.util.Arrays	has	a	method	that	matches	the	method	call	at	(2).	If	the
declaration	of	the	method	binarySearch()	at	(3)	is	allowed,	there	is	also	no	conflict,
as	this	method	declaration	will	shadow	the	imported	method	whose	signature	it	matches.

Example	4.6	Conflict	in	Importing	Static	Method	with	the	Same	Signature
Click	here	to	view	code	image

package	mypkg;

public	class	Auxiliary	{
		public	static	int	binarySearch(int[]	a,	int	key)	{	//	Same	in
java.util.Arrays
				//	Implementation	is	omitted.
				return	-1;
		}
}

//	File:	MultipleStaticImport.java	(in	unnamed	package)
import	static	java.util.Collections.binarySearch;		//				2	overloaded	methods
import	static	java.util.Arrays.binarySearch;							//	+	18	overloaded	methods
import	static	mypkg.Auxiliary.binarySearch;	//	(1)	Causes	signature	conflict

public	class	MultipleStaticImport	{
		public	static	void	main(String[]	args)	{
				int	index	=	binarySearch(new	int[]	{10,	50,	100},	50);	//	(2)	Ambiguous!
				System.out.println(index);
		}

//public	static	int	binarySearch(int[]	a,	int	key)	{							//	(3)
//		return	-1;
//}
}

Compiling	Code	into	Packages
Conventions	for	specifying	pathnames	vary	on	different	platforms.	In	this	chapter,	we	will
use	pathname	conventions	used	on	a	Unix	platform.	While	trying	out	the	examples	in	this
section,	attention	should	be	paid	to	platform	dependencies	in	this	regard—especially	the
fact	that	the	separator	characters	in	file	paths	for	the	Unix	and	Windows	platforms	are	/
and	\,	respectively.

As	mentioned	earlier,	a	package	can	be	mapped	on	a	hierarchical	file	system.	We	can	think
of	a	package	name	as	a	pathname	in	the	file	system.	Referring	to	Example	4.1,	the
package	name	wizard.pandorasbox	corresponds	to	the	pathname
wizard/pandorasbox.	The	Java	bytecode	for	all	types	declared	in	the	source	files
Clown.java	and	LovePotion.java	will	be	placed	in	the	package	directory	with	the
pathname	wizard/pandorasbox,	as	these	source	files	have	the	following	package
declaration:

package	wizard.pandorasbox;

The	location	in	the	file	system	where	the	package	directory	should	be	created	is	specified
using	the	d	option	(d	for	destination)	of	the	javac	command.	The	term	destination
directory	is	a	synonym	for	this	location	in	the	file	system.	The	compiler	will	create	the
package	directory	with	the	pathname	wizard/pandorasbox	(including	any
subdirectories	required)	under	the	specified	location,	and	place	the	Java	bytecode	for	the
types	declared	in	the	source	files	Clown.java	and	LovePotion.java	inside	the
package	directory.

Assuming	that	the	current	directory	(.)	is	the	directory	/pgjc/work,	and	the	four
source	files	in	Example	4.1	are	found	in	this	directory,	the	following	command	issued	in
the	current	directory	will	create	a	file	hierarchy	under	this	directory	(Figure	4.3)	that
mirrors	the	package	hierarchy	in	Figure	4.2:
Click	here	to	view	code	image

>javac	-d	.	Clown.java	LovePotion.java	Ailment.java	Baldness.java

Figure	4.3	File	Hierarchy

Note	the	subdirectories	that	are	created	for	a	fully	qualified	package	name,	and	where	the
class	files	are	located.	In	this	command	line,	the	space	between	the	-d	option	and	its
argument	is	mandatory.

We	can	specify	any	relative	pathname	that	designates	the	destination	directory,	or	its
absolute	pathname:
Click	here	to	view	code	image

>javac	-d	/pgjc/work	Clown.java	LovePotion.java	Ailment.java	Baldness.java

We	can,	of	course,	specify	destinations	other	than	the	current	directory	where	the	class
files	with	the	bytecode	should	be	stored.	The	following	command	in	the	current	directory
/pgjc/work	will	create	the	necessary	packages	with	the	class	files	under	the	destination

directory	/pgjc/myapp:
Click	here	to	view	code	image

>javac	-d	../myapp	Clown.java	LovePotion.java	Ailment.java	Baldness.java

Without	the	-d	option,	the	default	behavior	of	the	javac	compiler	is	to	place	all	class
files	directly	under	the	current	directory	(where	the	source	files	are	located),	rather	than	in
the	appropriate	subdirectories	corresponding	to	the	packages.

The	compiler	will	report	an	error	if	there	is	any	problem	with	the	destination	directory
specified	with	the	-d	option	(e.g.,	if	it	does	not	exist	or	does	not	have	the	right	file
permissions).

Running	Code	from	Packages
Referring	to	Example	4.1,	if	the	current	directory	has	the	absolute	pathname
/pgjc/work	and	we	want	to	run	Clown.class	in	the	directory	with	the	pathname
./wizard/pandorasbox,	the	fully	qualified	name	of	the	Clown	class	must	be
specified	in	the	java	command:
Click	here	to	view	code	image

>java	wizard.pandorasbox.Clown

This	will	load	the	bytecode	of	the	class	Clown	from	the	file	with	the	pathname
./wizard/pandorasbox/Clown.class,	and	start	the	execution	of	its	main()
method.

4.3	Searching	for	Classes
The	documentation	for	the	JDK	tools	explains	how	to	organize	packages	in	more	elaborate
schemes.	In	particular,	the	CLASSPATH	environment	variable	can	be	used	to	specify	the
class	search	path	(usually	abbreviated	to	just	class	path),	which	are	pathnames	or
locations	in	the	file	system	where	JDK	tools	should	look	when	searching	for	classes	and
other	resource	files.	Alternatively,	the	-classpath	option	(often	abbreviated	to	-cp)	of
the	JDK	tool	commands	can	be	used	for	the	same	purpose.	The	CLASSPATH	environment
variable	is	not	recommended	for	this	purpose,	as	its	class	path	value	affects	all	Java
applications	on	the	host	platform,	and	any	application	can	modify	it.	However,	the	-cp
option	can	be	used	to	set	the	class	path	for	each	application	individually.	This	way,	an
application	cannot	modify	the	class	path	for	other	applications.	The	class	path	specified	in
the	-cp	option	supersedes	the	path	or	paths	set	by	the	CLASSPATH	environment	variable
while	the	JDK	tool	command	is	running.	We	will	not	discuss	the	CLASSPATH
environment	variable	here,	and	assume	it	to	be	undefined.

Basically,	the	JDK	tools	first	look	in	the	directories	where	the	Java	standard	libraries	are
installed.	If	the	class	is	not	found	in	the	standard	libraries,	the	tool	searches	in	the	class
path.	When	no	class	path	is	defined,	the	default	value	of	the	class	path	is	assumed	to	be
the	current	directory.	If	the	-cp	option	is	used	and	the	current	directory	should	be
searched	by	the	JDK	tool,	the	current	directory	must	be	specified	as	an	entry	in	the	class
path,	just	like	any	other	directory	that	should	be	searched.	This	is	most	conveniently	done

by	including	'.'	as	one	of	the	entries	in	the	class	path.

We	will	use	the	file	hierarchies	shown	in	Figure	4.4	to	illustrate	some	of	the	intricacies
involved	when	searching	for	classes.	The	current	directory	has	the	absolute	pathname
/top/src,	where	the	source	files	are	stored.	The	package	pkg	will	be	created	under	the
directory	with	the	absolute	pathname	/top/bin.	The	source	code	in	the	two	source	files
A.java	and	B.java	is	also	shown	in	Figure	4.4.

Figure	4.4	Searching	for	Classes

The	file	hierarchy	before	any	files	are	compiled	is	shown	in	Figure	4.4a.	Since	the	class	B
does	not	use	any	other	classes,	we	compile	it	first	with	the	following	command,	resulting
in	the	file	hierarchy	shown	in	Figure	4.4b:

>javac	-d	../bin	B.java

Next,	we	try	to	compile	the	file	A.java,	and	get	the	following	results:
>javac	-d	../bin	A.java
A.java:3:	cannot	find	symbol
symbol		:	class	B
location:	class	pkg.A
public	class	A	{	B	b;	}
																	^
1	error

The	compiler	cannot	find	the	class	B—that	is,	the	file	B.class	containing	the	Java
bytecode	for	the	class	B.	In	Figure	4.4b,	we	can	see	that	it	is	in	the	package	pkg	under	the
directory	bin,	but	the	compiler	cannot	find	it.	This	is	hardly	surprising,	as	there	is	no

bytecode	file	for	the	class	B	in	the	current	directory,	which	is	the	default	value	of	the	class
path.	The	following	command	sets	the	value	of	the	class	path	to	be	/top/bin,	and
compilation	is	successful	(Figure	4.4c):
Click	here	to	view	code	image

>javac	-cp	/top/bin	-d	../bin	A.java

It	is	very	important	to	understand	that	when	we	want	the	JDK	tool	to	search	in	a	named
package,	it	is	the	location	of	the	package	that	is	specified;	in	other	words,	the	class	path
indicates	the	directory	that	contains	the	first	element	of	the	fully	qualified	package	name.
In	Figure	4.4c,	the	package	pkg	is	contained	under	the	directory	whose	absolute	path	is
/top/bin.	The	following	command	will	not	work,	as	the	directory	/top/bin/pkg
does	not	contain	a	package	with	the	name	pkg	that	has	a	class	B:
Click	here	to	view	code	image

>javac	-cp	/top/bin/pkg	-d	../bin	A.java

Also,	the	compiler	is	not	using	the	class	path	to	find	the	source	file(s)	that	are	specified	in
the	command	line.	In	the	preceding	command,	the	source	file	has	the	relative	pathname
./A.java.	Consequently,	the	compiler	looks	for	the	source	file	in	the	current	directory.
The	class	path	is	used	to	find	the	classes	used	by	the	class	A.

Given	the	file	hierarchy	in	Figure	4.3,	the	following	-cp	option	sets	the	class	path	so	that
all	packages	(wizard.pandorasbox,	wizard.pandorasbox.artifacts,
wizard.spells)	in	Figure	4.3	will	be	searched,	as	all	packages	are	located	under	the
specified	directory:

-cp	/pgjc/work

However,	the	following	-cp	option	will	not	help	in	finding	any	of	the	packages	in	Figure
4.3,	as	none	of	the	packages	are	located	under	the	specified	directory:
Click	here	to	view	code	image

>java	-cp	/pgjc/work/wizard	pandorasbox.Clown

This	command	also	illustrates	an	important	point	about	package	names:	The	fully	qualified
package	name	should	not	be	split.	The	package	name	for	the	class
wizard.pandorasbox.Clown	is	wizard.pandorasbox,	and	must	be	specified
fully.	The	following	command	will	search	all	packages	in	Figure	4.3	for	classes	that	are
used	by	the	class	wizard.pandorasbox.Clown:
Click	here	to	view	code	image

>java	-cp	/pgjc/work	wizard.pandorasbox.Clown

The	class	path	can	specify	several	entries	(i.e.,	several	locations),	and	the	JDK	tool
searches	them	in	the	order	they	are	specified,	from	left	to	right.

-cp	/pgjc/work:/top/bin:.

We	have	used	the	path-separator	character	':'	for	Unix	platforms	to	separate	the	entries,
and	also	included	the	current	directory	(.)	as	an	entry.	There	should	be	no	whitespace	on
either	side	of	the	path-separator	character.

The	search	in	the	class	path	entries	stops	once	the	required	class	file	is	found.	Therefore,

the	order	in	which	entries	are	specified	can	be	significant.	If	a	class	B	is	found	in	a
package	pkg	located	under	the	directory	/ext/lib1,	and	also	in	a	package	pkg	located
under	the	directory	/ext/lib2,	the	order	in	which	the	entries	are	specified	in	the	two	-
cp	options	shown	next	is	significant.	They	will	result	in	the	class	pkg.B	being	found
under	/ext/lib1	and	/ext/lib2,	respectively.

-cp	/ext/lib1:/ext/lib2
-cp	/ext/lib2:/ext/lib1

The	examples	so	far	have	used	absolute	pathnames	for	class	path	entries.	We	can,	of
course,	use	relative	pathnames	as	well.	If	the	current	directory	has	the	absolute	pathname
/pgjc/work	in	Figure	4.3,	the	following	command	will	search	the	packages	under	the
current	directory:
Click	here	to	view	code	image

>java	-cp	.	wizard.pandorasbox.Clown

If	the	current	directory	has	the	absolute	pathname	/top/src	in	Figure	4.4,	the	following
command	will	compile	the	file	./A.java:
Click	here	to	view	code	image

>javac	-cp	../bin	-d	../bin	A.java

If	the	name	of	an	entry	in	the	class	path	includes	whitespace,	the	name	should	be	double
quoted	so	that	it	will	be	interpreted	correctly:

-cp	“../new	bin”

	Review	Questions

4.1	Given	the	source	file	A.java:
//	File:	A.java
package	net.alphabet;
import	java.util.ArrayList;
public	class	A	{}
class	B	{}

Select	the	two	correct	answers.

(a)	Both	class	A	and	class	B	will	be	placed	in	the	package	net.alphabet.

(b)	Only	class	A	will	be	placed	in	the	package	net.alphabet.	Class	B	will	be
placed	in	the	default	package.

(c)	Both	class	A	and	class	B	can	access	the	imported	class
java.util.ArrayList	by	its	simple	name.

(d)	Only	class	A	can	access	the	imported	class	java.util.ArrayList	by	its
simple	name.

4.2	Which	import	statement,	when	inserted	independently	at	(1),	will	make	the	code
compile?

Click	here	to	view	code	image
//	File:	Window.java

package	app;

public	class	Window	{
		final	static	String	frame	=	“Top-frame”;
}

//	File:	Canvas.java
package	app;

//	(1)	INSERT	IMPORT	STATEMENT	HERE.

public	class	Canvas	{
		private	String	str	=	frame;
}

Select	the	one	correct	answer.

(a)	import	app.*;

(b)	import	app.Window;

(c)	import	java.lang.*;

(d)	import	java.lang.String;

(e)	import	static	app.Window.frame;

4.3	Which	import	statements,	when	inserted	independently	at	(1),	will	make	the	code
compile?

Click	here	to	view	code	image
//	File:	Window.java
package	mainpkg.subpkg1;
public	class	Window	{}

//	File:	Window.java
package	mainpkg.subpkg2;
public	class	Window	{}

//	File:	Screen.java
package	mainpkg;
//	(1)	INSERT	IMPORT	STATEMENTS	HERE.
public	class	Screen	{
		private	Window	win;
}

Select	the	four	correct	answers.

(a)	import	mainpkg.*;

(b)	import	mainpkg.subpkg1.*;

(c)	import	mainpkg.subpkg2.*;

(d)
Click	here	to	view	code	image

import	mainpkg.subpkg1.*;
import	mainpkg.subpkg2.Window;

(e)
Click	here	to	view	code	image

import	mainpkg.subpkg1.Window;
import	mainpkg.subpkg2.*;

(f)
import	mainpkg.subpkg1.*;
import	mainpkg.subpkg2.*;

(g)
Click	here	to	view	code	image

import	mainpkg.subpkg1.Window;
import	mainpkg.subpkg2.Window;

4.4	Given	the	following	code:
Click	here	to	view	code	image

//	(1)	INSERT	ONE	IMPORT	STATEMENT	HERE
public	class	RQ700A20	{
		public	static	void	main(String[]	args)	{
				System.out.println(sqrt(49));
		}
}

Which	import	statements,	when	inserted	independently	at	(1),	will	make	the
program	print	7,	when	the	program	is	compiled	and	run?

Select	the	two	correct	answers.

(a)	import	static	Math.*;

(b)	import	static	Math.sqrt;

(c)	import	static	java.lang.Math.sqrt;

(d)	import	static	java.lang.Math.sqrt();

(e)	import	static	java.lang.Math.*;

4.5	Given	the	source	file	A.java:
package	top.sub;
public	class	A	{}

and	the	following	directory	hierarchy:
Click	here	to	view	code	image

/proj
		|–	src
		|					|–	top
		|											|–	sub
		|																	|–	A.java
		|–	bin

Assuming	that	the	current	directory	is	/proj/src,	which	of	the	following
statements	are	true?

Select	the	three	correct	answers.

(a)	The	following	command	will	compile,	and	place	the	bytecode	of	the	class
top.sub.A	under	/proj/bin:

javac	-d	.	top/sub/A.java

(b)	The	following	command	will	compile,	and	place	the	bytecode	of	the	class
top.sub.A	under	/proj/bin:

Click	here	to	view	code	image
javac	-d	/proj/bin	top/sub/A.java

(c)	The	following	command	will	compile,	and	place	the	bytecode	of	the	class
top.sub.A	under	/proj/bin:

Click	here	to	view	code	image
javac	-D	/proj/bin	./top/sub/A.java

(d)	The	following	command	will	compile,	and	place	the	bytecode	of	the	class
top.sub.A	under	/proj/bin:

Click	here	to	view	code	image
javac	-d	../bin	top/sub/A.java

(e)	After	successful	compilation,	the	absolute	pathname	of	the	file	A.class	will
be:

/proj/bin/A.class

(f)	After	successful	compilation,	the	absolute	pathname	of	the	file	A.class	will
be:

/proj/bin/top/sub/A.class

4.6	Given	the	following	directory	structure:
Click	here	to	view	code	image

/top
		|–	wrk
								|–	pkg
														|–	A.java
														|–	B.java

Assume	that	the	two	files	A.java	and	B.java	contain	the	following	code,
respectively:

Click	here	to	view	code	image
//	File:	A.java
package	pkg;
class	A	{	B	b;	}

//	File:	B.java
package	pkg;
class	B	{…}

For	which	combinations	of	current	directory	and	command	is	the	compilation
successful?

Select	the	two	correct	answers.

(a)

Click	here	to	view	code	image
Current	directory:	/top/wrk
Command:	javac	-cp	.:pkg	A.java

(b)
Click	here	to	view	code	image

Current	directory:	/top/wrk
Command:	javac	-cp	.	pkg/A.java

(c)
Current	directory:	/top/wrk
Command:	javac	-cp	pkg	A.java

(d)
Click	here	to	view	code	image

Current	directory:	/top/wrk
Command:	javac	-cp	.:pkg	pkg/A.java

(e)
Click	here	to	view	code	image

Current	directory:	/top/wrk/pkg
Command:	javac	A.java

(f)
Click	here	to	view	code	image

Current	directory:	/top/wrk/pkg
Command:	javac	-cp	.	A.java

4.7	Given	the	following	directory	structure:
Click	here	to	view	code	image

/proj
		|–	src
		|					|–	A.java
		|
		|
		|–	bin
								|–	top
														|–	sub
																				|–	A.class

Assume	that	the	current	directory	is	/proj/src.	Which	class	path	specifications
will	find	the	file	A.class	of	the	class	top.sub.A	declared	in	the	file
/proj/src/A.java?

Select	the	two	correct	answers.

(a)	-cp	/proj/bin/top

(b)	-cp	/proj/bin/top/sub

(c)	-cp	/proj/bin/top/sub/A.class

(d)	-cp	.:../bin

(e)	-cp	/proj

(f)	-cp	/proj/bin

4.4	Scope	Rules
Java	provides	explicit	accessibility	modifiers	to	control	the	accessibility	of	members	in	a
class	by	external	clients	(§4.7,	p.	123),	but	in	two	areas	access	is	governed	by	specific
scope	rules:

•	Class	scope	for	members:	how	member	declarations	are	accessed	within	the	class.

•	Block	scope	for	local	variables:	how	local	variable	declarations	are	accessed	within
a	block.

Class	Scope	for	Members
Class	scope	concerns	accessing	members	(including	inherited	ones)	from	code	within	a
class.	Table	4.1	gives	an	overview	of	how	static	and	non-static	code	in	a	class	can	access
members	of	the	class,	including	those	that	are	inherited.	Table	4.1	assumes	the	following
declarations:
Click	here	to	view	code	image

class	SuperName	{
		int	instanceVarInSuper;
		static	int	staticVarInSuper;

		void	instanceMethodInSuper()						{	/*	…	*/	}
		static	void	staticMethodInSuper()	{	/*	…	*/	}
		//	…
}

class	ClassName	extends	SuperName	{
		int	instanceVar;
		static	int	staticVar;

		void	instanceMethod()						{	/*	…	*/	}
		static	void	staticMethod()	{	/*	…	*/	}
		//	…
}

Table	4.1	Accessing	Members	within	a	Class

The	golden	rule	is	that	static	code	can	only	access	other	static	members	by	their	simple
names.	Static	code	is	not	executed	in	the	context	of	an	object,	so	the	references	this	and
super	are	not	available.	An	object	has	knowledge	of	its	class,	so	static	members	are
always	accessible	in	a	non-static	context.

Note	that	using	the	class	name	to	access	static	members	within	the	class	is	no	different
from	how	external	clients	access	these	static	members.

The	following	factors	can	all	influence	the	scope	of	a	member	declaration:

•	Shadowing	of	a	field	declaration,	either	by	local	variables	(§4.4,	p.	117)	or	by
declarations	in	the	subclass	(§7.3,	p.	275)

•	Overriding	an	instance	method	from	a	superclass	(§7.2,	p.	268)

•	Hiding	a	static	method	declared	in	a	superclass	(§7.3,	p.	275)

Within	a	class,	references	of	the	class	can	be	declared	and	used	to	access	all	members	in
the	class,	regardless	of	their	accessibility	modifiers.	In	Example	4.7,	the	method
duplicateLight	at	(1)	in	the	class	Light	has	the	parameter	oldLight	and	the
local	variable	newLight	that	are	references	of	the	class	Light.	Even	though	the	fields
of	the	class	are	private,	they	are	accessible	through	the	two	references	(oldLight
and	newLight)	in	the	method	duplicateLight()	as	shown	at	(2),	(3),	and	(4).

Example	4.7	Class	Scope
Click	here	to	view	code	image

class	Light	{
		//	Instance	variables:
		private	int					noOfWatts;							//	Wattage
		private	boolean	indicator;							//	On	or	off
		private	String		location;								//	Placement

		//	Instance	methods:
		public	void	switchOn()		{	indicator	=	true;	}
		public	void	switchOff()	{	indicator	=	false;	}
		public	boolean	isOn()			{	return	indicator;	}

		public	static	Light	duplicateLight(Light	oldLight)	{					//	(1)
				Light	newLight	=	new	Light();
				newLight.noOfWatts	=	oldLight.noOfWatts;															//	(2)
				newLight.indicator	=	oldLight.indicator;															//	(3)
				newLight.location		=	oldLight.location;																//	(4)
				return	newLight;
		}
}

Block	Scope	for	Local	Variables
Declarations	and	statements	can	be	grouped	into	a	block	using	braces,	{}.	Blocks	can	be
nested,	and	scope	rules	apply	to	local	variable	declarations	in	such	blocks.	A	local
declaration	can	appear	anywhere	in	a	block.	The	general	rule	is	that	a	variable	declared	in
a	block	is	in	scope	inside	the	block	in	which	it	is	declared,	but	it	is	not	accessible	outside
of	this	block.	It	is	not	possible	to	redeclare	a	variable	if	a	local	variable	of	the	same	name
is	already	declared	in	the	current	scope.

Local	variables	of	a	method	include	the	formal	parameters	of	the	method	and	variables
that	are	declared	in	the	method	body.	The	local	variables	in	a	method	are	created	each	time
the	method	is	invoked,	and	are	therefore	distinct	from	local	variables	in	other	invocations
of	the	same	method	that	might	be	executing	(§6.5,	p.	230).

Figure	4.5	illustrates	block	scope	(also	known	as	lexical	scope)	for	local	variables.	A
method	body	is	a	block.	Parameters	cannot	be	redeclared	in	the	method	body,	as	shown	at
(1)	in	Block	1.

Figure	4.5	Block	Scope

A	local	variable—already	declared	in	an	enclosing	block	and,	therefore,	visible	in	a	nested
block—cannot	be	redeclared	in	the	nested	block.	These	cases	are	shown	at	(3),	(5),	and
(6).

A	local	variable	in	a	block	can	be	redeclared	in	another	block	if	the	blocks	are	disjoint—
that	is,	they	do	not	overlap.	This	is	the	case	for	variable	i	at	(2)	in	Block	3	and	at	(4)	in
Block	4,	as	these	two	blocks	are	disjoint.

The	scope	of	a	local	variable	declaration	begins	from	where	it	is	declared	in	the	block	and
ends	where	this	block	terminates.	The	scope	of	the	loop	variable	index	is	the	entire
Block	2.	Even	though	Block	2	is	nested	in	Block	1,	the	declaration	of	the	variable	index
at	(7)	in	Block	1	is	valid.	The	scope	of	the	variable	index	at	(7)	spans	from	its
declaration	to	the	end	of	Block	1,	and	it	does	not	overlap	with	that	of	the	loop	variable
index	in	Block	2.

4.5	Accessibility	Modifiers	for	Top-Level	Type	Declarations
The	accessibility	modifier	public	can	be	used	to	declare	top-level	types	(that	is,	classes,
enums,	and	interfaces)	in	a	package	to	be	accessible	from	everywhere,	both	inside	their
own	package	and	inside	other	packages.	If	the	accessibility	modifier	is	omitted,	they	will
be	accessible	only	in	their	own	package	and	not	in	any	other	packages	or	subpackages.
This	is	called	package	or	default	accessibility.

Example	4.8	Accessibility	Modifiers	for	Classes	and	Interfaces
Click	here	to	view	code	image

//	File:	Clown.java
package	wizard.pandorasbox;																		//	Package	declaration

import	wizard.pandorasbox.artifacts.Ailment;	//	Importing	class	Ailment

public	class	Clown	implements	Magic	{								//	(1)
		LovePotion	tlc;																												//	Class	in	same	package
		Ailment	problem;																											//	Simple	class	name
		Clown()	{
				tlc	=	new	LovePotion(“passion”);
				problem	=	new	Ailment(“flu”);												//	Simple	class	name
		}
		@Override	public	void	levitate()		{								//	(2)
				System.out.println(“Levitating”);
		}
		public	void	mixPotion()	{	System.out.println(“Mixing	”	+	tlc);	}
		public	void	healAilment()	{	System.out.println(“Healing	”	+	problem);	}

		public	static	void	main(String[]	args)	{
				Clown	joker	=	new	Clown();
				joker.levitate();
				joker.mixPotion();
				joker.healAilment();
		}
}

interface	Magic	{	void	levitate();	}									//	(3)

//	File:	LovePotion.java
package	wizard.pandorasbox;																		//	Package	declaration

public	class	LovePotion	{																				//	(4)	Accessible	outside
package
		String	potionName;
		public	LovePotion(String	name)	{	potionName	=	name;	}
		public	String	toString()	{	return	potionName;	}
}

//	File:	Ailment.java
package	wizard.pandorasbox.artifacts;								//	Package	declaration

public	class	Ailment	{																							//	Accessible	outside	package
		String	ailmentName;
		public	Ailment(String	name)	{	ailmentName	=	name;	}
		public	String	toString()	{	return	ailmentName;	}
}

//	File:	Baldness.java
package	wizard.spells;																							//	Package	declaration

import	wizard.pandorasbox.*;																	//	Redundant
import	wizard.pandorasbox.artifacts.*;							//	Import	of	subpackage

public	class	Baldness	extends	Ailment	{						//	Simple	name	for	Ailment
		wizard.pandorasbox.LovePotion	tlcOne;						//	Fully	qualified	name
		LovePotion	tlcTwo;																									//	Class	in	same	package
		Baldness(String	name)	{
				super(name);
				tlcOne	=	new	wizard.pandorasbox.									//	Fully	qualified	name
																	LovePotion(“romance”);
				tlcTwo	=	new	LovePotion();															//	Class	in	same	package

		}
}

class	LovePotion	/*	implements	Magic	*/	{				//	(5)	Magic	is	not	accessible
		//	@Override	public	void	levitate()	{}					//	(6)	Cannot	override	method
}

Compiling	and	running	the	program	from	the	current	directory	gives	the	following	results:
Click	here	to	view	code	image

>javac	-d	.	Clown.java	LovePotion.java	Ailment.java	Baldness.java
>java	wizard.pandorasbox.Clown
Levitating
Mixing	passion
Healing	flu

In	Example	4.8,	the	class	Clown	at	(1)	and	the	interface	Magic	at	(3)	are	placed	in	a
package	called	wizard.pandorasbox.	The	public	class	Clown	is	accessible	from
everywhere.	The	Magic	interface	has	default	accessibility,	and	can	be	accessed	only
within	the	package	wizard.pandorasbox.	It	is	not	accessible	from	other	packages,
not	even	from	subpackages.

The	class	LovePotion	at	(4)	is	also	placed	in	the	package	called
wizard.pandorasbox.	The	class	has	public	accessibility	and,	therefore,	is
accessible	from	other	packages.	The	two	files	Clown.java	and	LovePotion.java
demonstrate	how	several	compilation	units	can	be	used	to	group	classes	in	the	same
package.

In	the	file	Clown.java,	the	class	Clown	at	(1)	implements	the	interface	Magic	at	(3)
from	the	same	package.	We	have	used	the	annotation	@Override	in	front	of	the
declaration	of	the	levitate()	method	at	(2)	so	that	the	compiler	can	aid	in	checking
that	this	method	is	declared	correctly	as	required	by	the	interface	Magic.

In	the	file	Baldness.java,	the	class	LovePotion	at	(5)	wishes	to	implement	the
interface	Magic	at	(3)	from	the	package	wizard.pandorasbox,	but	cannot	do	so,
although	the	source	file	imports	from	this	package.	The	reason	is	that	the	interface	Magic
has	default	accessibility	and	can,	therefore,	be	accessed	only	within	the	package
wizard.pandorasbox.	The	method	levitate()	of	the	Magic	interface	therefore
cannot	be	overridden	in	class	LovePotion	at	(6).

Just	because	a	reference	type	is	accessible	does	not	necessarily	mean	that	members	of	the
type	are	also	accessible.	Member	accessibility	is	governed	separately	from	type
accessibility,	as	explained	in	§4.7,	p.	123.	Table	4.2	gives	a	summary	of	accessibility
modifiers	for	top-level	types.

Table	4.2	Summary	of	Accessibility	Modifiers	for	Top-Level	Types

4.6	Non-Accessibility	Modifiers	for	Classes
The	non-accessibility	modifiers	abstract	and	final	can	be	applied	to	top-level
classes.

	Classes
A	class	can	be	declared	with	the	keyword	abstract	to	indicate	that	it	cannot	be
instantiated.	A	class	might	choose	to	do	this	if	the	abstraction	it	represents	is	so	general
that	it	needs	to	be	specialized	to	be	of	practical	use.	The	class	Vehicle	might	be
specified	as	abstract	to	represent	the	general	abstraction	of	a	vehicle,	as	creating
instances	of	the	class	would	not	make	much	sense.	Creating	instances	of	non-abstract
subclasses,	like	Car	and	Bus,	would	make	more	sense,	as	this	would	make	the
abstraction	more	concrete.

Any	normal	class	(that	is,	a	class	declared	with	the	keyword	class)	can	be	declared	as
abstract.	However,	if	such	a	class	has	one	or	more	abstract	methods	(§4.8,	p.	136),
it	must	be	declared	as	abstract.	Obviously,	such	classes	cannot	be	instantiated,	as	their
implementation	might	be	only	partial.	A	class	might	choose	this	strategy	to	dictate	certain
behavior,	but	allow	its	subclasses	the	freedom	to	provide	the	relevant	implementation.	In
other	words,	subclasses	of	the	abstract	class	have	to	take	a	stand	and	provide
implementations	of	any	inherited	abstract	methods	before	instances	can	be	created.	A
subclass	that	does	not	provide	an	implementation	of	its	inherited	abstract	methods
must	also	be	declared	as	abstract	or	the	code	will	not	compile.

In	Example	4.9,	the	declaration	of	the	abstract	class	Light	has	an	abstract
method	named	kwhPrice	at	(1).	This	forces	its	concrete	(i.e.,	non-abstract)	subclasses	to
provide	an	implementation	for	this	method.	Such	a	class	provides	implementations	of	all
its	methods.	The	concrete	subclass	TubeLight	provides	an	implementation	for	the
method	kwhPrice()	at	(2).	The	class	Factory	creates	an	instance	of	the	class
TubeLight	at	(3).	References	of	an	abstract	class	can	be	declared,	as	shown	at	(4),
but	an	abstract	class	cannot	be	instantiated,	as	shown	at	(5).	References	of	an
abstract	class	can	refer	to	objects	of	the	subclasses,	as	shown	at	(6).

Example	4.9	Abstract	Classes
Click	here	to	view	code	image

abstract	class	Light	{
		//	Fields:
		int					noOfWatts;							//	Wattage
		boolean	indicator;							//	On	or	off
		String		location;								//	Placement

		//	Instance	methods:
		public	void	switchOn()		{	indicator	=	true;	}
		public	void	switchOff()	{	indicator	=	false;	}
		public	boolean	isOn()			{	return	indicator;	}

		//	Abstract	instance	method
		public	abstract	double	kwhPrice();																		//	(1)	No	method	body
}
//__
class	TubeLight	extends	Light	{
		//	Field
		int	tubeLength;

		//	Implementation	of	inherited	abstract	method.
		@Override	public	double	kwhPrice()	{	return	2.75;	}	//	(2)
}
//__
public	class	Factory	{
		public	static	void	main(String[]	args)	{
				TubeLight	cellarLight	=	new	TubeLight();										//	(3)	OK
				Light	nightLight;																																	//	(4)	OK
//		Light	tableLight	=	new	Light();																			//	(5)	Compile-time
error
				nightLight	=	new	TubeLight();																					//	(6)	OK
				System.out.println(“KWH	price:	$”	+	nightLight.kwhPrice());
		}
}

Output	from	the	program:
KWH	price:	$2.75

	Classes
A	class	can	be	declared	as	final	to	indicate	that	it	cannot	be	extended;	that	is,	one
cannot	declare	subclasses	of	a	final	class.	This	implies	that	one	cannot	override	any
methods	declared	in	such	a	class.	In	other	words,	the	class	behavior	cannot	be	changed	by
extending	the	class.	A	final	class	marks	the	lower	boundary	of	its	implementation
inheritance	hier-archy	(§7.1,	p.	264).	Only	a	concrete	class	can	be	declared	as	final.

A	final	class	must	be	complete,	whereas	an	abstract	class	is	considered	incomplete.
Classes,	therefore,	cannot	be	both	final	and	abstract	at	the	same	time.	Interfaces	are
inherently	abstract,	as	they	can	specify	methods	that	are	abstract,	and	therefore	cannot
be	declared	as	final.	A	final	class	and	an	interface	represent	two	extremes	when	it
comes	to	providing	an	implementation.	An	abstract	class	represents	a	compromise
between	these	two	extremes.	Table	4.3	provides	a	summary	of	non-accessibility	modifiers
for	classes.

Table	4.3	Summary	of	Non-Accessibility	Modifiers	for	Classes

The	Java	SE	platform	API	includes	many	final	classes—for	example,	the
java.lang.String	class	and	the	wrapper	classes	for	primitive	values.

If	it	is	decided	that	the	class	TubeLight	in	Example	4.9	may	not	be	extended,	it	can	be
declared	as	final:
Click	here	to	view	code	image

final	class	TubeLight	extends	Light	{
		//	…
}

Discussion	of	final	methods,	fields,	and	local	variables	can	be	found	in	§4.8,	p.	133.

	Review	Questions

4.8	Given	the	following	class,	which	of	these	alternatives	are	valid	ways	of	referring	to
the	class	from	outside	of	the	package	net.basemaster?
package	net.basemaster;

public	class	Base	{
		//	…
}

Select	the	two	correct	answers.

(a)	By	simply	referring	to	the	class	as	Base

(b)	By	simply	referring	to	the	class	as	basemaster.Base

(c)	By	simply	referring	to	the	class	as	net.basemaster.Base

(d)	By	importing	with	net.basemaster.*,	and	referring	to	the	class	as	Base

(e)	By	importing	with	net.*,	and	referring	to	the	class	as	basemaster.Base

4.9	Which	one	of	the	following	class	declarations	is	a	valid	declaration	of	a	class	that
cannot	be	instantiated?

Select	the	one	correct	answer.

(a)	class	Ghost										{	abstract	void	haunt();	}

(b)	abstract	class	Ghost	{	void	haunt();	}

(c)	abstract	class	Ghost	{	void	haunt()	{};	}

(d)	abstract	Ghost							{	abstract	void	haunt();	}

(e)	abstract	class	Ghost	{	abstract	haunt();	}

4.10	Which	one	of	the	following	class	declarations	is	a	valid	declaration	of	a	class	that
cannot	be	extended?

Select	the	one	correct	answer.

(a)	class	Link	{	}

(b)	abstract	class	Link	{	}

(c)	native	class	Link	{	}

(d)	final	class	Link	{	}

(e)	abstract	final	class	Link	{	}

4.7	Member	Accessibility	Modifiers
By	specifying	member	accessibility	modifiers,	a	class	can	control	which	information	is
accessible	to	clients	(that	is,	other	classes).	These	modifiers	help	a	class	to	define	a
contract	so	that	clients	know	exactly	which	services	are	offered	by	the	class.

The	accessibility	of	members	can	be	one	of	the	following:

	public

	protected

	Default	accessibility	(also	known	as	package	accessibility),	meaning	that	no
accessibility	modifier	is	specified

	private

In	the	following	discussion	of	accessibility	modifiers	for	members	of	a	class,	keep	in	mind
that	the	member	accessibility	modifier	has	meaning	only	if	the	class	(or	one	of	its
subclasses)	is	accessible	to	the	client.	Also,	note	that	only	one	accessibility	modifier	can
be	specified	for	a	member.

The	discussion	in	this	section	applies	to	both	instance	and	static	members	of	top-level
classes.	It	applies	equally	to	constructors	as	well.

In	UML	notation,	the	prefixes	+,	#,	and	-,	when	applied	to	a	member	name,	indicate
public,	protected,	and	private	member	accessibility,	respectively.	No	prefix
indicates	default	or	package	accessibility.

	Members
Public	accessibility	is	the	least	restrictive	of	all	the	accessibility	modifiers.	A	public
member	is	accessible	from	anywhere,	both	in	the	package	containing	its	class	and	in	other
packages	where	this	class	is	visible.

Example	4.10	contains	two	source	files,	shown	at	(1)	and	(6).	The	package	hierarchy
defined	by	the	source	files	is	depicted	in	Figure	4.6,	showing	the	two	packages,
packageA	and	packageB,	containing	their	respective	classes.	The	classes	in
packageB	use	classes	from	packageA.	The	class	SuperclassA	in	packageA	has
two	subclasses:	SubclassA	in	packageA	and	SubclassB	in	packageB.

Figure	4.6	Public	Accessibility	for	Members

Example	4.10	Public	Accessibility	of	Members
Click	here	to	view	code	image

//	File:	SuperclassA.java																													(1)
package	packageA;

public	class	SuperclassA	{
		public	int	superclassVarA;																								//	(2)
		public	void	superclassMethodA()	{/*…*/}									//	(3)
}

class	SubclassA	extends	SuperclassA	{
		void	subclassMethodA()	{	superclassVarA	=	10;	}			//	(4)	OK
}

class	AnyClassA	{
		SuperclassA	obj	=	new	SuperclassA();
		void	anyClassMethodA()	{
				obj.superclassMethodA();																								//	(5)	OK
		}
}

//	File:	SubclassB.java																																(6)
package	packageB;
import	packageA.*;

public	class	SubclassB	extends	SuperclassA	{
		void	subclassMethodB()	{	superclassMethodA();	}			//	(7)	OK
}

class	AnyClassB	{
		SuperclassA	obj	=	new	SuperclassA();
		void	anyClassMethodB()	{
				obj.superclassVarA	=	20;																								//	(8)	OK
		}
}

Accessibility	is	illustrated	in	Example	4.10	by	the	accessibility	modifiers	for	the	field
superclassVarA	and	the	method	superclassMethodA()	at	(2)	and	(3),
respectively,	defined	in	the	class	SuperclassA.	These	members	are	accessed	from	four
different	clients	in	Example	4.10.

•	Client	1:	From	a	subclass	in	the	same	package,	which	accesses	an	inherited	field
from	the	class	SuperclassA.	SubclassA	is	such	a	client,	and	does	this	at	(4).

•	Client	2:	From	a	non-subclass	in	the	same	package,	which	invokes	a	method	on	an
instance	of	the	SuperclassA	class.	AnyClassA	is	such	a	client,	and	does	this	at
(5).

•	Client	3:	From	a	subclass	in	another	package,	which	invokes	an	inherited	method
from	the	class	SuperclassA.	SubclassB	is	such	a	client,	and	does	this	at	(7).

•	Client	4:	From	a	non-subclass	in	another	package,	which	accesses	a	field	in	an
instance	of	the	SuperclassA	class.	AnyClassB	is	such	a	client,	and	does	this	at
(8).

In	Example	4.10,	the	field	superclassVarA	and	the	method
superclassMethodA()	have	public	accessibility	in	the	SuperclassA	class,	and
are	accessible	by	all	four	of	these	clients.	Subclasses	can	access	their	inherited	public
members	by	their	simple	names,	and	all	clients	can	access	public	members	in	an	instance
of	the	SuperclassA	class.	Public	accessibility	is	depicted	in	Figure	4.6.

	Members
A	protected	member	is	accessible	in	all	classes	in	the	same	package,	and	by	all	subclasses
of	its	class	in	any	package	where	this	class	is	visible.	In	other	words,	non-subclasses	in
other	packages	cannot	access	protected	members	from	other	packages.	This	kind	of
accessibility	is	more	restrictive	than	public	member	accessibility.

In	Example	4.10,	if	the	field	superclassVarA	and	the	method
superclassMethodA()	of	the	class	SuperclassA	have	protected	accessibility,
they	are	accessible	within	packageA,	and	only	accessible	by	subclasses	in	any	other
packages.
Click	here	to	view	code	image

public	class	SuperclassA	{
		protected	int	superclassVarA;																				//	(2)	Protected	member
		protected	void	superclassMethodA()	{/*…*/}					//	(3)	Protected	member
}

Client	4	in	packageB	cannot	access	these	members,	as	shown	in	Figure	4.7.

Figure	4.7	Protected	Accessibility	for	Members

An	important	caveat	is	that	a	subclass	in	another	package	can	access	only	protected
members	in	the	superclass	via	references	of	its	own	type	or	its	subtypes.	The	following
new	declaration	of	SubclassB	in	packageB	from	Example	4.10	illustrates	the	point:
Click	here	to	view	code	image

//	File:	SubclassB.java
package	packageB;
import	packageA.*;

public	class	SubclassB	extends	SuperclassA	{					//	In	packageB
		SuperclassA	objRefA	=	new	SuperclassA();							//	(1)
		void	subclassMethodB(SubclassB	objRefB)	{
				objRefB.superclassMethodA();																	//	(2)	OK
				objRefB.superclassVarA	=	5;																		//	(3)	OK
				objRefA.superclassMethodA();																	//	(4)	Not	OK
				objRefA.superclassVarA	=	10;																	//	(5)	Not	OK
		}
}

The	class	SubclassB	declares	the	field	objRefA	of	type	SuperclassA	at	(1).	The
method	subclassMethodB()	has	the	formal	parameter	objRefB	of	type
SubclassB.	Access	is	permitted	to	a	protected	member	of	SuperclassA	in
packageA	by	a	reference	of	the	subclass,	as	shown	at	(2)	and	(3),	but	not	by	a	reference
of	its	superclass,	as	shown	at	(4)	and	(5).	Access	to	the	field	superclassVarA	and	the
call	to	the	method	superclassMethodA()	occur	in	SubclassB.	These	members	are
declared	in	SuperclassA.	SubclassB	is	not	involved	in	the	implementation	of
SuperclassA,	which	is	the	type	of	the	reference	objRefA.	Hence,	access	to	protected
members	at	(4)	and	(5)	is	not	permitted	as	these	are	not	members	of	an	object	that	can	be
guaranteed	to	be	implemented	by	the	code	accessing	them.

Accessibility	to	protected	members	of	the	superclass	would	also	be	permitted	via	any
reference	whose	type	is	a	subclass	of	SubclassB.	The	previously	mentioned	restriction
helps	to	ensure	that	subclasses	in	packages	different	from	their	superclass	can	access
protected	members	of	the	superclass	only	in	their	part	of	the	implementation	inheritance
hierarchy.	In	other	words,	a	protected	member	of	a	superclass	is	accessible	in	a	subclass
that	is	in	another	package	only	if	the	member	is	inherited	by	an	object	of	the	subclass	(or
by	an	object	of	a	subclass	of	this	subclass).

Default	Accessibility	for	Members
When	no	member	accessibility	modifier	is	specified,	the	member	is	accessible	only	to
other	classes	in	its	own	class’s	package.	Even	if	its	class	is	visible	in	another	(possibly
nested)	package,	the	member	is	not	accessible	elsewhere.	Default	member	accessibility	is
more	restrictive	than	protected	member	accessibility.

In	Example	4.10,	if	the	field	superclassVarA	and	the	method
superclassMethodA()	are	defined	with	no	accessibility	modifier,	they	are	accessible
within	packageA,	but	not	in	any	other	packages.
Click	here	to	view	code	image

public	class	SuperclassA	{
		int	superclassVarA;																													//	(2)	Default
accessibility
		void	superclassMethodA()	{/*…*/}														//	(3)	Default	accessibility
}

The	clients	in	packageB	(that	is,	Clients	3	and	4)	cannot	access	these	members.	This
situation	is	depicted	in	Figure	4.8.

Figure	4.8	Default	Accessibility	for	Members

	Members
The	private	modifier	is	the	most	restrictive	of	all	the	accessibility	modifiers.	Private
members	are	not	accessible	from	any	other	classes.	This	also	applies	to	subclasses,
whether	they	are	in	the	same	package	or	not.	Since	they	are	not	accessible	by	their	simple
names	in	a	subclass,	they	are	also	not	inherited	by	the	subclass.	A	standard	design	strategy
for	a	class	is	to	make	all	fields	private	and	provide	public	accessor	methods	for	them.
Auxiliary	methods	are	often	declared	as	private,	as	they	do	not	concern	any	client.

In	Example	4.10,	if	the	field	superclassVarA	and	the	method
superclassMethodA()	have	private	accessibility,	they	are	not	accessible	by	any
other	clients.
Click	here	to	view	code	image

public	class	SuperclassA	{
		private	int	superclassVarA;																						//	(2)	Private	member
		private	void	superclassMethodA()	{/*…*/}							//	(3)	Private	member
}

None	of	the	clients	in	Figure	4.9	can	access	these	members.	Table	4.4	provides	a	summary
of	accessibility	modifiers	for	members.

Figure	4.9	Private	Accessibility	for	Members

Table	4.4	Summary	of	Accessibility	Modifiers	for	Members

	Review	Questions

4.11	Given	the	following	declaration	of	a	class,	which	field	is	accessible	from	outside
the	package	com.corporation.project?

Click	here	to	view	code	image
package	com.corporation.project;

public	class	MyClass	{
												int	i;
		public				int	j;
		protected	int	k;
		private			int	l;
}

Select	the	one	correct	answer.

(a)	Field	i	is	accessible	in	all	classes	in	other	packages.

(b)	Field	j	is	accessible	in	all	classes	in	other	packages.

(c)	Field	k	is	accessible	in	all	classes	in	other	packages.

(d)	Field	k	is	accessible	in	subclasses	only	in	other	packages.

(e)	Field	l	is	accessible	in	all	classes	in	other	packages.

(f)	Field	l	is	accessible	in	subclasses	only	in	other	packages.

4.12	How	restrictive	is	the	default	accessibility	compared	to	public,	protected,
and	private	accessibility?

Select	the	one	correct	answer

(a)	Less	restrictive	than	public

(b)	More	restrictive	than	public,	but	less	restrictive	than	protected

(c)	More	restrictive	than	protected,	but	less	restrictive	than	private

(d)	More	restrictive	than	private

(e)	Less	restrictive	than	protected	from	within	a	package,	and	more	restrictive
than	protected	from	outside	a	package

4.13	Which	statement	is	true	about	the	accessibility	of	members?

Select	the	one	correct	answer.

(a)	A	private	member	is	always	accessible	within	the	same	package.

(b)	A	private	member	can	be	accessed	only	within	the	class	of	the	member.

(c)	A	member	with	default	accessibility	can	be	accessed	by	any	subclass	of	the
class	in	which	it	is	declared.

(d)	A	private	member	cannot	be	accessed	at	all.

(e)	Package/default	accessibility	for	a	member	can	be	declared	using	the	keyword
default.

4.14	Which	lines	that	are	marked	will	compile	in	the	following	code?
Click	here	to	view	code	image

//	File	name:	A.java
package	packageA;

public	class	A	{
		protected	int	pf;
}

//	File	name:	B.java
package	packageB;
import	packageA.A;

public	class	B	extends	A	{
		void	action(A	obj1,	B	obj2,	C	obj3)	{
				pf	=	10;																//	(1)
				obj1.pf	=	10;											//	(2)
				obj2.pf	=	10;											//	(3)
				obj3.pf	=	10;											//	(4)
		}
}

class	C	extends	B	{
		void	action(A	obj1,	B	obj2,	C	obj3)	{
				pf	=	10;																//	(5)
				obj1.pf	=	10;											//	(6)
				obj2.pf	=	10;											//	(7)
				obj3.pf	=	10;											//	(8)
		}
}

class	D	{
		void	action(A	obj1,	B	obj2,	C	obj3)	{
				pf	=	10;																//	(9)
				obj1.pf	=	10;											//	(10)
				obj2.pf	=	10;											//	(11)
				obj3.pf	=	10;											//	(12)
		}
}

Select	the	five	correct	answers.

(a)	(1)

(b)	(2)

(c)	(3)

(d)	(4)

(e)	(5)

(f)	(6)

(g)	(7)

(h)	(8)

(i)	(9)

(j)	(10)

(k)	(11)

(l)	(12)

4.8	Non-Accessibility	Modifiers	for	Members
The	following	keywords	can	be	used	to	specify	certain	aspects	of	members	in	a	type
declaration:

	static

	final

	abstract

	synchronized

	native

	transient

	volatile

	Members
Static	members	belong	to	the	class	in	which	they	are	declared	and	are	not	part	of	any
instance	of	the	class.	The	declaration	of	static	members	is	prefixed	by	the	keyword
static	to	distinguish	them	from	instance	members.	Depending	on	the	accessibility
modifiers	of	the	static	members	in	a	class,	clients	can	access	these	members	by	using	the
class	name	or	through	object	references	of	the	class.	The	class	need	not	be	instantiated	to
access	its	static	members.

Static	variables	(also	called	class	variables)	exist	only	in	the	class	in	which	they	are
defined.	They	are	not	instantiated	when	an	instance	of	the	class	is	created.	In	other	words,
the	values	of	these	variables	are	not	a	part	of	the	state	of	any	object.	When	the	class	is
loaded,	static	variables	are	initialized	to	their	default	values	if	no	explicit	initialization
expression	is	specified.

Static	methods	are	also	known	as	class	methods.	A	static	method	in	a	class	can	directly
access	other	static	members	in	the	class.	It	cannot	access	instance	(i.e.,	non-static)
members	of	the	class	directly,	as	there	is	no	notion	of	an	object	associated	with	a	static
method.

A	typical	static	method	might	perform	some	task	on	behalf	of	the	whole	class	or	for
objects	of	the	class.	In	Example	4.11,	the	static	variable	counter	keeps	track	of	the
number	of	instances	of	the	Light	class	that	have	been	created.	The	example	shows	that
the	static	method	writeCount()	can	access	static	members	directly,	as	shown	at	(2),
but	not	non-static	members,	as	shown	at	(3).	The	static	variable	counter	at	(1)	will	be
initialized	to	the	default	value	0	when	the	class	is	loaded	at	runtime.	The	main()	method
at	(4)	in	the	class	Warehouse	shows	how	static	members	of	the	class	Light	can	be
accessed	using	the	class	name	and	via	object	references	of	the	type	Light.

A	summary	of	how	static	members	are	accessed	in	static	and	non-static	code	is	given	in
Table	4.1,	p.	115.

Example	4.11	Accessing	Static	Members
Click	here	to	view	code	image

class	Light	{
		//	Fields:
		int					noOfWatts;						//	Wattage
		boolean	indicator;						//	On	or	off
		String		location;							//	Placement

		//	Static	variable
		static	int	counter;					//	Number	of	Light	objects	created										(1)

		//	Non-zero	argument	constructor
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
				++counter;										//	Increment	counter.
		}

		//	Static	method
		public	static	void	writeCount()	{
				System.out.println(“Number	of	lights:	”	+	counter);									//	(2)
				//	Compile-time	error.	Field	noOfWatts	is	not	accessible:
				//	System.out.println(“Number	of	Watts:	”	+	noOfWatts);					//	(3)
		}
}
//__
public	class	Warehouse	{
		public	static	void	main(String[]	args)	{																						//	(4)

				Light.writeCount();																														//	Invoked	using	class
name
				Light	light1	=	new	Light(100,	true,	“basement”);	//	Create	an	object
				System.out.println(
								“Value	of	counter:	”	+	Light.counter									//	Accessed	via	class
name
);
				Light	light2	=	new	Light(200,	false,	“garage”);		//	Create	another	object
				light2.writeCount();																													//	Invoked	using
reference
				Light	light3	=	new	Light(300,	true,	“kitchen”);		//	Create	another	object
				System.out.println(
								“Value	of	counter:	”	+	light3.counter								//	Accessed	via
reference
);
		}
}

Output	from	the	program:
Number	of	lights:	0
Value	of	counter:	1
Number	of	lights:	2
Value	of	counter:	3

	Members
A	final	variable	is	a	constant	despite	being	called	a	variable.	Its	value	cannot	be
changed	once	it	has	been	initialized.	Instance	and	static	variables	can	be	declared	as
final.	Note	that	the	keyword	final	can	also	be	applied	to	local	variables,	including
formal	parameters	of	a	method.	Declaring	a	variable	as	final	has	the	following
implications:

•	A	final	variable	of	a	primitive	data	type	cannot	change	its	value	once	it	has	been
initialized.

•	A	final	variable	of	a	reference	type	cannot	change	its	reference	value	once	it	has
been	initialized.	This	effectively	means	that	a	final	reference	will	always	refer	to
the	same	object.	However,	the	keyword	final	has	no	bearing	on	whether	the	state
of	the	object	denoted	by	the	reference	can	be	changed.

•	After	the	constructor	exits,	the	final	fields	of	a	object	are	all	guaranteed	to	be
initialized.	The	compiler	ensures	that	the	class	provides	the	appropriate	code	to
initialize	the	final	fields.

A	final	variable	must	be	explicitly	initialized	only	once	with	an	initializer	expression,
either	in	its	declaration	or	in	an	initializer	block	(§9.7,	p.	399).	A	final	instance	variable
can	also	be	initialized	in	a	constructor.

Note	that	a	final	local	variable	need	not	be	initialized	in	its	declaration,	but	it	must	be
initialized	in	the	code	once	before	it	is	used.	These	variables	are	also	known	as	blank	final
variables.	For	a	discussion	of	final	parameters,	see	§3.5,	p.	80.

A	final	method	in	a	class	is	a	concrete	method	(that	is,	has	an	implementation)	and
cannot	be	overridden	in	any	subclass	(§7.2,	p.	268).

Variables	declared	as	final	ensure	that	values	cannot	be	changed	and	methods	declared
as	final	ensure	that	behavior	cannot	be	changed.	Classes	declared	as	final	are
discussed	in	§4.6,	p.	122.

The	compiler	may	be	able	to	perform	code	optimizations	for	final	members,	because
certain	assumptions	can	be	made	about	such	members.

Static	final	variables	are	commonly	used	to	define	manifest	constants	(also	called	named
constants)—for	example,	Integer.MAX_VALUE,	which	is	the	maximum	int	value.
Variables	defined	in	an	interface	are	implicitly	final	(§7.6,	p.	290).

In	Example	4.12,	the	class	Light	defines	two	public	static	final	variables	at
(1)	and	(2).	The	public	static	final	variable	KWH_PRICE	is	initialized	in	the
declaration	at	(1),	and	the	public	static	final	variable	MANUFACTURER	is
initialized	in	the	static	initializer	block	at	(3).	An	attempt	to	change	the	value	of	the
public	static	final	variable	KWH_PRICE	at	(9)	results	in	a	compile-time	error.

The	class	Light	also	defines	two	final	instance	variables	at	(4)	and	(5).	The	final
instance	variable	color	is	initialized	in	the	instance	initializer	block	at	(6),	and	the

final	instance	variable	energyRating	is	initialized	in	the	constructor	at	(7).

The	class	Light	also	defines	a	final	method	at	(8).	The	subclass	TubeLight
attempts	to	override	the	final	method	setWatts()	from	the	superclass	Light	at
(10),	which	is	not	permitted.

The	class	Warehouse	also	defines	a	final	local	reference	workLight	at	(11).	The
state	of	the	object	denoted	by	the	reference	workLight	is	changed	at	(12),	but	its
reference	value	cannot	be	changed	as	attempted	at	(13).	Another	final	local	reference
alarmLight	is	declared	at	(14),	but	it	is	not	initialized.	The	compiler	reports	an	error
when	an	attempt	is	made	to	use	this	reference	at	(15).

Example	4.12	Using	final	Modifier
Click	here	to	view	code	image

class	Light	{
		//	Static	final	variables
		public	static	final	double	KWH_PRICE	=	3.25;			//	(1)
		public	static	final	String	MANUFACTURER;							//	(2)

		static	{																																							//	Static	initializer	block
				MANUFACTURER	=	“Ozam”;																							//	(3)	Initializes	(2)
		}

		//	Instance	variables
		int	noOfWatts;
		final	String	color;																												//	(4)
		final	String	energyRating;																					//	(5)

		{																																														//	Instance	initializer
block
				color	=	“off	white”;																									//	(6)	Initializes	(4)
		}

		//	Constructor
		Light()	{
				energyRating	=	“A++”;																								//	(7)	Initializes	(5)
		}

		//	Final	instance	method																										(8)
		final	public	void	setWatts(int	watt)	{
				noOfWatts	=	watt;
		}

		public	void	setKWH()	{
				//	KWH_PRICE	=	4.10;																	//	(9)	Not	OK.	Cannot	be	changed.
		}
}
//__
class	TubeLight	extends	Light	{
		//	Final	method	in	superclass	cannot	be	overridden.
		//	This	method	will	not	compile.
		/*
				@Override
				public	void	setWatts(int	watt)	{					//	(10)	Attempt	to	override.
									noOfWatts	=	2*watt;
				}
			*/

}
//__
public	class	Warehouse	{
		public	static	void	main(String[]	args)	{

				final	Light	workLight	=	new	Light();	//	(11)	Final	local	variable.
				workLight.setWatts(100);													//	(12)	OK.	Changing	object	state.
//		workLight	=	new	Light();													//	(13)	Not	OK.	Changing	final
reference.

				final	Light	alarmLight;														//	(14)	Not	initialized.
//		alarmLight.setWatts(200);												//	(15)	Not	OK.

				System.out.println(“KWH_PRICE:				”	+	Light.KWH_PRICE);
				System.out.println(“MANUFACTURER:	”	+	Light.MANUFACTURER);
				System.out.println(“noOfWatts:				”	+	workLight.noOfWatts);
				System.out.println(“color:								”	+	workLight.color);
				System.out.println(“energyRating:	”	+	workLight.energyRating);
		}
}

Output	from	the	program:
KWH_PRICE:				3.25
MANUFACTURER:	Ozam
noOfWatts:				100
color:								off	white
energyRating:	A++

	Methods
An	abstract	method	in	an	abstract	class	has	the	following	syntax:
Click	here	to	view	code	image

accessibility_modifier	abstract	return_type	method_name
(formal_parameter_list)
					throws_clause;

An	abstract	method	does	not	have	an	implementation;	that	is,	no	method	body	is	defined
for	an	abstract	method,	and	only	the	method	header	is	provided	in	the	class	declaration.
The	keyword	abstract	is	mandatory	in	the	header	of	an	abstract	method	declared	in	a
class.	Its	class	is	then	incomplete	and	must	be	explicitly	declared	as	abstract	(§4.6,	p.
120).	Subclasses	of	an	abstract	class	must	then	provide	the	method	implementation;
otherwise,	they	must	also	be	declared	as	abstract.	The	accessibility	of	an	abstract
method	declared	in	a	top-level	class	cannot	be	private,	as	subclasses	would	not	be	able
to	override	the	method	and	provide	an	implementation.	See	§4.6,	where	Example	4.9	also
illustrates	the	use	of	abstract	methods.

Only	an	instance	method	can	be	declared	as	abstract.	Since	static	methods	cannot	be
overridden,	declaring	an	abstract	static	method	makes	no	sense,	and	the	compiler	will
report	an	error.	A	final	method	cannot	be	abstract	(i.e.,	cannot	be	incomplete),	and
vice	versa.	The	keyword	abstract	can	be	specified	only	in	combination	with	the
public	or	protected	accessibility	modifier.

Abstract	methods	specified	in	a	top-level	interface	are	implicitly	abstract,	and	the

keyword	abstract	is	seldom	specified	in	their	method	headers.	These	methods	can
have	only	public	accessibility.	See	§7.6,	p.	291,	for	a	discussion	of	abstract	methods	in
top-level	interfaces.

	Methods
A	thread	is	an	independent	path	of	execution	in	a	program.	Several	threads	can	be
executing	in	a	program.	They	might	try	to	execute	several	methods	on	the	same	object
simultaneously.	Methods	can	be	declared	as	synchronized	if	it	is	desired	that	only	one
thread	at	a	time	be	able	to	execute	a	method	of	the	object.	Their	execution	is	then	mutually
exclusive	among	all	threads.	At	any	given	time,	at	most	one	thread	can	be	executing	a
synchronized	method	on	an	object.	This	discussion	also	applies	to	static
synchronized	methods	of	a	class.

In	Example	4.13,	both	the	push()	method,	declared	at	(1),	and	the	pop()	method,
declared	at	(2),	are	synchronized	in	the	class	StackImpl.	Only	one	thread	at	a	time
can	execute	a	synchronized	method	in	an	object	of	the	class	StackImpl.
Consequently,	it	is	not	possible	for	the	state	of	an	object	of	the	class	StackImpl	to	be
corrupted,	for	example,	while	one	thread	is	pushing	an	element	and	another	is	attempting
to	pop	the	stack.

Example	4.13	Synchronized	Methods
Click	here	to	view	code	image

class	StackImpl	{																//	Non-generic	partial	implementation
		private	Object[]	stackArray;
		private	int	topOfStack;
		//	…
		synchronized	public	void	push(Object	elem)	{	//	(1)
				stackArray[++topOfStack]	=	elem;
		}

		synchronized	public	Object	pop()	{											//	(2)
				Object	obj	=	stackArray[topOfStack];
				stackArray[topOfStack]	=	null;
				topOfStack—;
				return	obj;
		}

		//	Other	methods,	etc.
		public	Object	peek()	{	return	stackArray[topOfStack];	}
}

	Methods
Native	methods	are	methods	whose	implementation	is	not	defined	in	Java	but	rather	in
another	programming	language,	such	as	C	or	C++.	Such	a	method	can	be	declared	as	a
member	in	a	Java	class	declaration.	Since	its	implementation	appears	elsewhere,	only	the
method	header	is	specified	in	the	class	declaration.	The	keyword	native	is	mandatory	in
the	method	header.	A	native	method	can	also	specify	checked	exceptions	in	a	throws
clause	(§6.9,	p.	251),	but	the	compiler	cannot	check	them,	since	the	method	is	not
implemented	in	Java.

The	Java	Native	Interface	(JNI)	is	a	special	API	that	allows	Java	methods	to	invoke	native
functions	implemented	in	C.

In	the	following	example,	a	native	method	in	the	class	Native	is	declared	at	(2).	The
class	also	uses	a	static	initializer	block	to	load	the	native	library	when	the	class	is	loaded.
Clients	of	the	Native	class	can	call	the	native	method	like	any	another	method,	as	at
(3).
Click	here	to	view	code	image

class	Native	{

		/*
			*	The	static	block	ensures	that	the	native	method	library
			*	is	loaded	before	the	native	method	is	called.
			*/
		static	{
				System.loadLibrary(“NativeMethodLib”);		//	(1)	Load	native	library.
		}

		native	void	nativeMethod();															//	(2)	Native	method	header.
		//	…

}

class	Client	{
		//…
		public	static	void	main(String[]	args)	{
				Native	trueNative	=	new	Native();
				trueNative.nativeMethod();														//	(3)	Native	method	call.
		}
		//…
}

	Fields
Often	it	is	desirable	to	save	the	state	of	an	object—for	example,	on	a	file.	Such	objects	are
said	to	be	persistent.	In	Java,	the	state	of	an	object	can	be	stored	using	serialization.
Serialization	transforms	objects	into	an	output	format	that	is	conducive	for	storing	objects.
Objects	can	later	be	retrieved	in	the	same	state	as	when	they	were	serialized,	meaning	that
all	fields	included	in	the	serialization	will	have	the	same	values	as	at	the	time	of
serialization.

Sometimes	the	value	of	a	field	in	an	object	should	not	be	saved,	in	which	case	the	field
can	be	specified	as	transient	in	the	class	declaration.	This	designation	implies	that	its
value	should	not	be	saved	when	objects	of	the	class	are	written	to	persistent	storage.	In	the

following	example,	the	field	currentTemperature	is	declared	as	transient	at	(1),
because	the	current	temperature	is	most	likely	to	have	changed	when	the	object	is	restored
at	a	later	date.	However,	the	value	of	the	field	mass,	declared	at	(2),	is	likely	to	remain
unchanged.	When	objects	of	the	class	Experiment	are	serialized,	the	value	of	the	field
currentTemperature	will	not	be	saved,	but	that	of	the	field	mass	will	be,	as	part	of
the	state	of	the	serialized	object.
Click	here	to	view	code	image

class	Experiment	implements	Serializable	{
		//	…

		//	The	value	of	currentTemperature	will	not	persist.
		transient	int	currentTemperature;					//	(1)	Transient	value.

		double	mass;																										//	(2)	Persistent	value.

}

Specifying	the	transient	modifier	for	static	variables	is	redundant	and,	therefore,
discouraged.	Static	variables	are	not	part	of	the	persistent	state	of	a	serialized	object.

	Fields
During	execution,	compiled	code	might	cache	the	values	of	fields	for	efficiency	reasons.
Since	multiple	threads	can	access	the	same	field,	it	is	vital	that	caching	is	not	allowed	to
cause	inconsistencies	when	reading	and	writing	the	value	in	the	field.	The	volatile
modifier	can	be	used	to	inform	the	compiler	that	it	should	not	attempt	to	perform
optimizations	on	the	field,	which	could	cause	unpredictable	results	when	the	field	is
accessed	by	multiple	threads.

In	the	simple	example	that	follows,	the	value	of	the	field	clockReading	might	be
changed	unexpectedly	by	another	thread	while	one	thread	is	performing	a	task	that
involves	always	using	the	current	value	of	the	field	clockReading.	Declaring	the	field
as	volatile	ensures	that	a	write	operation	will	always	be	performed	on	the	master	field
variable,	and	a	read	operation	will	always	return	the	correct	current	value.
Click	here	to	view	code	image

class	VitalControl	{
		//	…
		volatile	long	clockReading;
		//	Two	successive	reads	might	give	different	results.

}

Table	4.5	provides	a	summary	of	non-accessibility	modifiers	for	members.

Table	4.5	Summary	of	Non-Accessibility	Modifiers	for	Members

	Review	Questions

4.15	Which	statements	about	the	use	of	modifiers	are	true?

Select	the	two	correct	answers.

(a)	If	no	accessibility	modifier	(public,	protected,	or	private)	is	specified
for	a	member	declaration,	the	member	is	accessible	only	by	classes	in	the
package	of	its	class	and	by	subclasses	of	its	class	in	any	package.

(b)	You	cannot	specify	accessibility	of	local	variables.	They	are	accessible	only
within	the	block	in	which	they	are	declared.

(c)	Subclasses	of	a	class	must	reside	in	the	same	package	as	the	class	they	extend.

(d)	Local	variables	can	be	declared	as	static.

(e)	The	objects	themselves	do	not	have	any	accessibility	modifiers;	only	field
references	do.

4.16	Given	the	following	source	code,	which	comment	line	can	be	uncommented
without	introducing	errors?

Click	here	to	view	code	image
abstract	class	MyClass	{
		abstract	void	f();
		final				void	g()	{}
//final				void	h()	{}																									//	(1)

		protected	static	int	i;
		private										int	j;
}

final	class	MyOtherClass	extends	MyClass	{
//MyOtherClass(int	n)	{	m	=	n;	}															//	(2)

		public	static	void	main(String[]	args)	{
				MyClass	mc	=	new	MyOtherClass();
		}

		void	f()	{}
		void	h()	{}
//void	k()	{	i++;	}																												//	(3)
//void	l()	{	j++;	}																												//	(4)

		int	m;
}

Select	the	one	correct	answer.

(a)	(1)

(b)	(2)

(c)	(3)

(d)	(4)

4.17	Which	statement	is	true?

Select	the	one	correct	answer.

(a)	A	static	method	can	call	other	non-static	methods	in	the	same	class	by	using	the
this	keyword.

(b)	A	class	may	contain	both	static	and	non-static	variables,	and	both	static	and
non-static	methods.

(c)	Each	object	of	a	class	has	its	own	instance	of	the	static	variables	declared	in	the
class.

(d)	Instance	methods	may	access	local	variables	of	static	methods.

(e)	All	methods	in	a	class	are	implicitly	passed	the	this	reference	as	an	argument,
when	invoked.

4.18	Which	one	of	these	is	not	a	legal	member	declaration	within	a	class?

Select	the	one	correct	answer.

(a)	static	int	a;

(b)	final	Object[]	fudge	=	{	null	};

(c)	abstract	int	t;

(d)	native	void	sneeze();

(e)	static	final	private	double	PI	=

3.14159265358979323846;

4.19	Which	statements	about	modifiers	are	true?

Select	the	two	correct	answers.

(a)	Abstract	classes	can	declare	final	methods.

(b)	Fields	can	be	declared	as	native.

(c)	Non-abstract	methods	can	be	declared	in	abstract	classes.

(d)	Classes	can	be	declared	as	native.

(e)	Abstract	classes	can	be	declared	as	final.

4.20	Which	statement	is	true?

Select	the	one	correct	answer.

(a)	The	values	of	transient	fields	will	not	be	saved	during	serialization.

(b)	Constructors	can	be	declared	as	abstract.

(c)	The	initial	state	of	an	array	object	constructed	with	the	statement	int[]	a	=
new	int[10]	will	depend	on	whether	the	array	variable	a	is	a	local	variable
or	a	field.

(d)	A	subclass	of	a	class	with	an	abstract	method	must	provide	an
implementation	for	the	abstract	method.

(e)	Only	static	methods	can	access	static	members.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	The	structure	of	a	Java	source	file

•	Defining,	using,	and	deploying	packages

•	Class	scope	for	members,	and	block	scope	for	local	variables

•	Accessibility	(default,	public)	and	other	modifiers	(abstract,	final)	for
reference	types

•	Applicability	of	member	accessibility	(default,	public,	protected,	private)
and	other	member	modifiers	(static,	final,	abstract,	synchronized,
native,	transient,	volatile)

	Programming	Exercise

4.1	Design	a	class	for	a	bank	database.	The	database	should	support	the	following
operations:

	Deposit	a	certain	amount	into	an	account

	Withdraw	a	certain	amount	from	an	account

	Get	the	balance	(i.e.,	the	current	amount)	in	an	account

	Transfer	an	amount	from	one	account	to	another

The	amount	in	the	transactions	is	a	value	of	type	double.	The	accounts	are
identified	by	instances	of	the	class	Account	that	is	in	the
package		com.megabankcorp.records.	The	database	class	should	be	placed
in	a	package	called	com.megabankcorp.system.

The	deposit,	withdraw,	and	balance	operations	should	not	have	any	implementation,
but	should	allow	subclasses	to	provide	the	implementation.	The	transfer	operation
should	use	the	deposit	and	withdraw	operations	to	implement	the	transfer.	It	should
not	be	possible	to	alter	this	operation	in	any	subclass,	and	only	classes	within	the
package	com.megabankcorp.system	should	be	allowed	to	use	this	operation.
The	deposit	and	withdraw	operations	should	be	accessible	in	all	packages.	The
balance	operation	should	be	accessible	only	in	subclasses	and	classes	within	the
package	com.megabankcorp.system.

5.	Operators	and	Expressions

5.1	Conversions
In	this	section	we	first	discuss	the	different	kinds	of	type	conversions	that	can	be	applied
to	values;	in	the	next	section	we	discuss	the	contexts	in	which	these	conversions	are
permitted.	Some	type	conversions	must	be	explicitly	stated	in	the	program,	while	others
are	performed	implicitly.	Some	type	conversions	can	be	checked	at	compile	time	to
guarantee	their	validity	at	runtime,	while	others	will	require	an	extra	check	at	runtime.

Widening	and	Narrowing	Primitive	Conversions
For	the	primitive	data	types,	the	value	of	a	narrower	data	type	can	be	converted	to	a	value
of	a	wider	data	type.	This	is	called	a	widening	primitive	conversion.	Widening	conversions
from	one	primitive	type	to	the	next	wider	primitive	type	are	summarized	in	Figure	5.1.
The	conversions	shown	are	transitive.	For	example,	an	int	can	be	directly	converted	to	a
double	without	first	having	to	convert	it	to	a	long	and	a	float.

Figure	5.1	Widening	Primitive	Conversions

Note	that	the	target	type	of	a	widening	primitive	conversion	has	a	wider	range	of	values
than	the	source	type—for	example,	the	range	of	the	long	type	subsumes	the	range	of	the
int	type.	In	widening	conversions	between	integral	types,	the	source	value	remains
intact,	with	no	loss	of	magnitude	information.	However,	a	widening	conversion	from	an
int	or	a	long	value	to	a	float	value,	or	from	a	long	value	to	a	double	value,	may
result	in	a	loss	of	precision.	The	floating-point	value	in	the	target	type	is	then	a	correctly
rounded	approximation	of	the	integer	value.	Note	that	precision	relates	to	the	number	of
significant	bits	in	the	value,	and	must	not	be	confused	with	magnitude,	which	relates	how
big	a	value	can	be	represented.

Converting	from	a	wider	primitive	type	to	a	narrower	primitive	type	is	called	a	narrowing
primitive	conversion;	it	can	result	in	loss	of	magnitude	information,	and	possibly	in	a	loss
of	precision	as	well.	Any	conversion	that	is	not	a	widening	primitive	conversion	according
to	Figure	5.1	is	a	narrowing	primitive	conversion.	The	target	type	of	a	narrowing	primitive
conversion	has	a	narrower	range	of	values	than	the	source	type—for	example,	the	range
of	the	int	type	does	not	include	all	the	values	in	the	range	of	the	long	type.

Note	that	all	conversions	between	char	and	the	two	integer	types	byte	and	short	are
considered	narrowing	primitive	conversions.	The	reason	is	that	the	conversions	between
the	unsigned	type	char	and	the	signed	types	byte	or	short	can	result	in	loss	of
information.	These	narrowing	conversions	are	done	in	two	steps:	first	converting	the
source	value	to	the	int	type,	and	then	converting	the	int	value	to	the	target	type.

Widening	primitive	conversions	are	usually	done	implicitly,	whereas	narrowing	primitive
conversions	usually	require	a	cast	(§5.2,	p.	148).	It	is	not	illegal	to	use	a	cast	for	a
widening	conversion.	However,	the	compiler	will	flag	any	conversion	that	requires	a	cast
if	none	has	been	specified.	Regardless	of	any	loss	of	magnitude	or	precision,	widening	and
narrowing	primitive	conversions	never	result	in	a	runtime	exception.

Ample	examples	of	widening	and	narrowing	primitive	conversions	can	be	found	in	this
chapter.

Widening	and	Narrowing	Reference	Conversions
The	subtype–supertype	relationship	between	reference	types	determines	which
conversions	are	permissible	between	them.	Conversions	up	the	type	hierarchy	are	called
widening	reference	conversions	(also	called	upcasting).	Such	a	conversion	converts	from	a
subtype	to	a	supertype:
Click	here	to	view	code	image

Object	obj	=	“Upcast	me”;		//	Widening:	Object	<–—	String

Conversions	down	the	type	hierarchy	represent	narrowing	reference	conversions	(also
called	downcasting):
Click	here	to	view	code	image

String	str	=	(String)	obj;	//	Narrowing	requires	cast:	String	<–—	Object

A	subtype	is	a	narrower	type	than	its	supertype	in	the	sense	that	it	is	a	specialization	of	its
supertype.	Contexts	under	which	reference	conversions	can	occur	are	discussed	in	§7.8,	p.
311.

Widening	reference	conversions	are	usually	done	implicitly,	whereas	narrowing	reference
conversions	usually	require	a	cast,	as	illustrated	in	the	second	declaration	statement	in	this
subsection.	The	compiler	will	reject	casts	that	are	not	legal	or	issue	an	unchecked	warning
under	certain	circumstances	if	type	safety	cannot	be	guaranteed.

Widening	reference	conversions	do	not	require	any	runtime	checks	and	never	result	in	an
exception	during	execution.	This	is	not	the	case	for	narrowing	reference	conversions,
which	require	a	runtime	check	and	can	throw	a	ClassCastException	if	the
conversion	is	not	legal.

Boxing	and	Unboxing	Conversions
Boxing	and	unboxing	conversions	allow	interoperability	between	primitive	values	and
their	representation	as	objects	of	the	wrapper	types	(§8.3,	p.	346).

A	boxing	conversion	converts	the	value	of	a	primitive	type	to	a	corresponding	value	of	its
wrapper	type.	If	p	is	a	value	of	a	primitiveType,	boxing	conversion	converts	p	into	a
reference	r	of	the	corresponding	WrapperType,	such	that	r.primitiveTypeValue()	==
p.	In	the	code	that	follows,	the	int	value	10	results	in	an	object	of	the	type	Integer
implicitly	being	created;	this	object	contains	the	int	value	10.	We	say	that	the	int	value
10	has	been	boxed	in	an	object	of	the	wrapper	type	Integer.	The	terminology
autoboxed	is	also	used	for	this	conversion.
Click	here	to	view	code	image

Integer	iRef	=	10;																												//	Boxing:	Integer	<–—	int
System.out.println(iRef.intValue()	==	10);				//	true

An	unboxing	conversion	converts	the	value	of	a	wrapper	type	to	a	value	of	its
corresponding	primitive	type.	If	r	is	a	reference	of	a	WrapperType,	an	unboxing
conversion	converts	the	reference	r	into	r.primitiveTypeValue(),	where	primitiveType
is	the	primitive	type	corresponding	to	the	WrapperType.	In	the	next	code	snippet,	the	value
in	the	Integer	object	referenced	by	iRef	is	implicitly	converted	to	the	int	type.	We

say	that	the	wrapper	object	has	been	unboxed	to	its	corresponding	primitive	type.
Click	here	to	view	code	image

int	i	=	iRef;																																	//	Unboxing:	int	<–—	Integer
System.out.println(iRef.intValue()	==	i);					//	true

Note	that	both	boxing	and	unboxing	are	done	implicitly	in	the	right	context.	Boxing
allows	primitive	values	to	be	used	where	an	object	of	their	wrapper	type	is	expected,	and
unboxing	allows	the	converse.	Unboxing	makes	it	possible	to	use	a	Boolean	wrapper
object	as	a	boolean	value	in	a	boolean	expression,	and	to	use	an	integral	wrapper	object
as	an	integral	primitive	value	in	an	arithmetic	expression.	Unboxing	a	wrapper	reference
that	has	the	null	value	results	in	a	NullPointerException.	Ample	examples	of
boxing	and	unboxing	can	be	found	in	this	chapter	and	in	§7.8,	p.	311.

Other	Conversions
We	briefly	mention	some	other	conversions,	and	identify	where	they	are	covered	in	this
book.

•	Identity	conversions	are	always	permitted,	as	they	allow	conversions	from	a	type	to
that	same	type.	An	identity	conversion	is	always	permitted.

Click	here	to	view	code	image
int	i	=	(int)	10;																			//	int	<–-	int
String	str	=	(String)	“Hi”;									//	String	<–-	String

•	String	conversions	allow	a	value	of	any	other	type	to	be	converted	to	a	String
type	in	the	context	of	the	string	concatenation	operator	+	(§5.8,	p.	174).

•	Unchecked	conversions	are	permitted	to	facilitate	operability	between	legacy	and
generic	code	(§10.1,	p.	416).

5.2	Type	Conversion	Contexts
Selected	conversion	contexts	and	the	conversions	that	are	applicable	in	these	contexts	are
summarized	in	Table	5.1.	The	conversions	shown	in	each	context	occur	implicitly,	without
the	program	having	to	take	any	special	action.	For	other	conversion	contexts,	see	§5.1,	p.
146.

Table	5.1	Selected	Conversion	Contexts	and	Conversion	Categories

Assignment	Context
Assignment	conversions	that	can	occur	in	an	assignment	context	are	shown	in	the	second
column	of	Table	5.1.	An	assignment	conversion	converts	the	type	of	an	expression	to	the
type	of	a	target	variable.

An	expression	(or	its	value)	is	assignable	to	the	target	variable,	if	the	type	of	the
expression	can	be	converted	to	the	type	of	the	target	variable	by	an	assignment
conversion.	Equivalently,	the	type	of	the	expression	is	assignment	compatible	with	the
type	of	the	target	variable.

For	assignment	conversion	involving	primitive	data	types,	see	§5.6,	p.	158.	Note	the
special	case	where	a	narrowing	conversion	occurs	when	assigning	a	non-long	integer
constant	expression:
Click	here	to	view	code	image

byte	b	=	10;			//	Narrowing	conversion:	byte	<–	int

For	assignment	conversions	involving	reference	types,	see	§7.8,	p.	311.

Method	Invocation	Context
Method	invocation	conversions	that	can	occur	in	a	method	invocation	context	are	shown
in	the	third	column	of	Table	5.1.	Note	that	method	invocation	and	assignment	conversions
differ	in	one	respect:	Method	invocation	conversions	do	not	include	the	implicit	narrowing
conversion	performed	for	non-long	integral	constant	expressions.
Click	here	to	view	code	image

//	Assignment:	(1)	Implicit	narrowing	followed	by	(2)	boxing.
Character	space1	=	32;					//	Character	<-(2)—	char	<-(1)—	int

//	Invocation	of	method	with	signature:	valueOf(char)
Character	space2	=	Character.valueOf(32);							//	Compile-time	error!
																																																//	Call	signature:
valueOf(int)
Character	space3	=	Character.valueOf((char)32);	//	OK!
																																																//	Call	signature:
valueOf(char)

A	method	invocation	conversion	involves	converting	each	argument	value	in	a	method	or
constructor	call	to	the	type	of	the	corresponding	formal	parameter	in	the	method	or
constructor	declaration.

Method	invocation	conversions	involving	parameters	of	primitive	data	types	are	discussed
in	§3.5,	p.	73,	and	those	involving	reference	types	are	discussed	in	§7.8,	p.	311.

Casting	Context	of	the	Unary	Type	Cast	Operator:	(type)
Java,	being	a	strongly	typed	language,	checks	for	type	compatibility	(i.e.,	it	checks	if	a
type	can	substitute	for	another	type	in	a	given	context)	at	compile	time.	However,	some
checks	are	possible	only	at	runtime	(e.g.,	which	type	of	object	a	reference	actually	denotes
during	execution).	In	cases	where	an	operator	would	have	incompatible	operands	(e.g.,
assigning	a	double	to	an	int),	Java	demands	that	a	type	cast	be	used	to	explicitly
indicate	the	type	conversion.	The	type	cast	construct	has	the	following	syntax:

(type)	expression

The	cast	operator	(type)	is	applied	to	the	value	of	the	expression.	At	runtime,	a	cast
results	in	a	new	value	of	type,	which	best	represents	the	value	of	the	expression	in	the	old
type.	We	use	the	term	casting	to	mean	applying	the	cast	operator	for	explicit	type
conversion.

However,	in	the	context	of	casting,	implicit	casting	conversions	can	take	place.	These
casting	conversions	are	shown	in	the	fourth	column	of	Table	5.1.	Casting	conversions
include	more	conversion	categories	than	the	assignment	or	the	method	invocation
conversions.	In	the	code	that	follows,	the	comments	indicate	the	category	of	the
conversion	that	takes	place	because	of	the	cast	operator	on	the	right-hand	side	of	each
assignment—although	casts	are	only	necessary	for	the	sake	of	the	assignment	at	(1)	and
(2).
Click	here	to	view	code	image

long	l	=	(long)	10;			//	Widening	primitive	conversion:	long	<–	int
int	i	=	(int)	l;						//	(1)	Narrowing	primitive	conversion:	int	<–	long
Object	obj	=	(Object)	“7Up”;	//	Widening	ref	conversion:	Object	<–	String
String	str	=	(String)	obj;			//	(2)	Narrowing	ref	conversion:	String	<–
Object
Integer	iRef	=	(Integer)	i;		//	Boxing:	Integer	<–	int
i	=	(int)	iRef;														//	Unboxing:	int	<–	Integer

A	casting	conversion	is	applied	to	the	value	of	the	operand	expression	of	a	cast	operator.
Casting	can	be	applied	to	primitive	values	as	well	as	references.	Casting	between
primitive	data	types	and	reference	types	is	not	permitted,	except	where	boxing	and
unboxing	is	applicable.	Boolean	values	cannot	be	cast	to	other	data	values,	and	vice	versa.
The	reference	literal	null	can	be	cast	to	any	reference	type.

Examples	of	casting	between	primitive	data	types	are	provided	in	this	chapter.	Casting
reference	values	is	discussed	in	§7.11,	p.	320.

Numeric	Promotion	Context
Numeric	operators	allow	only	operands	of	certain	types.	Numeric	promotion	results	in
conversions	being	applied	to	the	operands	to	convert	them	to	permissible	types.	Numeric
promotion	conversions	that	can	occur	in	a	numeric	promotion	context	are	shown	in	the
fifth	column	of	Table	5.1.	Permissible	conversion	categories	are	widening	primitive
conversions	and	unboxing	conversions.	A	distinction	is	made	between	unary	and	binary
numeric	promotion.

Unary	Numeric	Promotion

Unary	numeric	promotion	proceeds	as	follows:

•	If	the	single	operand	is	of	type	Byte,	Short,	Character,	or	Integer,	it	is
unboxed.	If	the	resulting	value	is	narrower	than	int,	it	is	promoted	to	a	value	of
type	int	by	a	widening	conversion.

•	Otherwise,	if	the	single	operand	is	of	type	Long,	Float,	or	Double,	it	is	unboxed.

•	Otherwise,	if	the	single	operand	is	of	a	type	narrower	than	int,	its	value	is
promoted	to	a	value	of	type	int	by	a	widening	conversion.

•	Otherwise,	the	operand	remains	unchanged.

In	other	words,	unary	numeric	promotion	results	in	an	operand	value	that	is	either	int	or
wider.

Unary	numeric	promotion	is	applied	in	the	following	expressions:

•	Operand	of	the	unary	arithmetic	operators	+	and	-	(§5.7,	p.	163)

•	Array	creation	expression;	for	example,	new	int[20],	where	the	dimension
expression	(in	this	case	20)	must	evaluate	to	an	int	value	(§3.4,	p.	59)

•	Indexing	array	elements;	for	example,	objArray['a'],	where	the	index
expression	(in	this	case	'a')	must	evaluate	to	an	int	value	(§3.4,	p.	61)

Binary	Numeric	Promotion

Binary	numeric	promotion	implicitly	applies	appropriate	widening	primitive	conversions
so	that	a	pair	of	operands	have	the	widest	numeric	type	of	the	two,	which	is	always	at	least
int.	If	T	is	the	widest	numeric	type	of	the	two	operands	after	any	unboxing	conversions
have	been	performed,	the	operands	are	promoted	as	follows	during	binary	numeric
promotion:

If	T	is	wider	than	int,	both	operands	are	converted	to	T;	otherwise,	both	operands	are
converted	to	int.

This	means	that	the	resulting	type	of	the	operands	is	at	least	int.

Binary	numeric	promotion	is	applied	in	the	following	expressions:

•	Operands	of	the	arithmetic	operators	*,	/,	%,	+,	and	-	(§5.7,	p.	163)

•	Operands	of	the	relational	operators	<,	<=,	>,	and	>=	(§5.11,	p.	180)

•	Operands	of	the	numerical	equality	operators	==	and	!=	(§5.12,	p.	181)

•	Operands	of	the	conditional	operator	?	:,	under	certain	circumstances	(§5.16,	p.
194)

5.3	Precedence	and	Associativity	Rules	for	Operators
Precedence	and	associativity	rules	are	necessary	for	deterministic	evaluation	of
expressions.	The	operators	are	summarized	in	Table	5.2.	The	majority	of	them	are
discussed	in	subsequent	sections	in	this	chapter.	See	also	the	index	entries	for	these
operators.

Table	5.2	Operator	Summary

The	following	remarks	apply	to	Table	5.2:

•	The	operators	are	shown	with	decreasing	precedence	from	the	top	of	the	table.

•	Operators	within	the	same	row	have	the	same	precedence.

•	Parentheses,	(),	can	be	used	to	override	precedence	and	associativity.

•	The	unary	operators,	which	require	one	operand,	include	the	following:	the	postfix
increment	(++)	and	decrement	(--)	operators	from	the	first	row,	all	the	prefix
operators	(+,	-,	++,	--,	~,	!)	in	the	second	row,	and	the	prefix	operators	(object
creation	operator	new,	cast	operator	(type))	in	the	third	row.

•	The	conditional	operator	(?	:)	is	ternary—that	is,	it	requires	three	operands.

•	All	operators	not	identified	previously	as	unary	or	ternary	are	binary—that	is,	they
require	two	operands.

•	All	binary	operators,	except	for	the	relational	and	assignment	operators,	associate
from	left	to	right.	The	relational	operators	are	nonassociative.

•	Except	for	unary	postfix	increment	and	decrement	operators,	all	unary	operators,	all
assignment	operators,	and	the	ternary	conditional	operator	associate	from	right	to
left.

Depending	on	the	context,	brackets	([]),	parentheses	(()),	colon	(:)	and	the	dot	operator
(.)	can	also	be	interpreted	as	separators	(§2.1,	p.	29).	See	the	index	entries	for	these
separators	for	more	details.

Precedence	rules	are	used	to	determine	which	operator	should	be	applied	first	if	there	are
two	operators	with	different	precedence,	and	these	operators	follow	each	other	in	the
expression.	In	such	a	case,	the	operator	with	the	highest	precedence	is	applied	first.

The	expression	2	+	3	*	4	is	evaluated	as	2	+	(3	*	4)	(with	the	result	14)	since	*
has	higher	precedence	than	+.

Associativity	rules	are	used	to	determine	which	operator	should	be	applied	first	if	there	are
two	operators	with	the	same	precedence,	and	these	operators	follow	each	other	in	the
expression.

Left	associativity	implies	grouping	from	left	to	right:	The	expression	7	-	4	+	2	is
interpreted	as	((7	-	4)	+	2),	since	the	binary	operators	+	and	-	both	have	same
precedence	and	left	associativity.

Right	associativity	implies	grouping	from	right	to	left:	The	expression	-	-	4	is
interpreted	as	(-	(-	4))	(with	the	result	4),	since	the	unary	operator	-	has	right
associativity.

The	precedence	and	associativity	rules	together	determine	the	evaluation	order	of	the
operators.

5.4	Evaluation	Order	of	Operands
To	understand	the	result	returned	by	an	operator,	it	is	important	to	understand	the
evaluation	order	of	its	operands.	In	general,	the	operands	of	operators	are	evaluated	from
left	to	right.	The	evaluation	order	also	respects	any	parentheses,	and	the	precedence	and
associativity	rules	of	operators.

Examples	illustrating	how	the	operand	evaluation	order	influences	the	result	returned	by
an	operator,	can	be	found	in	§5.6	and	§5.9.

Left-Hand	Operand	Evaluation	First
The	left-hand	operand	of	a	binary	operator	is	fully	evaluated	before	the	right-hand	operand
is	evaluated.

The	evaluation	of	the	left-hand	operand	can	have	side	effects	that	can	influence	the	value
of	the	right-hand	operand.	For	example,	in	the	code
Click	here	to	view	code	image

int	b	=	10;
System.out.println((b=3)	+	b);

the	value	printed	will	be	6	and	not	13.	The	evaluation	proceeds	as	follows:
Click	here	to	view	code	image

(b=3)	+	b
						3			+	b						b	is	assigned	the	value	3
						3			+	3

						6

If	evaluation	of	the	left-hand	operand	of	a	binary	operator	throws	an	exception	(§6.5,	p.
230),	we	cannot	rely	on	the	presumption	that	the	right-hand	operand	has	been	evaluated.

Operand	Evaluation	before	Operation	Execution
Java	guarantees	that	all	operands	of	an	operator	are	fully	evaluated	before	the	actual
operation	is	performed.	This	rule	does	not	apply	to	the	short-circuit	conditional	operators
&&,	||,	and	?:.

This	rule	also	applies	to	operators	that	throw	an	exception	(the	integer	division	operator	/
and	the	integer	remainder	operator	%).	The	operation	is	performed	only	if	the	operands
evaluate	normally.	Any	side	effects	of	the	right-hand	operand	will	have	been	effectuated
before	the	operator	throws	an	exception.

Example	5.1	illustrates	the	evaluation	order	of	the	operands	and	precedence	rules	for
arithmetic	expressions.	We	use	the	eval()	method	at	(3)	in	Example	5.1	to	demonstrate
integer	expression	evaluation.	The	first	argument	to	this	method	is	the	operand	value	that
is	returned	by	the	method,	and	the	second	argument	is	a	string	to	identify	the	evaluation
order.

The	argument	to	the	println()	method	in	the	statement	at	(1)	is	an	integer	expression
to	evaluate	2	+	3	*	4.	The	evaluation	of	each	operand	in	the	expression	at	(1)	results	in	a
call	of	the	eval()	method	declared	at	(3).
Click	here	to	view	code	image

out.println(eval(j++,	”	+	“)	+	eval(j++,	”	*	“)	*	eval(j,	“\n”));		//	(1)

The	output	from	Example	5.1	shows	that	the	operands	were	evaluated	first,	from	left	to
right,	before	operator	execution,	and	that	the	expression	was	evaluated	as	(2	+	(3	*
4)),	respecting	the	precedence	rules	for	arithmetic	expression	evaluation.	Note	how	the
value	of	variable	j	changes	successively	from	left	to	right	as	the	first	two	operands	are
evaluated.

Example	5.1	Evaluation	Order	of	Operands	and	Arguments
Click	here	to	view	code	image

import	static	java.lang.System.out;

public	class	EvalOrder{
		public	static	void	main(String[]	args){

				int	j	=	2;
				out.println(“Evaluation	order	of	operands:”);
				out.println(eval(j++,	”	+	“)	+	eval(j++,	”	*	“)	*	eval(j,	“\n”));				//
(1)

				int	i	=	1;
				out.println(“Evaluation	order	of	arguments:”);
				add3(eval(i++,	“,	“),	eval(i++,	“,	“),	eval(i,	“\n”));	//	(2)	Three
arguments.
		}

		public	static	int	eval(int	operand,	String	str)	{								//	(3)
				out.print(operand	+	str);							//	Print	int	operand	and	String	str.
				return	operand;																	//	Return	int	operand.
		}

		public	static	void	add3(int	operand1,	int	operand2,	int	operand3)	{				//
(4)
				out.print(operand1	+	operand2	+	operand3);
		}
}

Output	from	the	program:
Evaluation	order	of	operands:
2	+	3	*	4
14
Evaluation	order	of	arguments:
1,	2,	3
6

Left-to-Right	Evaluation	of	Argument	Lists
In	a	method	or	constructor	invocation,	each	argument	expression	in	the	argument	list	is
fully	evaluated	before	any	argument	expression	to	its	right.

If	evaluation	of	an	argument	expression	does	not	complete	normally,	we	cannot	presume
that	any	argument	expression	to	its	right	has	been	evaluated.

We	can	use	the	add3()	method	at	(4)	in	Example	5.1,	which	takes	three	arguments,	to
demonstrate	the	order	in	which	the	arguments	in	a	method	call	are	evaluated.	The	method
call	at	(2)
Click	here	to	view	code	image

add3(eval(i++,	“,	“),	eval(i++,	“,	“),	eval(i,	“\n”));		//	(2)	Three
arguments.

results	in	the	following	output,	clearly	indicating	that	the	arguments	were	evaluated	from
left	to	right,	before	being	passed	to	the	method:

1,	2,	3

6

Note	how	the	value	of	variable	i	changes	successively	from	left	to	right	as	the	first	two
arguments	are	evaluated.

5.5	Representing	Integers
Integer	data	types	in	Java	represent	signed	integer	values,	meaning	both	positive	and
negative	integer	values.	The	values	of	char	type	can	effectively	be	regarded	as	unsigned
16-bit	integers.

Values	of	type	byte	are	represented	as	shown	in	Table	5.3.	A	value	of	type	byte
requires	8	bits.	With	8	bits,	we	can	represent	28	or	256	values.	Java	uses	two’s
complement	(explained	later)	to	store	signed	values	of	integer	data	types.	For	the	byte
data	type,	this	means	values	are	in	the	range	–128	(i.e.,	–27)	to	+127	(i.e.,	27–1),	inclusive.

Table	5.3	Representing	Signed	byte	Values	Using	Two’s	Complement

Bits	in	an	integral	value	are	usually	numbered	from	right	to	left,	starting	with	the	least
significant	bit	0	(also	called	the	rightmost	bit).	The	representation	of	the	signed	types	sets

the	most	significant	bit	to	1,	indicating	negative	values.	Adding	1	to	the	maximum	int
value	2147483647	results	in	the	minimum	value	-2147483648,	such	that	the	values
wrap	around	for	integers	and	no	overflow	or	underflow	is	indicated.

Calculating	Two’s	Complement
Before	we	look	at	the	two’s	complement,	we	need	to	understand	the	one’s	complement.
The	one’s	complement	of	a	binary	integer	is	computed	by	inverting	the	bits	in	the	number.
Thus,	the	one’s	complement	of	the	binary	number	00101001	is	11010110.	The	one’s
complement	of	a	binary	number	N2	is	denoted	as	~N2.	The	following	relations	hold
between	a	binary	integer	N2,	its	one’s	complement	~N2,	and	its	two’s	complement	–N2:

–N2	=	~N2	+	1

0	=	–N2	+	N2

If	N2	is	a	positive	binary	integer,	then	–N2	denotes	its	negative	binary	value,	and	vice
versa.	The	second	relation	states	that	adding	a	binary	integer	N2	to	its	two’s	complement	–
N2	equals	0.

Given	a	positive	byte	value,	say	41,	the	binary	representation	of	-41	can	be	found	as
follows:

Adding	a	number	N2	to	its	two’s	complement	–N2	gives	0,	and	the	carry	bit	from	the
addition	of	the	most	significant	bits	(after	any	necessary	extension	of	the	operands)	is
ignored:

Subtraction	between	two	integers	is	also	computed	as	addition	with	two’s	complement:

N2	–	M2	=	N2	+	(–M2)

For	example,	the	expression	4110	–	310	(with	the	correct	result	3810)	is	computed	as
follows:

The	previous	discussion	of	byte	values	applies	equally	to	values	of	other	integer	types:
short,	int,	and	long.	These	types	have	their	values	represented	by	two’s	complement
in	16,	32,	and	64	bits,	respectively.

Converting	Binary	Numbers	to	Decimals
A	binary	number	can	be	converted	to	its	equivalent	decimal	value	by	computing	the
positional	values	of	its	digits.	Each	digit	in	the	binary	number	contributes	to	the	final
decimal	value	by	virtue	of	its	position,	starting	with	position	0	(units)	for	the	rightmost
digit	in	the	number.	The	positional	value	of	each	digit	is	given	by

digit	×	base	position

The	number	1010012	corresponds	to	4110	in	the	decimal	number	system:

The	same	technique	can	be	used	to	convert	a	number	from	any	base,	for	example,	octal
(base	8)	or	hexadecimal	(base	16),	to	its	equivalent	representation	in	the	decimal	number
system.

Converting	Decimals	to	Binary	Numbers
To	convert	decimals	to	binaries,	we	reverse	the	process	outlined	previously	for	converting
a	binary	to	a	decimal.

The	divisor	used	in	these	steps	is	the	base	of	the	target	number	system	(binary,	base	2).
The	binary	value,	1010012,	is	represented	by	the	remainders,	with	the	last	remainder	as

the	leftmost	bit.

Analogously,	we	can	apply	this	procedure	for	converting	an	octal	(base	8)	or	hexadecimal
(base	16)	number	to	its	binary	equivalent.

Relationships	among	Binary,	Octal,	and	Hexadecimal	Numbers
We	need	3	bits	to	represent	all	the	octal	digits	(8	=	23)	and	4	bits	to	represent	all	the
hexadecimal	digits	(16	=	24).	We	can	use	this	fact	to	convert	among	the	binary,	octal,	and
hexadecimal	systems,	as	shown	in	Figure	5.2.

Figure	5.2	Converting	among	Binary,	Octal,	and	Hexadecimal	Numbers

The	procedure	for	converting	an	octal	to	a	binary	is	shown	by	the	arrow	marked	(a).	We
can	convert	an	octal	number	to	its	equivalent	binary	number	by	replacing	each	digit	in	the
octal	number	by	its	3-bit	equivalent	binary	value.

Analogously,	we	can	convert	a	hexadecimal	number	to	its	equivalent	binary	number	by
replacing	each	digit	in	the	hexadecimal	number	by	its	4-bit	equivalent	binary	value,	as
shown	by	the	arrow	marked	(b).

To	convert	a	binary	to	its	octal	equivalent,	we	reverse	the	procedure	outlined	earlier
(arrow	marked	(c)	in	Figure	5.2).	The	bits	in	the	binary	number	are	grouped	into	3-bit
groups	from	right	to	left.	Each	such	group	is	replaced	by	its	equivalent	octal	digit.
Analogously,	we	can	convert	a	binary	to	a	hexadecimal	number	by	replacing	each	4-bit
group	by	its	equivalent	hexadecimal	digit	(arrow	marked	(d)	in	Figure	5.2).

5.6	The	Simple	Assignment	Operator	
The	assignment	statement	has	the	following	syntax:

variable	=	expression

which	can	be	read	as	“the	target,	variable,	gets	the	value	of	the	source,	expression.”	The
previous	value	of	the	target	variable	is	overwritten	by	the	assignment	operator	=.

The	target	variable	and	the	source	expression	must	be	assignment	compatible.	The	target

variable	must	also	have	been	declared.	Since	variables	can	store	either	primitive	values	or
reference	values,	expression	evaluates	to	either	a	primitive	value	or	a	reference	value.

Assigning	Primitive	Values
The	following	examples	illustrate	assignment	of	primitive	values:
Click	here	to	view	code	image

int	j,	k;
j	=	0b10;									//	j	gets	the	value	2.
j	=	5;												//	j	gets	the	value	5.	Previous	value	is	overwritten.
k	=	j;												//	k	gets	the	value	5.

The	assignment	operator	has	the	lowest	precedence,	so	that	the	expression	on	the	right-
hand	side	is	evaluated	before	the	assignment	is	done.
Click	here	to	view	code	image

int	i;
i	=	5;												//	i	gets	the	value	5.
i	=	i	+	1;								//	i	gets	the	value	6.	+	has	higher	precedence	than	=.
i	=	20	-	i	*	2;			//	i	gets	the	value	8:	(20	-	(i	*	2))

Assigning	References
Copying	reference	values	by	assignment	creates	aliases,	which	are	discussed	in	§1.3,	p.	6.
The	following	example	recapitulates	that	discussion:
Click	here	to	view	code	image

Pizza	pizza1	=	new	Pizza(“Hot&Spicy”);
Pizza	pizza2	=	new	Pizza(“Sweet&Sour”);

pizza2	=	pizza1;

The	variable	pizza1	is	a	reference	to	a	pizza	that	is	hot	and	spicy,	and	pizza2	is	a
reference	to	a	pizza	that	is	sweet	and	sour.	Assigning	pizza1	to	pizza2	means	that
pizza2	now	refers	to	the	same	pizza	as	pizza1,	the	hot	and	spicy	one.	After	the
assignment,	these	variables	are	aliases	and	either	one	can	be	used	to	manipulate	the	hot
and	spicy	Pizza	object.

Assigning	a	reference	value	does	not	create	a	copy	of	the	source	object	denoted	by	the
reference	variable	on	the	right-hand	side.	It	merely	assigns	the	reference	value	of	the
variable	on	the	right-hand	side	to	the	variable	on	the	left-hand	side,	so	that	they	denote	the
same	object.	Reference	assignment	also	does	not	copy	the	state	of	the	source	object	to	any
object	denoted	by	the	reference	variable	on	the	left-hand	side.

A	more	detailed	discussion	of	reference	assignment	can	be	found	in	§7.8,	p.	311.

Multiple	Assignments
The	assignment	statement	is	an	expression	statement,	which	means	that	application	of	the
binary	assignment	operator	returns	the	value	of	the	expression	on	the	right-hand	side.
Click	here	to	view	code	image

int	j,	k;
j	=	10;									//	j	gets	the	value	10,	which	is	returned

k	=	j;										//	k	gets	the	value	of	j,	which	is	10,	and	this	value	is
returned

The	last	two	assignments	can	be	written	as	multiple	assignments,	illustrating	the	right
associativity	of	the	assignment	operator:
Click	here	to	view	code	image

k	=	j	=	10;					//	(k	=	(j	=	10))

Multiple	assignments	are	equally	valid	with	references:
Click	here	to	view	code	image

Pizza	pizzaOne,	pizzaTwo;
pizzaOne	=	pizzaTwo	=	new	Pizza(“Supreme”);	//	Aliases

The	following	example	shows	the	effect	of	operand	evaluation	order:
Click	here	to	view	code	image

int[]	a	=	{10,	20,	30,	40,	50};	//	An	array	of	int
int	index	=	4;
a[index]	=	index	=	2;											//	(1)

What	is	the	value	of	index,	and	which	array	element	a[index]	is	assigned	a	value	in
the	multiple	assignment	statement	at	(1)?	The	evaluation	proceeds	as	follows:
Click	here	to	view	code	image

a[index]	=	index	=	2;
a[4]					=	index	=	2;
a[4]					=	(index	=	2);								//	index	gets	the	value	2.	=	is	right
associative.
a[4]					=						2;													//	The	value	of	a[4]	is	changed	from	50	to	2.

The	following	declaration	statement	will	not	compile,	as	the	variable	v2	has	not	been
declared:
Click	here	to	view	code	image

int	v1	=	v2	=	2016;												//	Only	v1	is	declared.	Compile-time	error!

Type	Conversions	in	an	Assignment	Context
If	the	target	and	the	source	have	the	same	type	in	an	assignment,	then,	obviously,	the
source	and	the	target	are	assignment	compatible	and	the	source	value	need	not	be
converted.	Otherwise,	if	a	widening	primitive	conversion	is	permissible,	then	the	widening
conversion	is	applied	implicitly;	that	is,	the	source	type	is	converted	to	the	target	type	in
an	assignment	context.
Click	here	to	view	code	image

//	Widening	Primitive	Conversions
int				smallOne	=	1234;															//	No	widening	necessary.
long			bigOne			=	2000;															//	Widening:	int	to	long.
double	largeOne	=	bigOne;													//	Widening:	long	to	double.
double	hugeOne		=	(double)	bigOne;				//	Cast	redundant	but	allowed.

A	widening	primitive	conversion	can	result	in	loss	of	precision.	In	the	next	example,	the
precision	of	the	least	significant	bits	of	the	long	value	may	be	lost	when	it	is	converting
to	a	float	value:
Click	here	to	view	code	image

long	bigInteger	=	98765432112345678L;
float	fpNum	=	bigInteger;		//	Widening	but	loss	of	precision:	9.8765436E16

Additionally,	implicit	narrowing	primitive	conversions	on	assignment	can	occur	in	cases
where	all	of	the	following	conditions	are	fulfilled:

•	The	source	is	a	constant	expression	of	either	byte,	short,	char,	or	int	type.

•	The	target	type	is	either	byte,	short,	or	char	type.

•	The	value	of	the	source	is	determined	to	be	in	the	range	of	the	target	type	at	compile
time.

A	constant	expression	is	an	expression	that	denotes	either	a	primitive	or	a	String	literal,
and	is	composed	of	operands	that	can	be	only	literals	or	constant	variables,	and	operators
that	can	be	evaluated	only	at	compile	time	(for	example,	arithmetic	and	numerical
comparison	operators,	but	not	increment/decrement	operators	and	method	calls).	A
constant	variable	is	a	final	variable	of	either	a	primitive	type	or	String	type	that	is
initialized	with	a	constant	expression.
Click	here	to	view	code	image

int	result	=	100;															//	Not	a	constant	variable.	Not	declared
final.
final	char	finalGrade	=	‘A’;				//	Constant	variable.
System.out.printf(“%d%n%s%n%d%n%.2f%n%b%n%d%n%d%n”,
				2106,																							//	Constant	expression.
				“Trust	”	+	“me!”,											//	Constant	expression.
				2	+	3	*	4,																		//	Constant	expression.
				Math.PI	*	Math.PI	*	10.0,			//	Constant	expression.
				finalGrade	==	‘A’,										//	Constant	expression.
				Math.min(2015,	2016),							//	Not	constant	expression.	Method	call.
				++result																				//	Not	constant	expression.	Increment
operator.
);

Here	are	some	examples	that	illustrate	how	the	conditions	mentioned	previously	affect
narrowing	primitive	conversions:
Click	here	to	view	code	image

//	Conditions	fulfilled	for	implicit	narrowing	primitive	conversions.
short	s1	=	10;							//	int	value	in	range.
short	s2	=	‘a’;						//	char	value	in	range.
char	c1	=	32;								//	int	value	in	range.
char	c2	=	(byte)35;		//	byte	value	in	range.	(int	value	in	range,	without
cast.)
byte	b1	=	40;								//	int	value	in	range.
byte	b2	=	(short)40;	//	short	value	in	range.	(int	value	in	range,	without
cast.)
final	int	i1	=	20;			//	Constant	variable
byte	b3	=	i1;								//	final	value	of	i1	in	range.

All	other	narrowing	primitive	conversions	will	produce	a	compile-time	error	on
assignment	and	will	explicitly	require	a	cast.	Here	are	some	examples:
Click	here	to	view	code	image

//	Conditions	not	fulfilled	for	implicit	narrowing	primitive	conversions.
//	A	cast	is	required.
int	i2	=	-20;												//	i2	is	not	a	constant	variable.	i2	is	not	final.
final	int	i3	=	i2;							//	i3	is	not	a	constant	variable,	since	i2	is	not.

final	int	i4	=	200;						//	i4	is	a	constant	variable.
final	int	i5;												//	i5	is	not	a	constant	variable.
short	s3	=	(short)	i2;			//	Not	constant	expression.
char		c3	=	(char)		i3;			//	Final	value	of	i3	not	determinable	at	compile
time.
char		c4	=	(char)		i2;			//	Not	constant	expression.
byte		b4	=	(byte)		128;		//	int	value	not	in	range.
byte		b5	=	(byte)		i4;			//	Value	of	constant	variable	i4	is	not	in	range.
i5	=	100;																//	Initialized	at	runtime.
short	s4	=	(short)	i5;			//	Final	value	of	i5	not	determinable	at	compile
time.

Floating-point	values	are	truncated	when	cast	to	integral	values.
Click	here	to	view	code	image

//	The	value	is	truncated	to	fit	the	size	of	the	target	type.
float	huge			=	(float)	1.7976931348623157d;		//	double	to	float.
long		giant		=	(long)		4415961481999.03D;				//	(1)	double	to	long.
int			big				=	(int)			giant;																//	(2)	long	to	int.
short	small		=	(short)	big;																		//	(3)	int	to	short.
byte		tiny			=	(byte)		small;																//	(4)	short	to	byte.
char		symbol	=	(char)		112.5F;															//	(5)	float	to	char.

Table	5.4	shows	how	the	values	are	truncated	for	assignments	from	(1)	to	(5).

Table	5.4	Examples	of	Truncated	Values

The	discussion	of	numeric	assignment	conversions	also	applies	to	numeric	parameter
values	at	method	invocation	(§3.5,	p.	73),	except	for	the	narrowing	conversions,	which
always	require	a	cast.

The	following	examples	illustrate	boxing	and	unboxing	in	an	assignment	context:
Click	here	to	view	code	image

Boolean			boolRef	=	true;		//	Boxing.
Byte						bRef	=		2;							//	Constant	in	range:	narrowing,	then	boxing.
//	Byte		bRef2	=		257;					//	Constant	not	in	range.	Compile-time	error!

short	s	=	10;														//	Narrowing	from	int	to	short.
//	Integer			iRef1	=	s;				//	short	not	assignable	to	Integer.
Integer	iRef3	=	(int)	s;			//	Explicit	widening	with	cast	to	int	and	boxing

boolean	bv1	=	boolRef;					//	Unboxing.
byte		b1	=	bRef;											//	Unboxing.
int			iVal	=	bRef;									//	Unboxing	and	widening.

Integer	iRefVal	=	null;											//	Always	allowed.
//	int	j	=	iRefVal;															//	NullPointerException	at	runtime.
if	(iRef3	!=	null)	iVal	=	iRef3;		//	Avoid	exception	at	runtime.

	Review	Questions

5.1	Given	the	following	declaration:
char	c	=	‘A’;

What	is	the	simplest	way	to	convert	the	character	value	in	c	to	an	int?

Select	the	one	correct	answer.

(a)	int	i	=	c;

(b)	int	i	=	(int)	c;

(c)	int	i	=	Character.getNumericValue(c);

5.2	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Assignment	{
		public	static	void	main(String[]	args)	{
				int	a,	b,	c;
				b	=	10;
				a	=	b	=	c	=	20;
				System.out.println(a);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile,	since	the	compiler	will	report	that	the	variable
c	in	the	multiple	assignment	statement	a	=	b	=	c	=	20;	has	not	been
initialized.

(b)	The	program	will	fail	to	compile,	because	the	multiple	assignment	statement	a
=	b	=	c	=	20;	is	illegal.

(c)	The	code	will	compile,	and	print	10	at	runtime.

(d)	The	code	will	compile,	and	print	20	at	runtime.

5.3	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				String	a,	b,	c;
				c	=	new	String(“mouse”);
				a	=	new	String(“cat”);
				b	=	a;
				a	=	new	String(“dog”);
				c	=	b;

				System.out.println(c);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	print	mouse	at	runtime.

(c)	The	program	will	print	cat	at	runtime.

(d)	The	program	will	print	dog	at	runtime.

(e)	The	program	will	randomly	print	either	cat	or	dog	at	runtime.

5.7	Arithmetic	Operators:	 ,	 ,	 ,	 ,	
Arithmetic	operators	are	used	to	construct	mathematical	expressions	as	in	algebra.	Their
operands	are	of	numeric	type	(which	includes	the	char	type).

Arithmetic	Operator	Precedence	and	Associativity
In	Table	5.5,	the	precedence	of	the	operators	appears	in	decreasing	order,	starting	from	the
top	row,	which	has	the	highest	precedence.	Unary	subtraction	has	higher	precedence	than
multiplication.	The	operators	in	the	same	row	have	the	same	precedence.	Binary
multiplication,	division,	and	remainder	operators	have	the	same	precedence.	The	unary
operators	have	right	associativity,	and	the	binary	operators	have	left	associativity.

Table	5.5	Arithmetic	Operators

Evaluation	Order	in	Arithmetic	Expressions
Java	guarantees	that	the	operands	are	fully	evaluated	from	left	to	right	before	an	arithmetic
binary	operator	is	applied.	If	evaluation	of	an	operand	results	in	an	error,	the	subsequent
operands	will	not	be	evaluated.

In	the	expression	a	+	b	*	c,	the	operand	a	will	always	be	fully	evaluated	before	the
operand	b,	which	will	always	be	fully	evaluated	before	the	operand	c.	However,	the
multiplication	operator	*	will	be	applied	before	the	addition	operator	+,	respecting	the
precedence	rules.	Note	that	a,	b,	and	c	are	arbitrary	arithmetic	expressions	that	have	been
determined	to	be	the	operands	of	the	operators.

Example	5.1,	p.	153,	illustrates	the	evaluation	order	and	precedence	rules	for	arithmetic
expressions.

Range	of	Numeric	Values
As	we	have	seen,	all	numeric	types	have	a	range	of	valid	values	(§2.2,	p.	37).	This	range	is
given	by	the	constants	named	MAX_VALUE	and	MIN_VALUE,	which	are	defined	in	each
numeric	wrapper	type.

The	arithmetic	operators	are	overloaded,	meaning	that	the	operation	of	an	operator	varies
depending	on	the	type	of	its	operands.	Floating-point	arithmetic	is	performed	if	any

operand	of	an	operator	is	of	floating-point	type;	otherwise,	integer	arithmetic	is
performed.

Values	that	are	out	of	range	or	are	the	results	of	invalid	expressions	are	handled	differently
depending	on	whether	integer	or	floating-point	arithmetic	is	performed.

Integer	Arithmetic

Integer	arithmetic	always	returns	a	value	that	is	in	range,	except	in	the	case	of	integer
division	by	zero	and	remainder	by	zero,	which	cause	an	ArithmeticException	(see
the	later	discussion	of	the	division	operator	/	and	the	remainder	operator	%).	A	valid	value
does	not	necessarily	mean	that	the	result	is	correct,	as	demonstrated	by	the	following
examples:
Click	here	to	view	code	image

int	tooBig			=	Integer.MAX_VALUE	+	1;				//	-2147483648	which	is
Integer.MIN_VALUE.
int	tooSmall	=	Integer.MIN_VALUE	-	1;				//		2147483647	which	is
Integer.MAX_VALUE.

These	results	should	be	values	that	are	out	of	range.	However,	integer	arithmetic	wraps
round	if	the	result	is	out	of	range;	that	is,	the	result	is	reduced	modulo	in	the	range	of	the
result	type.	To	avoid	wrapping	round	of	out-of-range	values,	programs	should	either	use
explicit	checks	or	a	wider	type.	If	the	type	long	is	used	in	the	earlier	examples,	the
results	would	be	correct	in	the	long	range:
Click	here	to	view	code	image

long	notTooBig			=	Integer.MAX_VALUE	+	1L;			//		2147483648L	in	range.
long	notTooSmall	=	Integer.MIN_VALUE	-	1L;			//	-2147483649L	in	range.

Floating-Point	Arithmetic

Certain	floating-point	operations	result	in	values	that	are	out	of	range.	Typically,	adding	or
multiplying	two	very	large	floating-point	numbers	can	result	in	an	out	of-range	value	that
is	represented	by	infinity	(Figure	5.3).	Attempting	floating-point	division	by	zero	also
returns	infinity.	The	following	examples	show	how	this	value	is	printed	as	signed	infinity:
Click	here	to	view	code	image

System.out.println(4.0	/	0.0);									//	Prints:		Infinity
System.out.println(-4.0	/	0.0);									//	Prints:	-Infinity

Figure	5.3	Overflow	and	Underflow	in	Floating-Point	Arithmetic

Both	positive	and	negative	infinity	represent	overflow	to	infinity;	that	is,	the	value	is	too
large	to	be	represented	as	a	double	or	float	(Figure	5.3).	Signed	infinity	is	represented
by	the	named	constants	POSITIVE_INFINITY	and	NEGATIVE_INFINITY	in	the
wrapper	classes	java.lang.Float	and	java.lang.Double.	A	value	can	be
compared	with	these	constants	to	detect	overflow.

Floating-point	arithmetic	can	also	result	in	underflow	to	zero,	when	the	value	is	too	small
to	be	represented	as	a	double	or	float	(Figure	5.3).	Underflow	occurs	in	the	following
situations:

•	The	result	is	between	Double.MIN_VALUE	(or	Float.MIN_VALUE)	and	zero,
as	with	the	result	of	(5.1E-324	-	4.9E-324).	Underflow	then	returns	positive
zero	0.0	(or	0.0F).

•	The	result	is	between	-Double.MIN_VALUE	(or	-Float.MIN_VALUE)	and
zero,	as	with	the	result	of	(-Double.MIN_VALUE	*	1E-1).	Underflow	then
returns	negative	zero	-0.0	(or	-0.0F).

Negative	zero	compares	equal	to	positive	zero;	in	other	words,	(-0.0	==	0.0)	is
true.

Certain	operations	have	no	mathematical	result,	and	are	represented	by	NaN	(Not	a
Number).	For	example,	calculating	the	square	root	of	-1	results	in	NaN.	Another	example
is	(floating-point)	dividing	zero	by	zero:
Click	here	to	view	code	image

System.out.println(0.0	/	0.0);								//	Prints:	NaN

NaN	is	represented	by	the	constant	named	NaN	in	the	wrapper	classes
java.lang.Float	and	java.lang.Double.	Any	operation	involving	NaN
produces	NaN.	Any	comparison	(except	inequality	!=)	involving	NaN	and	any	other
value	(including	NaN)	returns	false.	An	inequality	comparison	of	NaN	with	another
value	(including	NaN)	always	returns	true.	However,	the	recommended	way	of	checking
a	value	for	NaN	is	to	use	the	static	method	isNaN()	defined	in	both	wrapper	classes,
java.lang.Float	and	java.lang.Double.

Strict	Floating-Point	Arithmetic:	strictfp

Although	floating-point	arithmetic	in	Java	is	defined	in	accordance	with	the	IEEE-754	32-
bit	(float)	and	64-bit	(double)	standard	formats,	the	language	does	allow	JVM
implementations	to	use	other	extended	formats	for	intermediate	results.	This	means	that
floating-point	arithmetic	can	give	different	results	on	such	JVMs,	with	possible	loss	of
precision.	Such	a	behavior	is	termed	non-strict,	in	contrast	to	being	strict	and	adhering	to
the	standard	formats.

To	ensure	that	identical	results	are	produced	on	all	JVMs,	the	keyword	strictfp	can	be
used	to	enforce	strict	behavior	for	floating-point	arithmetic.	The	modifier	strictfp	can
be	applied	to	classes,	interfaces,	and	methods.	A	strictfp	method	ensures	that	all	code
in	the	method	is	executed	strictly.	If	a	class	or	interface	is	declared	to	be	strictfp,	then
all	code	(in	methods,	initializers,	and	nested	classes	and	interfaces)	is	executed	strictly.	If
the	expression	is	determined	to	be	in	a	strictfp	construct,	it	is	executed	strictly.
Strictness,	however,	is	not	inherited	by	the	subclasses	or	subinterfaces.	Constant
expressions	are	always	evaluated	strictly	at	compile	time.

Unary	Arithmetic	Operators:	 ,	
The	unary	operators	have	the	highest	precedence	of	all	the	arithmetic	operators.	The	unary
operator	-	negates	the	numeric	value	of	its	operand.	The	following	example	illustrates	the
right	associativity	of	the	unary	operators:
Click	here	to	view	code	image

int	value	=	-	-10;														//	(-(-10))	is	10

Notice	the	blank	needed	to	separate	the	unary	operators;	otherwise,	these	would	be
interpreted	as	the	decrement	operator	--	(§5.9,	p.	176),	which	would	result	in	a	compile-
time	error	because	a	literal	cannot	be	decremented.	The	unary	operator	+	has	no	effect	on
the	evaluation	of	the	operand	value.

Multiplicative	Binary	Operators:	 ,	 ,	

Multiplication	Operator:	*

The	multiplication	operator	*	multiplies	two	numbers.
Click	here	to	view	code	image

int				sameSigns					=	-4				*	-8;			//	result:		32

double	oppositeSigns	=		4				*	-8.0;	//	Widening	of	int	4	to	double.	result:
-32.0
int				zero										=		0				*	-0;			//	result:			0

Division	Operator:	/

The	division	operator	/	is	overloaded.	If	its	operands	are	integral,	the	operation	results	in
integer	division.
Click	here	to	view	code	image

int				i1	=	4		/	5;			//	result:	0
int				i2	=	8		/	8;			//	result:	1
double	d1	=	12	/	8;			//	result:	1.0;	integer	division,	then	widening
conversion

Integer	division	always	returns	the	quotient	as	an	integer	value;	that	is,	the	result	is
truncated	toward	zero.	Note	that	the	division	performed	is	integer	division	if	the	operands
have	integral	values,	even	if	the	result	will	be	stored	in	a	floating-point	type.	The	integer
value	is	subjected	to	a	widening	conversion	in	the	assignment	context.

An	ArithmeticException	is	thrown	when	integer	division	with	zero	is	attempted,
meaning	that	integer	division	by	zero	is	an	illegal	operation.

If	any	of	the	operands	is	a	floating-point	type,	the	operation	performs	floating-point
division,	where	relevant	operand	values	undergo	binary	numeric	promotion:
Click	here	to	view	code	image

double	d2	=	4.0	/	8;						//	result:	0.5
double	d3	=	8	/	8.0;						//	result:	1.0
float	d4		=	12.0F	/	8;				//	result:	1.5F

double	result1	=	12.0	/	4.0	*	3.0;							//	((12.0	/	4.0)	*	3.0)	which	is	9.0
double	result2	=	12.0	*	3.0	/	4.0;							//	((12.0	*	3.0)	/	4.0)	which	is	9.0

Remainder	Operator:	%

In	mathematics,	when	we	divide	a	number	(the	dividend)	by	another	number	(the	divisor),
the	result	can	be	expressed	in	terms	of	a	quotient	and	a	remainder.	For	example,	when	7	is
divided	by	5,	the	quotient	is	1	and	the	remainder	is	2.	The	remainder	operator	%	returns	the
remainder	of	the	division	performed	on	the	operands.
Click	here	to	view	code	image

int	quotient		=	7	/	5;			//	Integer	division	operation:	1
int	remainder	=	7	%	5;			//	Integer	remainder	operation:	2

For	integer	remainder	operation,	where	only	integer	operands	are	involved,	evaluation	of
the	expression	(x	%	y)	always	satisfies	the	following	relation:

x	==	(x	/	y)	*	y	+	(x	%	y)

In	other	words,	the	right-hand	side	yields	a	value	that	is	always	equal	to	the	value	of	the
dividend.	The	following	examples	show	how	we	can	calculate	the	remainder	so	that	this
relation	is	satisfied:

The	remainder	can	be	negative	only	if	the	dividend	is	negative,	and	the	sign	of	the	divisor
is	irrelevant.	A	shortcut	to	evaluating	the	remainder	involving	negative	operands	is	the
following:	ignore	the	signs	of	the	operands,	calculate	the	remainder,	and	negate	the
remainder	if	the	dividend	is	negative.
Click	here	to	view	code	image

int		r0	=		7		%		7;					//		0
int		r1	=		7		%		5;					//		2
long	r2	=		7L	%	-5L;				//		2L
int		r3	=	-7		%		5;					//	-2
long	r4	=	-7L	%	-5L;				//	-2L
boolean	relation	=	-7L	==	(-7L	/	-5L)	*	-5L	+	r4;		//	true

An	ArithmeticException	is	thrown	if	the	divisor	evaluates	to	zero.

Note	that	the	remainder	operator	accepts	not	only	integral	operands,	but	also	floating-point
operands.	The	floating-point	remainder	r	is	defined	by	the	relation

r	==	a	-	(b	*	q)

where	a	and	b	are	the	dividend	and	the	divisor,	respectively,	and	q	is	the	integer	quotient
of	(a/b).	The	following	examples	illustrate	a	floating-point	remainder	operation:
Click	here	to	view	code	image

double		dr0	=		7.0		%		7.0;				//		0.0
float			fr1	=		7.0F	%		5.0F;			//		2.0F
double		dr1	=		7.0		%	-5.0;				//		2.0
float			fr2	=	-7.0F	%		5.0F;			//	-2.0F
double		dr2	=	-7.0		%	-5.0;				//	-2.0
boolean	fpRelation	=	dr2		==	(-7.0)	-	(-5.0)	*	(long)(-7.0	/	-5.0);		//	true
float			fr3	=	-7.0F	%		0.0F;			//	NaN

Additive	Binary	Operators:	 ,	
The	addition	operator	+	and	the	subtraction	operator	-	behave	as	their	names	imply:	They
add	and	subtract	values,	respectively.	The	binary	operator	+	also	acts	as	string
concatenation	if	any	of	its	operands	is	a	string	(§5.8,	p.	174).

Additive	operators	have	lower	precedence	than	all	the	other	arithmetic	operators.	Table	5.6
includes	examples	that	show	how	precedence	and	associativity	are	used	in	arithmetic
expression	evaluation.

Table	5.6	Examples	of	Arithmetic	Expression	Evaluation

Numeric	Promotions	in	Arithmetic	Expressions
Unary	numeric	promotion	is	applied	to	the	single	operand	of	the	unary	arithmetic
operators	-	and	+.	When	a	unary	arithmetic	operator	is	applied	to	an	operand	whose	type
is	narrower	than	int,	the	operand	is	promoted	to	a	value	of	type	int,	with	the	operation
resulting	in	an	int	value.	If	the	conditions	for	implicit	narrowing	conversion	are	not
fulfilled	(p.	160),	assigning	the	int	result	to	a	variable	of	a	narrower	type	will	require	a
cast.	This	is	demonstrated	by	the	following	example,	where	the	byte	operand	b	is
promoted	to	an	int	in	the	expression	(-b):
Click	here	to	view	code	image

byte	b	=	3;											//	int	literal	in	range.	Narrowing	conversion.
b	=	(byte)	-b;								//	Cast	required	on	assignment.

Binary	numeric	promotion	is	applied	to	operands	of	binary	arithmetic	operators.	Its
application	leads	to	type	promotion	for	the	operands,	as	explained	in	§5.2,	p.	149.	The
result	is	of	the	promoted	type,	which	is	always	type	int	or	wider.	For	the	expression	at
(1)	in	Example	5.2,	numeric	promotions	proceed	as	shown	in	Figure	5.4.	Note	the	integer
division	performed	in	evaluating	the	subexpression	(c	/	s).

Figure	5.4	Numeric	Promotion	in	Arithmetic	Expressions

Example	5.2	Numeric	Promotion	in	Arithmetic	Expressions
Click	here	to	view	code	image

public	class	NumPromotion	{
		public	static	void	main(String[]	args)	{
				byte			b	=	32;
				char			c	=	‘z’;																//	Unicode	value	122	(\u007a)
				short		s	=	256;
				int				i	=	10000;
				float		f	=	3.5F;
				double	d	=	0.5;
				double	v	=	(d	*	i)	+	(f	*	-b)	-	(c	/	s);					//	(1)	4888.0D
				System.out.println(“Value	of	v:	”	+	v);
		}
}

Output	from	the	program:
Value	of	v:	4888.0

In	addition	to	the	binary	numeric	promotions	in	arithmetic	expression	evaluation,	the
resulting	value	can	undergo	an	implicit	widening	conversion	if	assigned	to	a	variable.	In

the	first	two	declaration	statements	that	follow,	only	assignment	conversions	take	place.
Numeric	promotions	take	place	in	the	evaluation	of	the	right-hand	expression	in	the	other
declaration	statements.
Click	here	to	view	code	image

Byte			b	=	10;							//	Constant	in	range:	narrowing	and	boxing	on
assignment.
Short		s	=	20;							//	Constant	in	range:	narrowing	and	boxing	on
assignment.
char			c	=	‘z’;						//	122	(\u007a)
int				i	=	s	*	b;				//	Values	in	s	and	b	promoted	to	int:	unboxing,
widening.
long			n	=	20L	+	s;		//	Value	in	s	promoted	to	long:	unboxing,	widening.
float		r	=	s	+	c;				//	Value	in	s	is	unboxed.	This	short	value	and	the	char
																					//	value	in	c	are	promoted	to	int,	followed	by	implicit
																					//	widening	conversion	of	int	to	float	on	assignment.
double	d	=	r	+	i;				//	Value	in	i	promoted	to	float,	followed	by	implicit
																					//	widening	conversion	of	float	to	double	on	assignment.

Binary	numeric	promotion	for	operands	of	binary	operators	implies	that	each	operand	of	a
binary	operator	is	promoted	to	type	int	or	a	broader	numeric	type,	if	necessary.	As	with
unary	operators,	care	must	be	exercised	in	assigning	the	value	resulting	from	applying	a
binary	operator	to	operands	of	these	types.
Click	here	to	view	code	image

short	h	=	40;										//	OK:	int	converted	to	short.	Implicit	narrowing.
h	=	h	+	2;													//	Error:	cannot	assign	an	int	to	short.

The	value	of	the	expression	h	+	2	is	of	type	int.	Although	the	result	of	the	expression
is	in	the	range	of	short,	this	cannot	be	determined	at	compile	time.	The	assignment
requires	a	cast.

h	=	(short)	(h	+	2);			//	OK

Notice	that	applying	the	cast	operator	(short)	to	the	individual	operands	does	not	work:
Click	here	to	view	code	image

h	=	(short)	h	+	(short)	2;					//	The	resulting	value	should	be	cast.

Neither	does	the	following	approach,	which	results	in	a	compile-time	error:
Click	here	to	view	code	image

h	=	(short)	h	+	2;													//	The	resulting	value	should	be	cast.

In	this	case,	binary	numeric	promotion	leads	to	an	int	value	as	the	result	of	evaluating
the	expression	on	the	right-hand	side	and,	therefore,	requires	an	additional	cast	to	narrow
it	to	a	short	value.

Arithmetic	Compound	Assignment	Operators:	 ,	 ,	 ,	 ,	
A	compound	assignment	operator	has	the	following	syntax:

variable	op=	expression

and	the	following	semantics:
Click	here	to	view	code	image

variable	=	(type)	((variable)	op	(expression))

The	type	of	the	variable	is	type	and	the	variable	is	evaluated	only	once.	Note	the	cast	and
the	parentheses	implied	in	the	semantics.	Here	op=	can	be	any	of	the	compound
assignment	operators	specified	in	Table	5.2.	The	compound	assignment	operators	have	the
lowest	precedence	of	all	the	operators	in	Java,	allowing	the	expression	on	the	right-hand
side	to	be	evaluated	before	the	assignment.	Table	5.7	defines	the	arithmetic	compound
assignment	operators.

Table	5.7	Arithmetic	Compound	Assignment	Operators

The	implied	cast	operator,	(T),	in	the	compound	assignments	becomes	necessary	when
the	result	must	be	narrowed	to	the	target	type.	This	is	illustrated	by	the	following
examples:
Click	here	to	view	code	image

int	i	=	2;
i	*=	i	+	4;													//	(1)	Evaluated	as	i	=	(int)	((i)	*	(i	+	4)).

Integer	iRef	=	2;
iRef	*=	iRef	+	4;							//	(2)	Evaluated	as	iRef	=	(Integer)	((iRef)	*	(iRef
+	4)).

byte	b	=	2;
b	+=	10;																//	(3)	Evaluated	as	b	=	(byte)	(b	+	10).
b	=	b	+	10;													//	(4)	Will	not	compile.	Cast	is	required.

At	(1)	the	source	int	value	is	assigned	to	the	target	int	variable,	and	the	cast	operator
(int)	in	this	case	is	an	identity	conversion	(i.e.,	conversion	from	a	type	to	the	same
type).	Such	casts	are	permitted.	The	assignment	at	(2)	entails	unboxing	to	evaluate	the
expression	on	the	right-hand	side,	followed	by	boxing	to	assign	the	int	value.	However,
at	(3),	as	the	source	value	is	an	int	value	because	the	byte	value	in	b	is	promoted	to
int	to	carry	out	the	addition,	assigning	it	to	a	target	byte	variable	requires	an	implicit
narrowing	conversion.	The	situation	at	(4)	with	simple	assignment	will	not	compile,
because	implicit	narrowing	conversion	is	not	applicable.

The	variable	is	evaluated	only	once	in	the	expression,	not	twice,	as	one	might	infer	from
the	definition	of	the	compound	assignment	operator.	In	the	following	assignment,	a[i]	is
evaluated	just	once:
Click	here	to	view	code	image

int[]	a	=	new	int[]	{	2015,	2016,	2017	};
int	i	=	2;
a[i]	+=	1;						//	Evaluates	as	a[2]	=	a[2]	+	1,	and	a[2]	gets	the	value

2018.

Implicit	narrowing	conversions	are	also	applied	to	increment	and	decrement	operators
(§5.9,	p.	176).

Boolean	logical	compound	assignment	operators	are	covered	in	§5.13,	p.	184.

	Review	Questions

5.4	Which	of	the	following	expressions	will	be	evaluated	using	floating-point
arithmetic?

Select	the	three	correct	answers.

(a)	2.0	*	3.0

(b)	2	*	3

(c)	2/3	+	5/7

(d)	2.4	+	1.6

(e)	0x10	*	1L	*	300.0

5.5	What	is	the	value	of	the	expression	(1	/	2	+	3	/	2	+	0.1)?

Select	the	one	correct	answer.

(a)	1

(b)	1.1

(c)	1.6

(d)	2

(e)	2.1

5.6	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Integers	{
		public	static	void	main(String[]	args)	{
				System.out.println(0x10	+	10	+	010	+	0b10);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	When	run,	the	program	will	print	28.

(c)	When	run,	the	program	will	print	30.

(d)	When	run,	the	program	will	print	34.

(e)	When	run,	the	program	will	print	36.

(f)	When	run,	the	program	will	print	10101010.

5.7	Which	of	the	following	expressions	are	valid?

Select	the	three	correct	answers.

(a)	(-	1	-)

(b)	(+		+	1)

(c)	(+-+-+-1)

(d)	(—1)

(e)	(1	*		*	1)

(f)	(-	-1)

5.8	What	is	the	value	of	evaluating	the	following	expression:	(-	-1-3	*	10	/	5-
1)?

Select	the	one	correct	answer.

(a)	–8

(b)	–6

(c)	7

(d)	8

(e)	10

(f)	None	of	the	above

5.9	Which	of	these	assignments	are	valid?

Select	the	four	correct	answers.

(a)	short	s	=	12;

(b)	long	l	=	012;

(c)	int	other	=	(int)	true;

(d)	float	f	=	-123;

(e)	double	d	=	0x12345678;

5.8	The	Binary	String	Concatenation	Operator	
The	binary	operator	+	is	overloaded	in	the	sense	that	the	operation	performed	is
determined	by	the	type	of	the	operands.	When	one	of	the	operands	is	a	String	object,	a
string	concatenation	is	performed	rather	than	numeric	addition.	String	concatenation
results	in	a	newly	created	String	object	in	which	the	characters	in	the	string
representation	of	the	left-hand	operand	precede	the	characters	in	the	string	representation
of	the	right-hand	operand.	It	might	be	necessary	to	perform	a	string	conversion	on	the
non-String	operand	before	the	string	concatenation	can	be	performed.	The	String
class	is	discussed	in	§8.4,	p.	357.

A	string	conversion	is	performed	on	the	non-String	operand	as	follows:

•	For	an	operand	of	a	primitive	data	type,	its	value	is	converted	to	a	string
representation.

•	For	all	reference	value	operands,	a	string	representation	is	constructed	by	calling	the
no-argument	toString()	method	on	the	referred	object.	Most	classes	override
this	method	from	the	Object	class	so	as	to	provide	a	more	meaningful	string
representation	of	their	objects.	Discussion	of	the	toString()	method	can	be
found	in	§8.2,	p.	342.

•	Values	like	true,	false,	and	null	have	string	representations	that	correspond	to
their	names.	A	reference	variable	with	the	value	null	also	has	the	string
representation	"null"	in	this	context.

The	operator	+	is	left	associative	and	has	the	same	precedence	level	as	the	additive
operators,	whether	it	is	performed	as	a	string	concatenation	or	as	a	numeric	addition.
Click	here	to	view	code	image

String	strVal	=	””	+	2016;																				//	(1)	“2016”
String	theName	=	”	Uranium”;
theName	=	”	Pure”	+	theName;																		//	(2)	”	Pure	Uranium”
String	trademark1	=	100	+	“%”	+	theName;						//	(3)	“100%	Pure	Uranium”

Since	the	+	operator	is	left-associative,	the	evaluation	in	(3)	proceeds	as	follows:	The	int
value	100	is	concatenated	with	the	string	literal	"%",	followed	by	concatenation	with	the
contents	of	the	String	object	referred	to	by	theName	reference.

Note	that	using	the	character	literal	'%',	instead	of	the	string	literal	"%"	in	line	(2),	does
not	give	the	same	result:
Click	here	to	view	code	image

String	trademark2	=	100	+	‘%’	+	theName;						//	(4)	“137	Pure	Uranium”

Integer	addition	is	performed	by	the	first	+	operator:	100	+	'%';	that	is,	(100	+	37).

Caution	should	be	exercised	because	the	+	operator	might	not	be	applied	as	intended,	as
shown	by	the	following	example:
Click	here	to	view	code	image

System.out.println(“We	can	put	two	and	two	together	and	get	”	+	2	+	2);			//
(5)

This	statement	prints	"We	can	put	two	and	two	together	and	get	22".
String	concatenation	proceeds	from	left	to	right:	The	String	literal	is	concatenated	with
the	first	int	literal	2,	followed	by	concatenation	with	the	second	int	literal	2.	Both
occurrences	of	the	+	operator	are	treated	as	string	concatenation.	To	convey	the	intended
meaning	of	the	sentence,	parentheses	are	necessary:
Click	here	to	view	code	image

System.out.println(“We	can	put	two	and	two	together	and	get	”	+	(2	+	2));	//
(6)

This	statement	prints	"We	can	put	two	and	two	together	and	get	4",
since	the	parentheses	enforce	integer	addition	in	the	expression	(2	+	2)	before	string
concatenation	is	performed	with	the	contents	of	the	String	operand.

The	following	statement	will	print	the	correct	result,	even	without	the	parentheses,
because	the	*	operator	has	higher	precedence	than	the	+	operator:
Click	here	to	view	code	image

System.out.println(“2	*	2	=	”	+	2	*	2);						//	(7)	2	*	2	=	4

Creation	of	temporary	String	objects	might	be	necessary	to	store	the	results	of
performing	successive	string	concatenations	in	a	String-valued	expression.	For	a
String-valued	constant	expression	((1),	(5),	(6)	and	(7)	in	the	preceding	examples),	the
compiler	computes	such	an	expression	at	compile	time,	and	the	result	is	treated	as	a	string
literal	in	the	program.	The	compiler	uses	a	string	builder	to	avoid	the	overhead	of
temporary	String	objects	when	applying	the	string	concatenation	operator	(+)	in
String-valued	non-constant	expressions	((2),	(3)	and	(4)	in	the	preceding	examples),	as
explained	in	§8.5,	p.	378.

5.9	Variable	Increment	and	Decrement	Operators:	 ,	
Variable	increment	(++)	and	decrement	(--)	operators	come	in	two	flavors:	prefix	and
postfix.	These	unary	operators	have	the	side	effect	of	changing	the	value	of	the	arithmetic
operand,	which	must	evaluate	to	a	variable.	Depending	on	the	operator	used,	the	variable
is	either	incremented	or	decremented	by	1.

These	operators	cannot	be	applied	to	a	variable	that	is	declared	final	and	that	has	been
initialized,	as	the	side	effect	would	change	the	value	in	such	a	variable.

These	operators	are	very	useful	for	updating	variables	in	loops	where	only	the	side	effect
of	the	operator	is	of	interest.

The	Increment	Operator	
The	prefix	increment	operator	has	the	following	semantics:	++i	adds	1	to	the	value	in	i,
and	stores	the	new	value	in	i.	It	returns	the	new	value	as	the	value	of	the	expression.	It	is
equivalent	to	the	following	statements:

i	+=	1;
result	=	i;
return	result;

The	postfix	increment	operator	has	the	following	semantics:	j++	adds	1	to	the	value	in	j,
and	stores	the	new	value	in	j.	It	returns	the	original	value	that	was	in	j	as	the	value	of	the
expression.	It	is	equivalent	to	the	following	statements:

result	=	j;
j	+=	1;
return	result;

The	Decrement	Operator	
The	prefix	decrement	operator	has	the	following	semantics:	--i	subtracts	1	from	the
value	of	i,	and	stores	the	new	value	in	i.	It	returns	the	new	value	as	the	value	of	the
expression.	It	is	equivalent	to	the	following	statements:

i	-=	1;

result	=	i;
return	result;

The	postfix	decrement	operator	has	the	following	semantics:	j--	subtracts	1	from	the
value	of	j,	and	stores	the	new	value	in	j.	It	returns	the	original	value	that	was	in	j	as	the
value	of	the	expression.	It	is	equivalent	to	the	following	statements:

result	=	j;
j	-=	1;
return	result;

This	behavior	of	decrement	and	increment	operators	applies	to	any	variable	whose	type	is
a	numeric	primitive	type	or	its	corresponding	numeric	wrapper	type.	Necessary	numeric
promotions	are	performed	on	the	value	1	and	the	value	of	the	variable.	Before	the	new
value	is	assigned	to	the	variable,	it	is	subjected	to	any	narrowing	primitive	conversion
and/or	boxing	that	might	be	necessary.

Here	are	some	examples	that	illustrate	the	behavior	of	increment	and	decrement	operators:
Click	here	to	view	code	image

//	(1)	Prefix	order:	increment/decrement	operand	before	use.
int	i	=	10;
int	k	=	++i	+	—i;		//	((++i)	+	(—i)).	k	gets	the	value	21	and	i	becomes	10.
—i;																//	Only	side	effect	utilized.	i	is	9.	(expression
statement)

Integer	iRef	=	11;		//	Boxing	on	assignment
—iRef;													//	Only	side	effect	utilized.	iRef	refers	to	an	Integer
																				//	object	with	the	value	10.	(expression	statement)
k	=	++iRef	+	—iRef;//	((++iRef)	+	(—iRef)).	k	gets	the	value	21	and
																				//	iRef	refers	to	an	Integer	object	with	the	value	10.

//	(2)	Postfix	order:	increment/decrement	operand	after	use.
long	j	=	10;
long	n	=	j++	+	j—;	//	((j++)	+	(j—)).	n	gets	the	value	21L	and	j	becomes	10L.
j++;																//	Only	side	effect	utilized.	j	is	11L.	(expression
statement)

An	increment	or	decrement	operator,	together	with	its	operand,	can	be	used	as	an
expression	statement	(§3.2,	p.	50).

Execution	of	the	assignment	in	the	second	declaration	statement	under	(1)	proceeds	as
follows:

Execution	of	the	expression	statement	--iRef;	under	(1)	proceeds	as	follows:

•	The	value	in	the	Integer	object	referred	to	by	the	reference	iRef	is	unboxed,
resulting	in	the	int	value	11.

•	The	value	11	is	decremented,	resulting	in	the	value	10.

•	The	value	10	is	boxed	in	an	Integer	object,	and	this	object’s	reference	value	is
assigned	to	the	reference	iRef.

•	The	int	value	10	of	the	expression	statement	is	discarded.

Expressions	where	variables	are	modified	multiple	times	during	the	evaluation	should	be
avoided,	because	the	order	of	evaluation	is	not	always	immediately	apparent.

We	cannot	associate	increment	and	decrement	operators.	Given	that	a	is	a	variable,	we
cannot	write	(++(++a)).	The	reason	is	that	any	operand	to	++	must	evaluate	to	a
variable,	but	the	evaluation	of	(++a)	results	in	a	value.

In	the	next	example,	both	binary	numeric	promotion	and	an	implicit	narrowing	conversion
are	performed	to	achieve	the	side	effect	of	modifying	the	value	of	the	operand.	The	int
value	of	the	expression	(++b)	(that	is,	11),	is	assigned	to	the	int	variable	i.	The	side
effect	of	incrementing	the	value	of	the	byte	variable	b	requires	binary	numeric
promotion	to	perform	int	addition,	followed	by	an	implicit	narrowing	conversion	of	the
int	value	to	byte	to	perform	the	assignment.
Click	here	to	view	code	image

byte	b	=	10;
int		i	=	++b;								//	i	is	11,	and	so	is	b.

The	following	example	illustrates	applying	the	increment	operator	to	a	floating-point
operand.	The	side	effect	of	the	++	operator	is	overwritten	by	the	assignment.
Click	here	to	view	code	image

double	x	=	4.5;
x	=	x	+	++x;									//	x	gets	the	value	10.0.

	Review	Questions

5.10	Which	statements	are	true?

Select	the	three	correct	answers.

(a)	The	expression	(1	+	2	+	"3")	evaluates	to	the	string	"33".

(b)	The	expression	("1"	+	2	+	3)	evaluates	to	the	string	"15".

(c)	The	expression	(4	+	1.0f)	evaluates	to	the	float	value	5.0f.

(d)	The	expression	(10/9)	evaluates	to	the	int	value	1.

(e)	The	expression	('a'	+	1)	evaluates	to	the	char	value	'b'.

5.11	What	happens	when	you	try	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	Prog1	{
		public	static	void	main(String[]	args)	{
				int	k	=	1;
				int	i	=	++k	+	k++	+	+	k;					//	(1)
				System.out.println(i);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile,	because	of	errors	in	the	expression	at	(1).

(b)	The	program	will	compile	and	print	the	value	3	at	runtime.

(c)	The	program	will	compile	and	print	the	value	4	at	runtime.

(d)	The	program	will	compile	and	print	the	value	7	at	runtime.

(e)	The	program	will	compile	and	print	the	value	8	at	runtime.

5.12	Which	is	the	first	line	that	will	cause	a	compile-time	error	in	the	following
program?

Click	here	to	view	code	image
public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				char	c;
				int	i;
				c	=	‘a’;	//	(1)
				i	=	c;			//	(2)
				i++;					//	(3)
				c	=	i;			//	(4)
				c++;					//	(5)
		}
}

Select	the	one	correct	answer.

(a)	(1)

(b)	(2)

(c)	(3)

(d)	(4)

(e)	(5)

(f)	None	of	the	above.	The	compiler	will	not	report	any	errors.

5.13	What	is	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Cast	{
		public	static	void	main(String[]	args)	{
				byte	b	=	128;
				int		i	=	b;
				System.out.println(i);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile,	because	a	byte	value	cannot	be	assigned	to	an
int	variable	without	using	a	cast.

(b)	The	program	will	compile,	and	print	128	at	runtime.

(c)	The	program	will	not	compile,	because	the	value	128	is	not	in	the	range	of
values	for	the	byte	type.

(d)	The	program	will	compile,	but	will	throw	a	ClassCastException	at
runtime.

(e)	The	program	will	compile,	and	print	255	at	runtime.

5.14	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	EvaluationOrder	{
		public	static	void	main(String[]	args)	{
				int[]	array	=	{	4,	8,	16	};
				int	i	=	1;
				array[++i]	=	—i;
				System.out.println(array[0]	+	array[1]	+	array[2]);
		}
}

Select	the	one	correct	answer.

(a)	13

(b)	14

(c)	20

(d)	21

(e)	24

5.10	Boolean	Expressions
As	the	name	implies,	a	boolean	expression	has	the	boolean	data	type	and	can	evaluate
to	only	the	values	true	or	false.	Boolean	expressions,	when	used	as	conditionals	in
control	statements,	allow	the	program	flow	to	be	controlled	during	execution.

Boolean	expressions	can	be	formed	using	relational	operators	(§5.11,	p.	180),	equality
operators	(§5.12,	p.	181),	boolean	logical	operators	(§5.13,	p.	184),	conditional	operators
(§5.14,	p.	186),	the	assignment	operator	(§5.6,	p.	158),	and	the	instanceof	operator
(§7.11,	p.	321).

5.11	Relational	Operators:	 ,	 ,	 ,	
Given	that	a	and	b	represent	numeric	expressions,	the	relational	(also	called	comparison)
operators	are	defined	as	shown	in	Table	5.8.

Table	5.8	Relational	Operators

All	relational	operators	are	binary	operators	and	their	operands	are	numeric	expressions.
Binary	numeric	promotion	is	applied	to	the	operands	of	these	operators.	The	evaluation

results	in	a	boolean	value.	Relational	operators	have	precedence	lower	than	arithmetic
operators,	but	higher	than	that	of	the	assignment	operators.
Click	here	to	view	code	image

double	hours	=	45.5;
Double	time	=	18.0;													//	Boxing	of	double	value.
boolean	overtime	=	hours	>=	35;	//	true.	Binary	numeric	promotion:	double	<—
int.
boolean	beforeMidnight	=	time	<	24.0;//	true.	Unboxing	of	value	in	time
reference.
char	letterA	=	‘A’;
boolean	order	=	letterA	<	‘a’;		//	true.	Binary	numeric	promotion:	int	<—
char.

Relational	operators	are	nonassociative.	Mathematical	expressions	like	a	≤		b	≤		c	must	be
written	using	relational	and	boolean	logical/conditional	operators.
Click	here	to	view	code	image

int	a	=	1,	b	=	7,	c	=	10;
boolean	illegal	=	a	<=	b	<=	c;							//	(1)	Illegal.
boolean	valid2	=	a	<=	b	&&	b	<=	c;			//	(2)	OK.

Since	relational	operators	have	left	associativity,	the	evaluation	of	the	expression	a	<=	b
<=	c	at	(1)	in	these	examples	would	proceed	as	follows:	((a	<=	b)	<=	c).
Evaluation	of	(a	<=	b)	would	yield	a	boolean	value	that	is	not	permitted	as	an
operand	of	a	relational	operator;	that	is,	(boolean	value	<=	c)	would	be	illegal.

5.12	Equality
We	distinguish	between	primitive	data	equality,	object	reference	equality,	and	object	value
equality.

The	equality	operators	have	lower	precedence	than	the	relational	operators,	but	higher
precedence	than	the	assignment	operators.

Primitive	Data	Value	Equality:	 ,	
Given	that	a	and	b	represent	operands	of	primitive	data	types,	the	primitive	data	value
equality	operators	are	defined	as	shown	in	Table	5.9.

Table	5.9	Primitive	Data	Value	Equality	Operators

The	equality	operator	==	and	the	inequality	operator	!=	can	be	used	to	compare	primitive
data	values,	including	boolean	values.	Binary	numeric	promotion	is	applied	to	the	non-
boolean	operands	of	these	equality	operators.
Click	here	to	view	code	image

int	year	=	2002;
boolean	isEven		=	year	%	2	==	0;					//	true.

boolean	compare	=	‘1’	==	1;										//	false.	Binary	numeric	promotion
applied.
boolean	test				=	compare	==	false;		//	true.

Care	must	be	exercised	when	comparing	floating-point	numbers	for	equality,	as	an	infinite
number	of	floating-point	values	can	be	stored	only	as	approximations	in	a	finite	number	of
bits.	For	example,	the	expression	(1.0	-	2.0/3.0	==	1.0/3.0)	returns	false,
although	mathematically	the	result	should	be	true.

Analogous	to	the	discussion	for	relational	operators,	mathematical	expressions	like	a	=	b
=	c	must	be	written	using	relational	and	logical/conditional	operators.	Since	equality
operators	have	left	associativity,	the	evaluation	of	the	expression	a	==	b	==	c	would
proceed	as	follows:	((a	==	b)	==	c).	Evaluation	of	(a	==	b)	would	yield	a
boolean	value	that	is	permitted	as	an	operand	of	a	data	value	equality	operator,	but
(boolean	value	==	c)	would	be	illegal	if	c	had	a	numeric	type.	This	problem	is
illustrated	in	the	following	examples.	The	expression	at	(1)	is	illegal,	but	those	at	(2)	and
(3)	are	legal.
Click	here	to	view	code	image

int	a,	b,	c;
a	=	b	=	c	=	5;
boolean	illegal	=	a	==	b	==	c;															//	(1)	Illegal.
boolean	valid2	=	a	==	b	&&	b	==	c;											//	(2)	Legal.
boolean	valid3	=	a	==	b	==	true;													//	(3)	Legal.

Object	Reference	Equality:	 ,	
The	equality	operator	==	and	the	inequality	operator	!=	can	be	applied	to	reference
variables	to	test	whether	they	refer	to	the	same	object.	Given	that	r	and	s	are	reference
variables,	the	reference	equality	operators	are	defined	as	shown	in	Table	5.10.

Table	5.10	Reference	Equality	Operators

The	operands	must	be	cast	compatible:	It	must	be	possible	to	cast	the	reference	value	of
the	one	into	the	other’s	type;	otherwise,	it	is	a	compile-time	error.	Casting	of	references	is
discussed	in	§7.8,	p.	311.
Click	here	to	view	code	image

Pizza	pizzaA	=	new	Pizza(“Sweet&Sour”);						//	new	object
Pizza	pizzaB	=	new	Pizza(“Sweet&Sour”);						//	new	object
Pizza	pizzaC	=	new	Pizza(“Hot&Spicy”);							//	new	object

String	banner	=	“Come	and	get	it!”;										//	new	object

boolean	test		=	banner	==	pizzaA;												//	(1)	Compile-time	error
boolean	test1	=	pizzaA	==	pizzaB;												//	false
boolean	test2	=	pizzaA	==	pizzaC;												//	false

pizzaA	=	pizzaB;																								//	Denote	the	same	object;	are

aliases
boolean	test3	=	pizzaA	==	pizzaB;							//	true

The	comparison	banner	==	pizzaA	in	(1)	is	illegal,	because	the	String	and
Pizza	types	are	not	related	and	therefore	the	reference	value	of	one	type	cannot	be	cast
to	the	other	type.	The	values	of	test1	and	test2	are	false	because	the	three
references	denote	different	objects,	regardless	of	the	fact	that	pizzaA	and	pizzaB	are
both	sweet	and	sour	pizzas.	The	value	of	test3	is	true	because	now	both	pizzaA	and
pizzaB	denote	the	same	object.

The	equality	and	inequality	operators	are	applied	to	object	references	to	check	whether
two	references	denote	the	same	object.	The	state	of	the	objects	that	the	references	denote
is	not	compared.	This	is	the	same	as	testing	whether	the	references	are	aliases,	meaning
that	they	denote	the	same	object.

The	null	literal	can	be	assigned	to	any	reference	variable,	and	the	reference	value	in	a
reference	variable	can	be	compared	for	equality	with	the	null	literal.	The	comparison
can	be	used	to	avoid	inadvertent	use	of	a	reference	variable	that	does	not	denote	any
object.

if	(objRef	!=	null)	{
				//	…	use	objRef	…
}

Note	that	only	when	the	type	of	both	operands	is	either	a	reference	type	or	the	null	type,
do	these	operators	test	for	object	reference	equality.	Otherwise,	they	test	for	primitive	data
equality	(see	also	§8.3,	p.	350).	In	the	following	code	snippet,	binary	numeric	promotion
involving	unboxing	is	performed	at	(2):
Click	here	to	view	code	image

Integer	iRef	=	10;
boolean	b1	=	iRef	==	null;									//	(1)	Object	reference	equality
boolean	b2	=	iRef	==	10;											//	(2)	Primitive	data	equality
boolean	b3	=	null	==	10;											//	Compile-time	error!

Object	Value	Equality
The	Object	class	provides	the	method	public	boolean	equals(Object	obj),
which	can	be	overridden	(§7.2,	p.	268)	to	give	the	right	semantics	of	object	value	equality.
The	default	implementation	of	this	method	in	the	Object	class	returns	true	only	if	the
object	is	compared	with	itself,	as	if	the	equality	operator	==	had	been	used	to	compare
aliases	of	an	object.	Consequently,	if	a	class	does	not	override	the	semantics	of	the
equals()	method	from	the	Object	class,	object	value	equality	is	the	same	as	object
reference	equality.

Certain	classes	in	the	standard	API	override	the	equals()	method,	such	as
java.lang.String	and	the	wrapper	classes	for	the	primitive	data	types.	For	two
String	objects,	value	equality	means	they	contain	identical	character	sequences.	For	the
wrapper	classes,	value	equality	means	that	the	wrapper	objects	have	the	same	primitive
value	and	are	of	the	same	wrapper	type	(see	also	§8.3,	p.	350).
Click	here	to	view	code	image

//	Equality	for	String	objects	means	identical	character	sequences.
String	movie1	=	new	String(“The	Revenge	of	the	Exception	Handler”);
String	movie2	=	new	String(“High	Noon	at	the	Java	Corral”);
String	movie3	=	new	String(“The	Revenge	of	the	Exception	Handler”);
boolean	test0	=	movie1.equals(movie2);													//	false.
boolean	test1	=	movie1.equals(movie3);													//	true.

//	Equality	for	wrapper	classes	means	same	type	and	same	primitive	value.
Boolean	flag1	=	true;																														//	Boxing.
Boolean	flag2	=	false;																													//	Boxing.
boolean	test2	=	flag1.equals(“true”);														//	false.	Not	same	type.
boolean	test3	=	flag1.equals(!flag2);														//	true.	Same	type	and
value.

Integer	iRef	=	100;																																//	Boxing.
Short	sRef	=	100;																																		//	Boxing.
boolean	test4	=	iRef.equals(100);																		//	true.	Same	type	and
value.
boolean	test5	=	iRef.equals(sRef);																	//	false.	Not	same	type.
boolean	test6	=	iRef.equals(3.14);																	//	false.	Not	same	type.

//	The	Pizza	class	does	not	override	the	equals()	method,	so	we	can	use
either
//	equals()	method	inherited	from	the	Object	class	or	equality	operator	==.
Pizza	pizza1	=	new	Pizza(“VeggiesDelight”);
Pizza	pizza2	=	new	Pizza(“VeggiesDelight”);
Pizza	pizza3	=	new	Pizza(“CheeseDelight”);
boolean	test7	=	pizza1.equals(pizza2);													//	false.
boolean	test8	=	pizza1.equals(pizza3);													//	false.
boolean	test9	=	pizza1	==	pizza2;																		//	false.
pizza1	=	pizza2;																																			//	Creates	aliases.
boolean	test10	=	pizza1.equals(pizza2);												//	true.
boolean	test11	=	pizza1	==	pizza2;																	//	true.

5.13	Boolean	Logical	Operators:	 ,	 ,	 ,	
Boolean	logical	operators	include	the	unary	operator	!	(logical	complement)	and	the
binary	operators	&	(logical	AND),	|	(logical	inclusive	OR),	and	^	(logical	exclusive	OR,
also	called	logical	XOR).	These	operators	can	be	applied	to	boolean	or	Boolean
operands,	returning	a	boolean	value.	The	operators	&,	|,	and	^	can	also	be	applied	to
integral	operands	to	perform	bitwise	logical	operations,	but	are	not	in	the	scope	of	this
book.

Given	that	x	and	y	represent	boolean	expressions,	the	boolean	logical	operators	are	defined
in	Table	5.11.	The	precedence	of	the	operators	decreases	from	left	to	right	in	the	table.

Table	5.11	Truth	Values	for	Boolean	Logical	Operators

These	operators	always	evaluate	both	the	operands,	unlike	their	counterpart	conditional
operators	&&	and	||	(§5.14,	p.	186).	Unboxing	is	applied	to	the	operand	values,	if
necessary.	Truth	values	for	boolean	logical	operators	are	shown	in	Table	5.11.

Operand	Evaluation	for	Boolean	Logical	Operators
In	the	evaluation	of	boolean	expressions	involving	boolean	logical	AND,	XOR,	and	OR
operators,	both	the	operands	are	evaluated.	The	order	of	operand	evaluation	is	always
from	left	to	right.
Click	here	to	view	code	image

if	(i	>	0	&	i++	<	10)	{/*…*/}	//	i	will	be	incremented,	regardless	of	value
in	i.

The	binary	boolean	logical	operators	have	precedence	lower	than	the	arithmetic	and
relational	operators,	but	higher	precedence	than	the	assignment,	conditional	AND,	and	OR
operators	(§5.14,	p.	186).	This	is	illustrated	in	the	following	examples:
Click	here	to	view	code	image

boolean	b1,	b2,	b3	=	false,	b4	=	false;
Boolean	b5	=	true;
b1	=	4	==	2	&	1	<	4;											//	false,	evaluated	as	(b1	=	((4	==	2)	&	(1	<
4)))
b2	=	b1	|	!(2.5	>=	8);									//	true
b3	=	b3	^	b5;																		//	true,	unboxing	conversion	on	b5
b4	=	b4	|	b1	&	b2;													//	false

Here,	the	order	of	evaluation	is	illustrated	for	the	last	expression	statement:
Click	here	to	view	code	image

(b4	=	(b4	|	(b1	&	b2)))
	(b4	=	(false	|	(b1	&	b2)))
	(b4	=	(false	|	(false	&	b2)))
	(b4	=	(false	|	(false	&	true)))
	(b4	=	(false	|	false))
	(b4	=	false)
	false

Note	that	b2	was	evaluated	although,	strictly	speaking,	it	was	not	necessary.	This	behavior
is	guaranteed	for	boolean	logical	operators.

Boolean	Logical	Compound	Assignment	Operators:	 ,	 ,	|
Compound	assignment	operators	for	the	boolean	logical	operators	are	defined	in	Table
5.12.	The	left-hand	operand	must	be	a	boolean	variable,	and	the	right-hand	operand	must
be	a	boolean	expression.	An	identity	conversion	is	applied	implicitly	on	assignment.
These	operators	can	also	be	applied	to	integral	operands	to	perform	bitwise	compound
assignments,	but	are	not	covered	in	this	book.	See	also	the	discussion	on	arithmetic
compound	assignment	operators	in	§5.7,	p.	172.

Table	5.12	Boolean	Logical	Compound	Assignment	Operators

Here	are	some	examples	to	illustrate	the	behavior	of	boolean	logical	compound
assignment	operators:
Click	here	to	view	code	image

boolean	b1	=	false,	b2	=	true,	b3	=	false;
Boolean	b4	=	false;
b1	|=	true;													//	true
b4	^=	b1;															//	(1)	true,	unboxing	in	(b4	^	(b1)),	boxing	on
assignment
b3	&=	b1	|	b2;										//	(2)	false,	b3	=	(b3	&	(b1	|	b2))
b3	=	b3	&	b1	|	b2;						//	(3)	true,		b3	=	((b3	&	b1)	|	b2)

The	assignment	at	(1)	entails	unboxing	to	evaluate	the	expression	on	the	right-hand	side,
followed	by	boxing	to	assign	the	boolean	result.	It	is	also	instructive	to	compare	how
the	assignments	at	(2)	and	(3)	are	performed,	as	they	lead	to	different	results	with	the	same
values	of	the	operands,	showing	how	the	precedence	affects	the	evaluation.

5.14	Conditional	Operators:	 ,	
The	conditional	operators	&&	and	||	are	similar	to	their	counterpart	logical	operators	&
and	|,	except	that	their	evaluation	is	short-circuited.	Given	that	x	and	y	represent	values
of	boolean	or	Boolean	expressions,	the	conditional	operators	are	defined	in	Table
5.13.	In	the	table,	the	operators	are	listed	in	decreasing	precedence	order.

Table	5.13	Conditional	Operators

Unlike	their	logical	counterparts	&	and	|,	which	can	also	be	applied	to	integral	operands
for	bitwise	operations,	the	conditional	operators	&&	and	||	can	be	applied	only	to
boolean	operands.	Their	evaluation	results	in	a	boolean	value.	Truth	values	for
conditional	operators	are	shown	in	Table	5.14.	Not	surprisingly,	the	conditional	operators
have	the	same	truth	values	as	their	counterpart	logical	operators.	However,	unlike	with
their	logical	counterparts,	there	are	no	compound	assignment	operators	for	the	conditional
operators.

Table	5.14	Truth	Values	for	Conditional	Operators

Short-Circuit	Evaluation
In	evaluation	of	boolean	expressions	involving	conditional	AND	and	OR,	the	left-hand
operand	is	evaluated	before	the	right-hand	operand,	and	the	evaluation	is	short-circuited
(i.e.,	if	the	result	of	the	boolean	expression	can	be	determined	from	the	left-hand	operand,
the	right-hand	operand	is	not	evaluated).	In	other	words,	the	right-hand	operand	is
evaluated	conditionally.

The	binary	conditional	operators	have	lower	precedence	than	the	arithmetic,	relational,
and	logical	operators,	but	higher	precedence	than	the	assignment	operators.	Unboxing	of
the	operand	value	takes	place	when	necessary,	before	the	operation	is	performed.	The
following	examples	illustrate	usage	of	conditional	operators:
Click	here	to	view	code	image

Boolean	b1	=	4	==	2	&&	1	<	4;			//	false,	short-circuit	evaluated	as
																																//	(b1	=	((4	==	2)	&&	(1	<	4)))
boolean	b2	=	!b1	||	2.5	>	8;				//	true,	short-circuit	evaluated	as
																																//	(b2	=	((!b1)	||	(2.5	>	8)))
Boolean	b3	=	!(b1	&&	b2);							//	true
boolean	b4	=	b1	||	!b3	&&	b2;			//	false,	short-circuit	evaluated	as
																																//	(b4	=	(b1	||	((!b3)	&&	b2)))

The	order	of	evaluation	for	computing	the	value	stored	in	the	boolean	variable	b4
proceeds	as	follows:
Click	here	to	view	code	image

(b4	=	(b1	||	((!b3)	&&	b2)))
	(b4	=	(false	||	((!b3)	&&	b2)))
	(b4	=	(false	||	((!true)	&&	b2)))
	(b4	=	(false	||	((false)	&&	b2)))
	(b4	=	(false	||	false))
	(b4	=	false)

Note	that	b2	is	not	evaluated,	short-circuiting	the	evaluation.	Example	5.3	illustrates	the
short-circuit	evaluation	of	the	initialization	expressions	in	the	declaration	statements	given
in	the	earlier	code	snippet.	In	addition,	it	shows	an	evaluation	(see	the	declaration	of	b5)
involving	boolean	logical	operators	that	always	evaluate	both	operands.	See	also	Example
5.1,	p.	153,	which	uses	a	similar	approach	to	illustrate	the	order	of	operand	evaluation	in
arithmetic	expressions.

Example	5.3	Short-Circuit	Evaluation	Involving	Conditional	Operators
Click	here	to	view	code	image

public	class	ShortCircuit	{
		public	static	void	main(String[]	args)	{
				//	Boolean	b1	=	4	==	2	&&	1	<	4;
				Boolean	b1	=	operandEval(1,	4	==	2)	&&	operandEval(2,	1	<	4);
				System.out.println();
				System.out.println(“Value	of	b1:	”	+	b1);

				//	boolean	b2	=	!b1	||	2.5	>	8;
				boolean	b2	=	!operandEval(1,	b1)	||	operandEval(2,	2.5	>	8);
				System.out.println();
				System.out.println(“Value	of	b2:	”	+	b2);

				//	Boolean	b3	=	!(b1	&&	b2);
				Boolean	b3	=	!(operandEval(1,	b1)	&&	operandEval(2,	b2));
				System.out.println();
				System.out.println(“Value	of	b3:	”	+	b3);

				//	boolean	b4	=	b1	||	!b3	&&	b2;
				boolean	b4	=	operandEval(1,	b1)	||	!operandEval(2,	b3)	&&	operandEval(3,
b2);
				System.out.println();
				System.out.println(“Value	of	b4:	”	+	b4);

				//	boolean	b5	=	b1	|	!b3	&	b2;				//	Using	boolean	logical	operators
				boolean	b5	=	operandEval(1,	b1)	|	!operandEval(2,	b3)	&	operandEval(3,
b2);
				System.out.println();
				System.out.println(“Value	of	b5:	”	+	b5);
		}

		static	boolean	operandEval(int	opNum,	boolean	operand)	{																//
(1)
				System.out.print(opNum);
				return	operand;
		}
}

Output	from	the	program:
1
Value	of	b1:	false
1
Value	of	b2:	true
1
Value	of	b3:	true
12
Value	of	b4:	false
123
Value	of	b5:	false

Short-circuit	evaluation	can	be	used	to	ensure	that	a	reference	variable	denotes	an	object
before	it	is	used.
Click	here	to	view	code	image

if	(objRef	!=	null	&&	objRef.equals(other))	{	/*…*/	}

The	method	call	is	now	conditionally	dependent	on	the	left-hand	operand	and	will	not	be

executed	if	the	variable	objRef	has	the	null	reference.	If	we	use	the	logical	&	operator
and	the	variable	objRef	has	the	null	reference,	evaluation	of	the	right-hand	operand
will	result	in	a	NullPointerException.

In	summary,	we	employ	the	conditional	operators	&&	and	||	if	the	evaluation	of	the	right-
hand	operand	is	conditionally	dependent	on	the	left-hand	operand.	We	use	the	boolean
logical	operators	&	and	|	if	both	operands	must	be	evaluated.	The	subtlety	of	conditional
operators	is	illustrated	by	the	following	examples:
Click	here	to	view	code	image

if	(i	>	0	&&	i++	<	10)	{/*…*/}			//	i	is	not	incremented	if	i	>	0	is	false.
if	(i	>	0	||	i++	<	10)	{/*…*/}			//	i	is	not	incremented	if	i	>	0	is	true.

5.15	Integer	Bitwise	Operators:	 ,	 ,	 ,	
A	review	of	integer	representation	(§5.5,	p.	154)	is	recommended	before	continuing	with
this	section	on	how	integer	bitwise	operators	can	be	applied	to	values	of	integral	data
types.

Integer	bitwise	operators	include	the	unary	operator	~	(bitwise	complement)	and	the
binary	operators	&	(bitwise	AND),	|	(bitwise	inclusive	OR),	and	^	(bitwise	exclusive	OR,
also	known	as	bitwise	XOR).	The	operators	&,	|,	and	^	are	overloaded,	as	they	can	be
applied	to	boolean	or	Boolean	operands	to	perform	boolean	logical	operations	(§5.13,
p.	184).	Although	the	integer	bitwise	operators	are	not	on	the	OCAJP	8	exam,	they	are
included	here	to	contrast	their	evaluation	with	that	of	their	boolean	counterparts.

The	binary	bitwise	operators	perform	bitwise	operations	between	corresponding	individual
bit	values	in	the	operands.	Unary	numeric	promotion	is	applied	to	the	operand	of	the	unary
bitwise	complement	operator	~,	and	binary	numeric	promotion	is	applied	to	the	operands
of	the	binary	bitwise	operators.	The	result	is	a	new	integer	value	of	the	promoted	type,
which	can	be	either	int	or	long.

Given	that	A	and	B	are	corresponding	bit	values	(either	0	or	1)	in	the	left-hand	and	right-
hand	operands,	respectively,	these	bitwise	operators	are	defined	as	shown	in	Table	5.15.
The	operators	are	listed	in	decreasing	precedence	order.

Table	5.15	Integer	Bitwise	Operators

The	result	of	applying	bitwise	operators	between	two	corresponding	bits	in	the	operands	is
shown	in	Table	5.16,	where	A	and	B	are	corresponding	bit	values	in	the	left-hand	right-
hand	operands,	respectively.	Table	5.16	is	analogous	to	Table	5.11	for	boolean	logical

operators,	if	we	consider	bit	value	1	to	represent	true	and	bit	value	0	to	represent
false.

Table	5.16	Result	Table	for	Bitwise	Operators

Examples	of	Bitwise	Operator	Application
Click	here	to	view	code	image

char	v1	=	‘)’;										//	Unicode	value	41
byte	v2	=	13;

int	result1	=	~v1;						//	-42
int	result2	=	v1	&	v2;		//	9
int	result3	=	v1	|	v2;		//	45
int	result4	=	v1	^	v2;		//	36

Table	5.17	shows	how	the	result	is	calculated.	Unary	and	binary	numeric	promotions	are
applied	first,	converting	the	operands	to	int	in	these	cases.	Note	that	the	operator
semantics	is	applied	to	corresponding	individual	bits—that	is,	first	bit	of	left-hand	operand
and	first	bit	of	right-hand	operand,	second	bit	of	left-hand	operand	and	second	bit	of	right-
hand	operand,	and	so	on.

Table	5.17	Examples	of	Bitwise	Operations

It	is	instructive	to	run	examples	and	print	the	result	of	a	bitwise	operation	in	different
notations,	as	shown	in	Example	5.4.	The	integer	bitwise	operators	support	a	programming
technique	called	bit	masking.	The	value	v2	is	usually	called	a	bit	mask.	Depending	on	the
bitwise	operation	performed	on	the	value	v1	and	the	mask	v2,	we	see	how	the	resulting
value	reflects	the	bitwise	operation	performed	between	the	individual	corresponding	bits
of	the	value	v1	and	the	mask	v2.	By	choosing	appropriate	values	for	the	bits	in	the	mask
v2	and	the	right	bitwise	operation,	it	is	possible	to	extract,	set,	and	toggle	specific	bits	in
the	value	v1.

Methods	for	converting	integers	to	strings	in	different	notations	can	be	found	in	the

Integer	class	(§8.3,	p.	353).	Converting	integers	to	different	number	systems	is
discussed	in	§5.5,	p.	154.

Example	5.4	Bitwise	Operations
Click	here	to	view	code	image

public	class	BitOperations	{
		public	static	void	main(String[]	args)	{
				char	v1	=	‘)’;																						//	Unicode	value	41
				byte	v2	=	13;
				printIntToStr(“v1:”,	v1);											//	41
				printIntToStr(“v2:”,	v2);											//	13
				printIntToStr(“~v1:”,	~v1);									//	-42
				printIntToStr(“v1	&	v2:”,	v1	&	v2);	//	9
				printIntToStr(“v1	|	v2:”,	v1	|	v2);	//	45
				printIntToStr(“v1	^	v2:”,	v1	^	v2);	//	36
		}

		public	static	void	printIntToStr(String	label,	int	result)	{
				System.out.println(label);
				System.out.println(“				Binary:		”	+	Integer.toBinaryString(result));
				System.out.println(“				Hex:					”	+	Integer.toHexString(result));
				System.out.println(“				Decimal:	”	+	result);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

v1:
				Binary:		101001
				Hex:					29
				Decimal:	41
v2:
				Binary:		1101
				Hex:					d
				Decimal:	13
~v1:
				Binary:		11111111111111111111111111010110
				Hex:					ffffffd6
				Decimal:	-42
v1	&	v2:
				Binary:		1001
				Hex:					9
				Decimal:	9
v1	|	v2:
				Binary:		101101
				Hex:					2d
				Decimal:	45
v1	^	v2:
				Binary:		100100
				Hex:					24
				Decimal:	36

Bitwise	Compound	Assignment	Operators:	 ,	 ,	
Bitwise	compound	assignment	operators	for	the	bitwise	operators	are	defined	in	Table
5.18.	Type	conversions	for	these	operators,	when	applied	to	integral	operands,	are	the
same	as	for	other	compound	assignment	operators:	an	implicit	narrowing	conversion	is
performed	on	assignment	when	the	destination	data	type	is	either	byte,	short,	or
char.	These	operators	can	also	be	applied	to	boolean	operands	to	perform	logical
compound	assignments	(§5.13,	p.	185).

Table	5.18	Bitwise	Compound	Assignment	Operators

Examples	of	Bitwise	Compound	Assignment
Click	here	to	view	code	image

int		v0	=	-42;
char	v1	=	‘)’;		//	41
byte	v2	=	13;

v0	&=	15;							//					1…1101	0110	&	0…0000	1111	=>	0…0000	0110	(=	6)
v1	|=	v2;							//	(1)	0…0010	1001	|	0…0000	1101	=>	0…0010	1101	(=	45,	‘-‘)

At	(1)	in	these	examples,	both	the	char	value	in	v1	and	the	byte	value	in	v2	are	first
promoted	to	int.	The	result	is	implicitly	narrowed	to	the	destination	type	char	on
assignment.

	Review	Questions

5.15	Which	of	the	following	expressions	evaluate	to	true?

Select	the	two	correct	answers.

(a)	(false	|	true)

(b)	(null	!=	null)

(c)	(4	<=	4)

(d)	(!true)

(e)	(true	&	false)

5.16	Which	of	the	following	statements	are	true?

Select	the	two	correct	answers.

(a)	The	remainder	operator	%	can	be	used	only	with	integral	operands.

(b)	Short-circuit	evaluation	occurs	with	boolean	logical	operators.

(c)	The	arithmetic	operators	*,	/,	and	%	have	the	same	level	of	precedence.

(d)	A	short	value	ranges	from	-128	to	+127,	inclusive.

(e)	(+15)	is	a	legal	expression.

5.17	Which	statements	are	true	about	the	lines	of	output	printed	by	the	following
program?

Click	here	to	view	code	image
public	class	BoolOp	{
		static	void	op(boolean	a,	boolean	b)	{
				boolean	c	=	a	!=	b;
				boolean	d	=	a	^	b;
				boolean	e	=	c	==	d;
				System.out.println(e);
		}

		public	static	void	main(String[]	args)	{
				op(false,	false);
				op(true,	false);
				op(false,	true);
				op(true,	true);
		}
}

Select	the	three	correct	answers.

(a)	All	lines	printed	are	the	same.

(b)	At	least	one	line	contains	false.

(c)	At	least	one	line	contains	true.

(d)	The	first	line	contains	false.

(e)	The	last	line	contains	true.

5.18	What	is	the	result	of	running	the	following	program?
Click	here	to	view	code	image

public	class	OperandOrder	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				int[]	a	=	{3,	6};
				a[i]	=	i	=	9;
				System.out.println(i	+	”	”	+	a[0]	+	”	”	+	a[1]);
		}
}

Select	the	one	correct	answer.

(a)	When	run,	the	program	throws	an	ArrayIndexOutOfBoundsException.

(b)	When	run,	the	program	will	print	9	9	6.

(c)	When	run,	the	program	will	print	9	0	6.

(d)	When	run,	the	program	will	print	9	3	6.

(e)	When	run,	the	program	will	print	9	3	9.

5.19	Which	statements	are	true	about	the	output	from	the	following	program?
Click	here	to	view	code	image

public	class	Logic	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				int	j	=	0;

				boolean	t	=	true;
				boolean	r;

				r	=	(t	&		0	<	(i+=1));
				r	=	(t	&&	0	<	(i+=2));
				r	=	(t	|		0	<	(j+=1));
				r	=	(t	||	0	<	(j+=2));
				System.out.println(i	+	”	”	+	j);
		}
}

Select	the	two	correct	answers.

(a)	The	first	digit	printed	is	1.

(b)	The	first	digit	printed	is	2.

(c)	The	first	digit	printed	is	3.

(d)	The	second	digit	printed	is	1.

(e)	The	second	digit	printed	is	2.

(f)	The	second	digit	printed	is	3.

5.16	The	Conditional	Operator:	
The	ternary	conditional	operator	?:	allows	conditional	expressions	to	be	defined.	The
conditional	expression	has	the	following	syntax:
Click	here	to	view	code	image

condition	?	expression1	:	expression2

It	is	called	ternary	because	it	has	three	operands.	If	the	boolean	expression	condition	is
true,	then	expression1	is	evaluated;	otherwise,	expression2	is	evaluated.	Both
expression1	and	expression2	must	evaluate	to	values	that	can	be	converted	to	the	type	of
the	conditional	expression.	This	type	is	determined	from	the	types	of	the	two	expressions.
The	value	of	the	expression	evaluated	is	converted	to	the	type	of	the	conditional
expression,	and	may	involve	autoboxing	and	unboxing.

Evaluation	of	a	conditional	expression	is	an	example	of	short-circuit	evaluation.	As	only
one	of	the	two	expressions	is	evaluated,	one	should	be	wary	of	any	side	effects	in	a
conditional	expression.

In	the	following	code	snippet	at	(1),	both	expressions	in	the	conditional	expression	are	of
type	byte.	The	type	of	the	conditional	expression	is	therefore	byte.	That	a	value	of	type
byte	can	be	converted	to	an	int	by	an	implicit	widening	numeric	conversion	to	be
assignment	compatible	with	the	int	variable	daysInFebruary	is	secondary	in

determining	the	type	of	the	conditional	expression.	Note	that	the	conditional	operator	at
(1)	has	higher	precedence	than	the	assignment	operator	=,	making	it	unnecessary	to
enclose	the	conditional	expression	in	parentheses.
Click	here	to	view	code	image

boolean	leapYear	=	false;
byte	v29	=	29;
byte	v28	=	28;
int	daysInFebruary	=	leapYear	?	v29	:	v28;			//	(1)

The	following	examples	illustrate	the	use	of	conditional	expressions.	The	type	of	the
conditional	expression	at	(2)	is	int,	and	no	conversion	of	any	expression	value	is
necessary.	The	type	of	the	conditional	expression	at	(3)	is	double,	due	to	binary	numeric
promotion:	The	int	value	of	the	first	expressions	is	promoted	to	a	double.	The
compiler	reports	an	error	because	a	double	cannot	be	assigned	to	an	int	variable.	The
type	of	the	conditional	expression	at	(4)	is	also	double	as	in	(3),	but	now	the	double
value	is	assignment	compatible	with	the	double	variable	minDoubleValue.
Click	here	to	view	code	image

int	i	=	3;
int	j	=	4;
int	minValue1	=	i	<	j	?	i	:	j;																								//	(2)	int
int	minValue2	=	i	<	j	?	i	:	Double.MIN_VALUE;									//	(3)	double.	Not	OK.
double	minDoubleValue	=	i	<	j	?	i	:	Double.MIN_VALUE;	//	(4)	double

In	the	following	code	snippet	in	(5),	the	primitive	values	of	the	expressions	can	be	boxed
and	assigned	to	an	Object	reference.	In	(6),	the	int	value	of	the	first	expression	can	be
boxed	in	an	Integer.	The	println()	method	creates	and	prints	a	string
representation	of	any	object	whose	reference	value	is	passed	as	parameter.
Click	here	to	view	code	image

//	Assume	i	and	j	are	of	type	int	and	initialized	correctly.
Object	obj	=	i	<	j	?	i	:	true;								//	(5)	value	of	i	boxed	in	Integer	or
																																						//					literal	true	boxed	in	Boolean
System.out.println(i	<	j	?	i	:	“Hi”);	//	(6)	value	of	i	boxed	in	Integer	or
																																						//					String	object	“Hi”

The	conditional	expression	is	not	an	expression	statement.	The	following	code	will	not
compile:
Click	here	to	view	code	image

(i	<	j)	?	i	:	j;				//	Compile-time	error!

The	conditional	expression	can	be	nested,	and	the	conditional	operator	associates	from
right	to	left.
Click	here	to	view	code	image

a?b:c?d:e?f:g	evaluates	as	(a?b:(c?d:(e?f:g)))

The	value	of	this	conditional	expression	is	g	if,	and	only	if,	a,	c,	and	e	are	false.	A
nested	conditional	expression	is	used	in	the	next	example.	As	a	convention,	the	condition
in	a	conditional	expression	is	enclosed	in	parentheses	to	aid	reading	the	code.	Typically,	a
conditional	expression	is	used	when	it	makes	the	code	easier	to	read,	especially	when	the
expressions	are	short	and	without	side	effects.

Click	here	to	view	code	image
int	n	=	3;
String	msg	=	(n==0)	?	“no	cookies.”	:	(n==1)	?	“one	cookie.”	:	“many
cookies.”;
System.out.println(“You	get	”	+	msg);	//	You	get	many	cookies.

The	conditional	operator	is	the	expression	equivalent	of	the	if-else	statement	(§6.2,	p.
201).

5.17	Other	Operators:	 ,	 ,	 ,	->
The	new	operator	is	used	to	create	objects,	such	as	instances	of	classes	and	arrays.	It	is
used	with	a	constructor	call	to	instantiate	classes	(§3.3,	p.	53)	and	with	the	[]	notation	to
create	arrays	(§3.4,	p.	59).	It	is	also	used	to	instantiate	anonymous	arrays	(§3.4,	p.	63).
Click	here	to	view	code	image

Pizza	onePizza	=	new	Pizza();							//	Create	an	instance	of	the	Pizza	class.

The	[]	notation	is	used	to	declare	and	construct	arrays,	and	is	also	to	access	array
elements	(§3.4,	p.	58).
Click	here	to	view	code	image

int[]	anArray	=	new	int[5];//	Declare	and	construct	an	int	array	of	5
elements.
anArray[4]	=	anArray[3];			//	Element	at	index	4	gets	value	of	element	at
index	3.

The	boolean,	binary,	and	infix	operator	instanceof	is	used	to	test	the	type	of	an	object
(§7.11,	p.	320).
Click	here	to	view	code	image

Pizza	myPizza	=	new	Pizza();
boolean	test1	=	myPizza	instanceof	Pizza;	//	true.
boolean	test2	=	“Pizza”	instanceof	Pizza;	//	Compile	error.	String	is	not
Pizza.
boolean	test3	=	null	instanceof	Pizza;	//	Always	false.	null	is	not	an
instance.

The	arrow	operator	->	is	used	in	the	definition	of	a	lambda	expression	(§10.2,	p.	444).
Click	here	to	view	code	image

java.util.function.Predicate<String>	predicate	=	str	->	str.length()	%	2	==
0;
boolean	test4	=	predicate.test(“The	lambda	strikes	back!”);				//	true.

	Review	Questions

5.20	Which	of	the	following	are	not	operators	in	Java?

Select	the	two	correct	answers.

(a)	%

(b)	&&

(c)	%=

(d)	&&=

(e)	<=

(f)	%%

(g)	->

5.21	Which	statements	when	inserted	at	(1)	will	not	result	in	a	compile-time	error?
Click	here	to	view	code	image

public	class	RQ05A200	{
		public	static	void	main(String[]	args)	{
				int	i	=	20;
				int	j	=	30;
				//	(1)	INSERT	STATEMENT	HERE.
		}
}

Select	the	three	correct	answers.

(a)	int	result1	=	i	<	j	?	i	:	j	*	10D;

(b)	int	result2	=	i	<	j	?	{	++i	}	:	{	++j	};

(c)	Number	number	=	i	<	j	?	i	:	j	*	10D;

(d)	System.out.println(i	<	j	?	i);

(e)	System.out.println(i	<	j	?	++i	:	++j);

(f)	System.out.println(i	==	j	?	i	==	j	:	"i	not	equal	to
j");

5.22	Which	statements	are	true	about	the	following	code?
Click	here	to	view	code	image

public	class	RQ05A100	{
		public	static	void	main(String[]	args)	{
				int	n1	=	10,	n2	=	10;
				int	m1	=	20,	m2	=	30;
				int	result	=	n1	!=	n2?	n1	:	m1	!=	m2?	m1	:	m2;
				System.out.println(result);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	When	run,	the	program	throws	an	ArithmeticException	at	runtime.

(c)	When	run,	the	program	will	print	10.

(d)	When	run,	the	program	will	print	20.

(e)	When	run,	the	program	will	print	30.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	Type	conversion	categories	and	conversion	contexts,	and	which	conversions	are
permissible	in	each	conversion	context.

•	Defining	and	evaluating	arithmetic	and	boolean	expressions,	and	the	order	in	which
operands	and	operators	are	evaluated.

•	Representing	integers	in	different	number	systems	and	in	memory.

•	Operators	in	Java,	including	precedence	and	associativity	rules.

	Programming	Exercise

5.1	The	following	program	is	supposed	to	calculate	and	print	the	time	it	takes	for	light
to	travel	from	the	sun	to	the	earth.	It	contains	some	logical	errors.	Fix	the	program
so	that	it	will	compile,	compute,	and	print	the	correct	result	when	run.

Click	here	to	view	code	image
//	File:	Sunlight.java
public	class	Sunlight	{
		public	static	void	main(String[]	args)	{
				//	Distance	from	sun	(150	million	kilometers)
				int	kmFromSun	=	150_000_000;

				int	lightSpeed	=	299_792_458;	//	meters	per	second

				//	Convert	distance	to	meters.
				int	mFromSun	=	kmFromSun	*	1000;

				int	seconds	=	mFromSun	/	lightSpeed;

				System.out.print(“Light	will	use	“);
				printTime(seconds);
				System.out.println(”	to	travel	from	the	sun	to	the	earth.”);
		}

		public	static	void	printTime(int	sec)	{
				int	min	=	sec	/	60;
				sec	=	sec	-	(min	*	60);
				System.out.print(min	+	”	minute(s)	and	”	+	sec	+	”	second(s)”);
		}
}

6.	Control	Flow

6.1	Overview	of	Control	Flow	Statements
Control	flow	statements	govern	the	flow	of	control	in	a	program	during	execution,
meaning	the	order	in	which	statements	are	executed	in	a	running	program.	There	are	three
main	categories	of	control	flow	statements:

•	Selection	statements:	if,	if-else,	and	switch.

•	Iteration	statements:	while,	do-while,	basic	for,	and	enhanced	for.

•	Transfer	statements:	break,	continue,	return,	try-catch-finally,
throw,	and	assert.

Only	the	basic	form	of	the	try-catch-finally	construct	is	covered	here,	and	the
assert	facility	is	not	in	the	scope	of	this	book.

6.2	Selection	Statements
Java	provides	selection	statements	that	allow	the	program	to	choose	between	alternative
actions	during	execution.	The	choice	is	based	on	criteria	specified	in	the	selection
statement.	These	selection	statements	are

•	Simple	if	statement

•	if-else	statement

•	switch	statement

The	Simple	 	Statement
The	simple	if	statement	has	the	following	syntax:

if	(condition)
		statement

It	is	used	to	decide	whether	an	action	is	to	be	performed	or	not,	based	on	a	condition.	The
action	to	be	performed	is	specified	by	statement,	which	can	be	a	single	statement	or	a	code
block.	The	condition	must	evaluate	to	a	boolean	or	Boolean	value.	In	the	latter	case,
the	Boolean	value	is	unboxed	to	the	corresponding	boolean	value.

The	semantics	of	the	simple	if	statement	are	straightforward.	The	condition	is	evaluated
first.	If	its	value	is	true,	statement	(called	the	if	block)	is	executed	and	then	execution
continues	with	the	rest	of	the	program.	If	the	value	is	false,	the	if	block	is	skipped	and
execution	continues	with	the	rest	of	the	program.	The	semantics	are	illustrated	by	the
activity	diagram	in	Figure	6.1a.

Figure	6.1	Activity	Diagram	for	if	Statements

In	the	following	examples	of	the	if	statement,	it	is	assumed	that	the	variables	and	the
methods	have	been	appropriately	defined:
Click	here	to	view	code	image

if	(emergency)												//	emergency	is	a	boolean	variable
		operate();

if	(temperature	>	critical)
		soundAlarm();

if	(isLeapYear()	&&	endOfCentury())
		celebrate();

if	(catIsAway())	{								//	Block
		getFishingRod();
		goFishing();
}

Note	that	statement	can	be	a	block,	and	the	block	notation	is	necessary	if	more	than	one
statement	is	to	be	executed	when	the	condition	is	true.

Since	the	condition	evaluates	to	a	boolean	value,	it	avoids	a	common	programming
error:	using	an	expression	of	the	form	(a=b)	as	the	condition,	where	inadvertently	an
assignment	operator	is	used	instead	of	a	relational	operator.	The	compiler	will	flag	this	as
an	error,	unless	both	a	and	b	are	boolean.

Note	that	the	if	block	can	be	any	valid	statement.	In	particular,	it	can	be	the	empty
statement	(;)	or	the	empty	block	({}).	A	common	programming	error	is	inadvertent	use
of	the	empty	statement.
Click	here	to	view	code	image

if	(emergency);	//	Empty	if	block
		operate();				//	Executed	regardless	of	whether	it	was	an	emergency

The	 	Statement
The	if-else	statement	is	used	to	decide	between	two	actions,	based	on	a	condition.	It
has	the	following	syntax:

if	(condition)
		statement1
else
		statement2

The	condition	is	evaluated	first.	If	its	value	is	true	(or	unboxed	to	true),	statement1
(the	if	block)	is	executed	and	then	execution	continues	with	the	rest	of	the	program.	If
the	value	is	false	(or	unboxed	to	false),	statement2	(the	else	block)	is	executed	and
then	execution	continues	with	the	rest	of	the	program.	In	other	words,	one	of	two	mutually
exclusive	actions	is	performed.	The	else	clause	is	optional;	if	omitted,	the	construct	is
equivalent	to	the	simple	if	statement.	The	semantics	are	illustrated	by	the	activity
diagram	in	Figure	6.1b.

In	the	following	examples	of	the	if-else	statement,	it	is	assumed	that	all	variables	and
methods	have	been	appropriately	defined:

if	(emergency)
		operate();
else
		joinQueue();

if	(temperature	>	critical)
		soundAlarm();
else
		businessAsUsual();

if	(catIsAway())	{
		getFishingRod();
		goFishing();
}	else
		playWithCat();

Since	actions	can	be	arbitrary	statements,	the	if	statements	can	be	nested.
Click	here	to	view	code	image

if	(temperature	>=	upperLimit)	{								//	(1)
		if	(danger)																											//	(2)	Simple	if.
				soundAlarm();
		if	(critical)																									//	(3)
				evacuate();
		else																																		//	Goes	with	if	at	(3).
				turnHeaterOff();
}	else																																		//	Goes	with	if	at	(1).
				turnHeaterOn();

The	use	of	the	block	notation,	{},	can	be	critical	to	the	execution	of	if	statements.	The
if	statements	(A)	and	(B)	in	the	following	examples	do	not	have	the	same	meaning.	The
if	statements	(B)	and	(C)	are	the	same,	with	extra	indentation	used	in	(C)	to	make	the
meaning	evident.	Leaving	out	the	block	notation	in	this	case	could	have	catastrophic
consequences:	The	heater	could	be	turned	on	when	the	temperature	is	above	the	upper
limit.
Click	here	to	view	code	image

//	(A):
if	(temperature	>	upperLimit)	{										//	(1)	Block	notation.
		if	(danger)	soundAlarm();														//	(2)

}	else																																			//	Goes	with	if	at	(1).
		turnHeaterOn();

//	(B):
if	(temperature	>	upperLimit)												//	(1)	Without	block	notation.
		if	(danger)	soundAlarm();														//	(2)
else	turnHeaterOn();																					//	Goes	with	if	at	(2).

//	(C):
if	(temperature	>	upperLimit)												//	(1)
		if	(danger)																												//	(2)
				soundAlarm();
		else																																			//	Goes	with	if	at	(2).
				turnHeaterOn();

The	rule	for	matching	an	else	clause	is	that	an	else	clause	always	refers	to	the	nearest
if	that	is	not	already	associated	with	another	else	clause.	Block	notation	and	proper
indentation	can	be	used	to	make	the	meaning	obvious.

Cascading	if-else	statements	comprise	a	sequence	of	nested	if-else	statements
where	the	if	block	of	the	next	if-else	statement	is	joined	to	the	else	clause	of	the
previous	one.	The	decision	to	execute	a	block	is	then	based	on	all	the	conditions	evaluated
so	far.
Click	here	to	view	code	image

if	(temperature	>=	upperLimit)	{																											//	(1)
		soundAlarm();
		turnHeaterOff();
}	else	if	(temperature	<	lowerLimit)	{																					//	(2)
		soundAlarm();
		turnHeaterOn();
}	else	if	(temperature	==	(upperLimit-lowerLimit)/2)	{					//	(3)
		doingFine();
}	else																																																					//	(4)
		noCauseToWorry();

The	block	corresponding	to	the	first	if	condition	that	evaluates	to	true	is	executed,	and
the	remaining	if	statements	are	skipped.	In	the	preceding	example,	the	block	at	(3)	will
execute	only	if	the	conditions	at	(1)	and	(2)	are	false	and	the	condition	at	(3)	is	true.
If	none	of	the	conditions	is	true,	the	block	associated	with	the	last	else	clause	is
executed.	If	there	is	no	last	else	clause,	no	actions	are	performed.

The	 	Statement
Conceptually,	the	switch	statement	can	be	used	to	choose	one	among	many	alternative
actions,	based	on	the	value	of	an	expression.	Its	general	form	is	as	follows:

switch	(switch_expression)	{
		case	label1:	statement1
		case	label2:	statement2
		…
		case	labeln:	statementn
		default:				statement
}	//	end	switch

The	syntax	of	the	switch	statement	comprises	a	switch	expression	followed	by	the

switch	body,	which	is	a	block	of	statements.	The	switch	expression	must	evaluate	to	a
value	of	the	following	types:

•	One	of	the	following	primitive	data	types:	char,	byte,	short,	or	int

•	One	of	the	following	wrapper	types:	Character,	Byte,	Short,	or	Integer

•	String	type

•	An	enumerated	type

Note	that	the	type	of	the	switch	expression	cannot	be	boolean,	long,	or	floating-
point.	The	statements	in	the	switch	body	can	be	labeled,	thereby	defining	entry	points	in
the	switch	body	where	control	can	be	transferred	depending	on	the	value	of	the
switch	expression.	The	execution	of	the	switch	statement	is	as	follows:

•	The	switch	expression	is	evaluated	first.	If	the	value	is	a	wrapper	type,	an
unboxing	conversion	is	performed.

•	The	value	of	the	switch	expression	is	compared	with	the	case	labels.	Control	is
transferred	to	the	statement	associated	with	the	case	label	that	is	equal	to	the	value
of	the	switch	expression.	After	execution	of	the	associated	statement,	control	falls
through	to	the	next	statement	unless	this	was	the	last	statement	declared	or	control
was	transferred	out	of	the	switch	statement.

•	If	no	case	label	is	equal	to	the	value	of	the	switch	expression,	the	statement
associated	with	the	default	label	is	executed.	After	execution	of	the	associated
statement,	control	falls	through	to	the	next	statement	unless	this	was	the	last
statement	declared	or	control	was	transferred	out	of	the	switch	statement.

Figure	6.2	illustrates	the	flow	of	control	through	a	switch	statement	where	the
default	label	is	declared	last.

Figure	6.2	Activity	Diagram	for	a	switch	Statement

All	labels	(including	the	default	label)	are	optional,	and	can	be	defined	in	any	order	in

the	switch	body.	At	most	one	default	label	can	be	present	in	a	switch	statement.	If
no	valid	case	labels	are	found	and	the	default	label	is	omitted,	the	whole	switch
statement	is	skipped.

The	case	labels	are	constant	expressions	whose	values	must	be	unique,	meaning	no
duplicate	values	are	allowed.	In	fact,	a	case	label	must	be	a	compile-time	constant
expression	whose	value	is	assignable	to	the	type	of	the	switch	expression	(§5.2,	p.	147).
In	particular,	all	case	label	values	must	be	in	the	range	of	the	type	of	the	switch
expression.	The	type	of	the	case	label	cannot	be	boolean,	long,	or	floating-point.

The	compiler	is	able	to	generate	efficient	code	for	a	switch	statement,	as	this	statement
only	tests	for	equality	between	the	switch	expression	and	the	constant	value	of	the
case	labels,	so	as	to	determine	which	code	to	execute	at	runtime.	In	contrast,	a	sequence
of	if	statements	determines	the	flow	of	control	at	runtime,	based	on	arbitrary	conditions
whose	value	might	be	possible	to	determine	only	at	runtime.

In	Example	6.1,	depending	on	the	value	of	the	howMuchAdvice	parameter,	different
advice	is	printed	in	the	switch	statement	at	(1)	in	the	method	dispenseAdvice().
The	example	shows	the	output	when	the	value	of	the	howMuchAdvice	parameter	is
LOTS_OF_ADVICE.	In	the	switch	statement,	the	associated	statement	at	(2)	is
executed,	giving	one	piece	of	advice.	Control	then	falls	through	to	the	statement	at	(3),
giving	the	second	advice.	Control	next	falls	through	to	(4),	dispensing	the	third	piece	of
advice,	and	finally	execution	of	the	break	statement	at	(5)	causes	control	to	exit	the
switch	statement.	Without	the	break	statement	at	(5),	control	would	continue	to	fall
through	the	remaining	statements—in	this	case,	to	the	statement	at	(6)	being	executed.
Execution	of	the	break	statement	in	a	switch	body	transfers	control	out	of	the
switch	statement	(§6.4,	p.	221).	If	the	parameter	howMuchAdvice	has	the	value
MORE_ADVICE,	then	the	advice	at	both	(3)	and	(4)	is	given.	The	value
LITTLE_ADVICE	results	in	only	one	piece	of	advice	at	(4)	being	given.	Any	other	value
results	in	the	default	action,	which	announces	that	there	is	no	advice.

The	associated	statement	of	a	case	label	can	be	a	list	of	statements	(which	need	not	be	a
statement	block).	The	case	label	is	prefixed	to	the	first	statement	in	each	case.	This	is
illustrated	by	the	associated	statement	for	the	case	label	LITTLE_ADVICE	in	Example
6.1,	which	comprises	statements	(4)	and	(5).

Example	6.1	Fall-Through	in	a	switch	Statement
Click	here	to	view	code	image

public	class	Advice	{

		private	static	final	int	LITTLE_ADVICE	=	0;
		private	static	final	int	MORE_ADVICE	=	1;
		private	static	final	int	LOTS_OF_ADVICE	=	2;

		public	static	void	main(String[]	args)	{
				dispenseAdvice(LOTS_OF_ADVICE);
		}

		public	static	void	dispenseAdvice(int	howMuchAdvice)	{
				switch	(howMuchAdvice)	{																		//	(1)
						case	LOTS_OF_ADVICE:
								System.out.println(“See	no	evil.”);			//	(2)
						case	MORE_ADVICE:
								System.out.println(“Speak	no	evil.”);	//	(3)
						case	LITTLE_ADVICE:
								System.out.println(“Hear	no	evil.”);		//	(4)
								break;																																//	(5)
						default:
								System.out.println(“No	advice.”);					//	(6)
				}
		}
}

Output	from	the	program:
See	no	evil.
Speak	no	evil.
Hear	no	evil.

Example	6.2	makes	use	of	a	break	statement	inside	a	switch	statement	to	convert	a
char	value	representing	a	digit	to	the	corresponding	word	in	English.	Note	that	the
break	statement	is	the	last	statement	in	the	list	of	statements	associated	with	each	case
label.	It	is	easy	to	think	that	the	break	statement	is	a	part	of	the	switch	statement
syntax,	but	technically	it	is	not.

Example	6.2	Using	break	in	a	switch	Statement
Click	here	to	view	code	image

public	class	Digits	{

		public	static	void	main(String[]	args)	{
				System.out.println(digitToString(‘7’)	+	”	”	+	digitToString(‘8’)	+	”	”	+
																							digitToString(‘6’));
				System.out.println(digitToString(‘2’)	+	”	”	+	digitToString(‘a’)	+	”	”	+
								digitToString(‘5’));
		}

		public	static	String	digitToString(char	digit)	{
				String	str	=	””;
				switch(digit)	{
						case	‘1’:	str	=	“one”;			break;
						case	‘2’:	str	=	“two”;			break;
						case	‘3’:	str	=	“three”;	break;
						case	‘4’:	str	=	“four”;		break;
						case	‘5’:	str	=	“five”;		break;
						case	‘6’:	str	=	“six”;			break;
						case	‘7’:	str	=	“seven”;	break;
						case	‘8’:	str	=	“eight”;	break;
						case	‘9’:	str	=	“nine”;		break;
						case	‘0’:	str	=	“zero”;		break;
						default:		System.out.println(digit	+	”	is	not	a	digit!”);
				}
				return	str;
		}
}

Output	from	the	program:
seven	eight	six
a	is	not	a	digit!
two		five

Several	case	labels	can	prefix	the	same	statement.	They	will	all	result	in	the	associated
statement	being	executed.	This	behavior	is	illustrated	in	Example	6.3	for	the	switch
statement	at	(1).

The	first	statement	in	the	switch	body	must	have	a	case	or	default	label,	or
otherwise	it	will	be	unreachable.	This	statement	will	never	be	executed,	because	control
can	never	be	transferred	to	it.	The	compiler	will	flag	this	as	an	error.	An	empty	switch
block	is	perfectly	legal,	but	not	of	much	use.

Since	each	action	associated	with	a	case	label	can	be	an	arbitrary	statement,	it	can	be
another	switch	statement.	In	other	words,	switch	statements	can	be	nested.	Since	a
switch	statement	defines	its	own	local	block,	the	case	labels	in	an	inner	block	do	not
conflict	with	any	case	labels	in	an	outer	block.	Labels	can	be	redefined	in	nested	blocks;
in	contrast,	variables	cannot	be	redeclared	in	nested	blocks	(§4.4,	p.	117).	In	Example	6.3,
an	inner	switch	statement	is	defined	at	(2),	which	allows	further	refinement	of	the	action
to	take	on	the	value	of	the	switch	expression	in	cases	where	multiple	labels	are	used	in
the	outer	switch	statement.	A	break	statement	terminates	the	innermost	switch
statement	in	which	it	is	executed.

Example	6.3	Nested	switch	Statement
Click	here	to	view	code	image

public	class	Seasons	{

		public	static	void	main(String[]	args)	{
				int	monthNumber	=	11;
				switch(monthNumber)	{																																					//	(1)	Outer
						case	12:	case	1:	case	2:
								System.out.println(“Snow	in	the	winter.”);
								break;
						case	3:	case	4:	case	5:
								System.out.println(“Green	grass	in	the	spring.”);
								break;
						case	6:	case	7:	case	8:
								System.out.println(“Sunshine	in	the	summer.”);
								break;
						case	9:	case	10:	case	11:																															//	(2)
								switch(monthNumber)	{	//	Nested	switch																			(3)	Inner
										case	10:
												System.out.println(“Halloween.”);
												break;
										case	11:
												System.out.println(“Thanksgiving.”);
												break;
								}	//	End	nested	switch
								//	Always	printed	for	case	labels	9,	10,	11
								System.out.println(“Yellow	leaves	in	the	fall.”);					//	(4)
								break;
						default:
								System.out.println(monthNumber	+	”	is	not	a	valid	month.”);
				}
		}
}

Output	from	the	program:
Thanksgiving.
Yellow	leaves	in	the	fall.

Example	6.4	illustrates	using	strings	in	a	switch	statement.	The	thing	to	note	is	what
constitutes	a	constant	string	expression	that	can	be	used	as	a	case	label.	The	case	labels
in	(3),	(4),	(5),	and	(6)	are	all	valid	constant	string	expressions,	as	the	compiler	can	figure
out	their	values	at	compile	time.	String	literals,	used	in	(3)	and	(6),	and	constant	field
values,	declared	in	(1)	and	(2a),	and	used	in	(4)	and	(5),	are	all	valid	case	labels.	In
contrast,	the	HOT	reference	from	declarations	(2b)	and	(2c)	cannot	be	used	as	a	case
label.	From	the	declaration	in	(2a),	the	compiler	cannot	guarantee	that	the	value	of	the
reference	will	not	change	at	runtime.	From	the	declaration	in	(2c),	it	cannot	deduce	the
value	at	compile	time,	as	the	constructor	must	be	run	to	construct	the	value.

Switching	on	strings	is	essentially	based	on	equality	comparison	of	integer	values	that	are
hash	values	of	strings,	followed	by	an	object	equality	test	to	rule	out	the	possibility	of
collision	between	two	different	strings	having	the	same	hash	value.	Switching	on	strings
should	be	used	judiciously,	as	it	is	less	efficient	than	switching	on	integers.	Switching	on
strings	is	not	advisable	if	the	values	being	switched	on	are	not	already	strings.

Example	6.4	Strings	in	switch	Statement
Click	here	to	view	code	image

public	class	SwitchingOnAString	{
		public	static	final	String	MEDIUM	=	“Medium”;						//	(1)
		public	static	final	String	HOT	=	“Hot”;												//	(2a)
//public	static							String	HOT	=	“Hot”;												//	(2b)	Not	OK	as	case
lablel
//public	static	final	String	HOT	=	new	String(“Hot”);//	(2c)	Not	OK	as	case
lablel

		public	static	void	main(String[]	args)	{
				String	spiceLevel	=	“Medium_Hot”;
				switch	(spiceLevel)	{
						case	“Mild”:																																			//	(3)
						case	MEDIUM	+	“_”	+	HOT:																							//	(4)
								System.out.println(“Enjoy	your	meal!”);
								break;
						case	HOT:																																						//	(5)
								System.out.println(“Have	fun!”);
								break;
						case	“Suicide”:																																//	(6)
								System.out.println(“Good	luck!”);
								break;
						default:
								System.out.println(“You	being	funny?”);
				}
		}
}

Output	from	the	program:
Enjoy	your	meal!

Example	6.5	illustrates	the	use	of	enum	types	in	a	switch	statement.	The	enum	type
SpiceGrade	is	defined	at	(1).	The	type	of	the	switch	expression	is	SpiceGrade.
Note	that	the	enum	constants	are	not	specified	with	their	fully	qualified	name	(see	(2a)).
Using	the	fully	qualified	name	results	in	a	compile-time	error,	as	shown	at	(2b).	Only
enum	constants	that	have	the	same	enum	type	as	the	switch	expression	can	be	specified
as	case	label	values.

The	semantics	of	the	switch	statement	are	the	same	as	described	earlier.	However,	if	a
switch	expression	evaluates	to	the	null	reference,	a	NullPointerException	will
be	thrown.	Switching	on	enumerated	values	is	essentially	based	on	equality	comparison	of
unique	integer	values	that	are	ordinal	values	assigned	by	the	compiler	to	the	constants	of
an	enum	type.

Example	6.5	Enums	in	switch	Statement
Click	here	to	view	code	image

enum	SpiceGrade	{																														//	(1)
				MILD,	MEDIUM_HOT,	HOT,	SUICIDE;
}

public	class	SwitchingFun	{

		public	static	void	main(String[]	args)	{
				SpiceGrade	spicing	=	SpiceGrade.HOT;
				switch	(spicing)	{
						case	HOT:																																//	(2a)	OK!
//				case	SpiceGrade.HOT:																					//	(2b)	Compile-time	error!
								System.out.println(“Have	fun!”);
								break;
						case	SUICIDE:
								System.out.println(“Good	luck!”);
								break;
						default:																																	//	Can	only	be	MILD	or
MEDIUM_HOT.
								System.out.println(“Enjoy	you	meal!”);
				}
		}
}

Output	from	the	program:
Have	fun!

	Review	Questions

6.1	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	class?
Click	here	to	view	code	image

public	class	IfTest	{
		public	static	void	main(String[]	args)	{
				if	(true)
				if	(false)
				System.out.println(“a”);
				else
				System.out.println(“b”);
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	the	syntax	of	the	if	statement	is
incorrect.

(b)	The	code	will	fail	to	compile	because	the	compiler	will	not	be	able	to	determine
which	if	statement	the	else	clause	belongs	to.

(c)	The	code	will	compile	correctly,	and	display	the	letter	a	at	runtime.

(d)	The	code	will	compile	correctly,	and	display	the	letter	b	at	runtime.

(e)	The	code	will	compile	correctly,	but	will	not	display	any	output.

6.2	Which	of	the	following	statements	are	true?

Select	the	three	correct	answers.

(a)	The	condition	in	an	if	statement	can	have	method	calls.

(b)	If	a	and	b	are	of	type	boolean	or	Boolean,	the	expression	(a	=	b)	can
be	the	condition	of	an	if	statement.

(c)	An	if	statement	can	have	either	an	if	clause	or	an	else	clause.

(d)	The	statement	if	(false)	;	else	;	is	illegal.

(e)	Only	expressions	that	evaluate	or	can	be	unboxed	to	a	boolean	value	can	be
used	as	the	condition	in	an	if	statement.

6.3	What,	if	anything,	is	wrong	with	the	following	code?
void	test(int	x)	{
		switch	(x)	{
				case	1:
				case	2:
				case	0:
				default:
				case	4:
		}
}

Select	the	one	correct	answer.

(a)	The	variable	x	does	not	have	the	right	type	for	a	switch	expression.

(b)	The	case	label	0	must	precede	the	case	label	1.

(c)	Each	case	section	must	end	with	a	break	statement.

(d)	The	default	label	must	be	the	last	label	in	the	switch	statement.

(e)	The	body	of	the	switch	statement	must	contain	at	least	one	statement.

(f)	There	is	nothing	wrong	with	the	code.

6.4	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	Switching	{
		public	static	void	main(String[]	args)	{
				final	int	iLoc	=	3;
				switch	(6)	{
						case	1:
						case	iLoc:
						case	2	*	iLoc:
								System.out.println(“I	am	not	OK.”);
						default:
								System.out.println(“You	are	OK.”);
						case	4:
								System.out.println(“It’s	OK.”);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	of	the	case	label	value	2	*	iLoc.

(b)	The	code	will	fail	to	compile	because	the	default	label	is	not	specified	last
in	the	switch	statement.

(c)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
I	am	not	OK.
You	are	OK.
It’s	OK.

(d)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
You	are	OK.
It’s	OK.

(e)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
It’s	OK.

6.5	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	MoreSwitching	{
		public	static	void	main(String[]	args)	{
				final	int	iLoc	=	3;
				Integer	iRef	=	5;
				switch	(iRef)	{
						default:
								System.out.println(“You	are	OK.”);
						case	1:
						case	iLoc:
						case	2	*	iLoc:
								System.out.println(“I	am	not	OK.”);
								break;
						case	4:
								System.out.println(“It’s	OK.”);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	the	type	of	the	switch	expression	is	not
valid.

(b)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
You	are	OK.
I	am	not	OK.

(c)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
You	are	OK.
I	am	not	OK.
It’s	OK.

(d)	The	code	will	compile	correctly	and	will	print	the	following	at	runtime:
It’s	OK.

6.6	Which	case	label	declaration	can	be	inserted	at	(1)	so	that	the	following	program

will	compile,	run,	and	print	Hi,	TomTom!?
Click	here	to	view	code	image

public	class	Switcheroo	{
		public	static	void	main(String[]	args)	{
				final	String	TOM1	=	“Tom”;
										String	TOM2	=	“Tom”;
				final	String	TOM3	=	new	String(“Tom”);
				switch	(“TomTom”)	{
						default:
								System.out.println(“Whatever!”);
								break;
//				(1)	INSERT	case	LABEL	DECLARATION	HERE.
								System.out.println(“Hi,	TomTom!”);
				}
		}
}

Select	the	four	correct	answers.

(a)	case	"TomTom":

(b)	case	TOM1	+	TOM1:

(c)	case	TOM1	+	TOM2:

(d)	case	TOM1	+	TOM3:

(e)	case	TOM2	+	TOM3:

(f)	case	"Tom"	+	TOM1:

(g)	case	"Tom"	+	TOM2:

(h)	case	"Tom"	+	TOM3:

(i)	case	'T'	+	'o'	+	'm'	+	TOM1:

(j)	case	"T"	+	'o'	+	'm'	+	TOM1:

6.3	Iteration	Statements
Loops	allow	a	block	of	statements	to	be	executed	repeatedly	(that	is,	iterated).	A	boolean
condition	(called	the	loop	condition)	is	commonly	used	to	determine	when	to	terminate	the
loop.	The	statements	executed	in	the	loop	constitute	the	loop	body.	The	loop	body	can	be	a
single	statement	or	a	block.

Java	provides	three	language	constructs	for	loop	construction:

•	The	while	statement

•	The	do-while	statement

•	The	basic	for	statement

These	loops	differ	in	the	order	in	which	they	execute	the	loop	body	and	test	the	loop
condition.	The	while	loop	and	the	basic	for	loop	test	the	loop	condition	before
executing	the	loop	body,	whereas	the	do-while	loop	tests	the	loop	condition	after

execution	of	the	loop	body.

In	addition	to	the	basic	for	loop,	a	specialized	loop	called	the	enhanced	for	loop	(also
called	the	for-each	loop)	simplifies	iterating	over	arrays	and	collections.	We	will	use	the
notations	for(;;)	and	for(:)	to	designate	the	basic	for	loop	and	the	enhanced	for
loop,	respectively.

The	 	Statement
The	syntax	of	the	while	loop	is

while	(loop_condition)
		loop_body

The	loop	condition	is	evaluated	before	executing	the	loop	body.	The	while	statement
executes	the	loop	body	as	long	as	the	loop	condition	is	true.	When	the	loop	condition
becomes	false,	the	loop	is	terminated	and	execution	continues	with	the	statement
immediately	following	the	loop.	If	the	loop	condition	is	false	to	begin	with,	the	loop
body	is	not	executed	at	all.	In	other	words,	a	while	loop	can	execute	zero	or	more	times.
The	loop	condition	must	evaluate	to	a	boolean	or	a	Boolean	value.	In	the	latter	case,
the	reference	value	is	unboxed	to	a	boolean	value.	The	flow	of	control	in	a	while
statement	is	shown	in	Figure	6.3.

Figure	6.3	Activity	Diagram	for	the	while	Statement

The	while	statement	is	normally	used	when	the	number	of	iterations	is	not	known.
while	(noSignOfLife())
		keepLooking();

Since	the	loop	body	can	be	any	valid	statement,	inadvertently	terminating	each	line	with
the	empty	statement	(;)	can	give	unintended	results.	Always	using	a	block	statement	as
the	loop	body	helps	to	avoid	such	problems.
Click	here	to	view	code	image

while	(noSignOfLife());					//	Empty	statement	as	loop	body!
		keepLooking();												//	Statement	not	in	the	loop	body.

The	 	Statement
The	syntax	of	the	do-while	loop	is

do
		loop_body
while	(loop_condition);

In	a	do-while	statement,	the	loop	condition	is	evaluated	after	executing	the	loop	body.

The	loop	condition	must	evaluate	to	a	boolean	or	Boolean	value.	The	value	of	the
loop	condition	is	subjected	to	unboxing	if	it	is	of	the	type	Boolean.	The	do-while
statement	executes	the	loop	body	until	the	loop	condition	becomes	false.	When	the	loop
condition	becomes	false,	the	loop	is	terminated	and	execution	continues	with	the
statement	immediately	following	the	loop.	Note	that	the	loop	body	is	executed	at	least
once.	Figure	6.4	illustrates	the	flow	of	control	in	a	do-while	statement.

Figure	6.4	Activity	Diagram	for	the	do-while	Statement

The	loop	body	in	a	do-while	loop	is	invariably	a	statement	block.	It	is	instructive	to
compare	the	while	and	do-while	loops.	In	the	examples	that	follow,	the	mice	might
never	get	to	play	if	the	cat	is	not	away,	as	in	the	loop	at	(1).	The	mice	do	get	to	play	at
least	once	(at	the	peril	of	losing	their	life)	in	the	loop	at	(2).
Click	here	to	view	code	image

while	(cat.isAway())	{							//	(1)
		mice.play();
}

do	{																									//	(2)
		mice.play();
}	while	(cat.isAway());

The	 	Statement
The	for(;;)	loop	is	the	most	general	of	all	the	loops.	It	is	mostly	used	for	counter-
controlled	loops,	in	which	the	number	of	iterations	is	known	beforehand.

The	syntax	of	the	loop	is	as	follows:
Click	here	to	view	code	image

for	(initialization;	loop_condition;	update_expression)
										loop_body

The	initialization	usually	declares	and	initializes	a	loop	variable	that	controls	the
execution	of	the	loop	body.	The	loop	condition	must	evaluate	to	a	boolean	or	Boolean
value.	In	the	latter	case,	the	reference	value	is	converted	to	a	boolean	value	by
unboxing.	The	loop	condition	usually	involves	the	loop	variable,	and	if	the	loop	condition
is	true,	the	loop	body	is	executed;	otherwise,	execution	continues	with	the	statement
following	the	for(;;)	loop.	After	each	iteration	(that	is,	execution	of	the	loop	body),
the	update	expression	is	executed.	This	usually	modifies	the	value	of	the	loop	variable	to
ensure	eventual	loop	termination.	The	loop	condition	is	then	tested	to	determine	whether
the	loop	body	should	be	executed	again.	Note	that	the	initialization	is	executed	only	once,

on	entry	into	the	loop.	The	semantics	of	the	for(;;)	loop	are	illustrated	in	Figure	6.5,
and	are	summarized	by	the	following	equivalent	while	loop	code	template:

initialization
while	(loop_condition)	{
				loop_body
				update_expression
}

Figure	6.5	Activity	Diagram	for	the	for	Statement

The	following	code	creates	an	int	array	and	sums	the	values	in	the	array:
Click	here	to	view	code	image

int	sum	=	0;
int[]	array	=	{12,	23,	5,	7,	19};
for	(int	index	=	0;	index	<	array.length;	index++)			//	(1)
		sum	+=	array[index];

The	loop	variable	index	is	declared	and	initialized	in	the	initialization	section	of	the
loop.	It	is	incremented	in	the	update	expression	section.	This	loop	is	an	example	of	a
forward	for(;;)	loop,	where	the	loop	variable	is	incremented.

The	next	code	snippet	is	an	example	of	a	backward	for(;;)	loop,	where	the	loop
variable	is	decremented	to	sum	the	values	in	the	array:
Click	here	to	view	code	image

int	sum	=	0;
int[]	array	=	{12,	23,	5,	7,	19};
for	(int	index	=	array.length	-	1;	index	>=	0;	index—)
		sum	+=	array[index];

It	is	instructive	to	compare	the	specification	of	the	loop	header	in	the	forward
and		backward	for(;;)	loops	in	these	examples.

The	for(;;)	loop	defines	a	local	block	so	that	the	scope	of	this	declaration	is	the
for(;;)	block,	which	comprises	the	initialization,	the	loop	condition,	the	loop	body,
and	the	update	expression	sections.	Any	variable	declared	in	the	for(;;)	block,
therefore,	is	not	accessible	after	the	for(;;)	loop	terminates.	The	loop	at	(1)	earlier
showed	how	a	declaration	statement	can	be	specified	in	the	initialization	section.	Such	a

declaration	statement	can	also	specify	a	comma-separated	list	of	variables:
Click	here	to	view	code	image

for	(int	i	=	0,	j	=	1,	k	=	2;	…	;	…)	…;						//	(2)

The	variables	i,	j,	and	k	in	the	declaration	statement	all	have	type	int.	All	variables
declared	in	the	initialization	section	are	local	variables	in	the	for(;;)	block	and	obey
the	scope	rules	for	local	blocks.	The	following	code	will	not	compile,	however,	as	variable
declarations	of	different	types	(in	this	case,	int	and	String)	require	declaration
statements	that	are	terminated	by	semicolons:
Click	here	to	view	code	image

for	(int	i	=	0,	String	str	=	“@”;	…	;	…)	…;		//	(3)	Compile-time	error

The	initialization	section	can	also	be	a	comma-separated	list	of	expression	statements
(§3.2,	p.	50).	Any	value	returned	by	an	expression	statement	is	discarded.	For	example,
the	loop	at	(2)	can	be	rewritten	by	factoring	out	the	variable	declaration:
Click	here	to	view	code	image

int	i,	j,	k;		//	Variable	declaration
for	(i	=	0,	j	=	1,	k	=	2;	…	;	…)	…;										//	(4)	Only	initialization

The	initialization	section	is	now	a	comma-separated	list	of	three	expressions.	The
expressions	in	such	a	list	are	always	evaluated	from	left	to	right,	and	their	values	are
discarded.	Note	that	the	variables	i,	j,	and	k	at	(4)	are	not	local	to	the	loop.

Declaration	statements	cannot	be	mixed	with	expression	statements	in	the	initialization
section,	as	is	the	case	at	(5)	in	the	following	example.	Factoring	out	the	variable
declaration,	as	at	(6),	leaves	a	legal	comma-separated	list	of	expression	statements.
Click	here	to	view	code	image

//	(5)	Not	legal	and	ugly:
for	(int	i	=	0,	System.out.println(“This	won’t	do!”);	flag;	i++)	{	//	Error!
		//	loop	body
}

//	(6)	Legal,	but	still	ugly:
int	i;																																							//	Declaration	factored	out.
for	(i	=	0,	System.out.println(“This	is	legal!”);	flag;	i++)	{					//	OK.
		//	loop	body
}

The	update	expression	can	also	be	a	comma-separated	list	of	expression	statements.	The
following	code	specifies	a	for(;;)	loop	that	has	a	comma-separated	list	of	three
variables	in	the	initialization	section,	and	a	comma-separated	list	of	two	expressions	in	the
update	expression	section:
Click	here	to	view	code	image

//	Legal	usage	but	not	recommended.
int[][]	sqMatrix	=	{	{3,	4,	6},	{5,	7,	4},	{5,	8,	9}	};
for	(int	i	=	0,	j	=	sqMatrix[0].length	-	1,	asymDiagonal	=	0;		//
initialization
					i	<	sqMatrix.length;																																						//	loop
condition
					i++,	j—)																																										//	update	expression
		asymDiagonal	+=	sqMatrix[i][j];																							//	loop	body

All	sections	in	the	for(;;)	header	are	optional.	Any	or	all	of	them	can	be	left	empty,
but	the	two	semicolons	are	mandatory.	In	particular,	leaving	out	the	loop	condition
signifies	that	the	loop	condition	is	true.	The	“crab”,	(;;),	can	be	used	to	construct	an
infinite	loop,	where	termination	is	presumably	achieved	through	code	in	the	loop	body
(see	the	next	section	on	transfer	statements):
Click	here	to	view	code	image

for	(;;)	doProgramming();							//	Infinite	loop

The	 	Statement
The	enhanced	for	loop	is	convenient	when	we	need	to	iterate	over	an	array	or	a
collection,	especially	when	some	operation	needs	to	be	performed	on	each	element	of	the
array	or	collection.	In	this	section	we	discuss	iterating	over	arrays;	in	§10.1,	p.	423,	we
take	a	look	at	the	for(:)	loop	for	iterating	over	ArrayLists.

Earlier	in	this	chapter	we	used	a	for(;;)	loop	to	sum	the	values	of	elements	in	an	int
array:
Click	here	to	view	code	image

int	sum	=	0;
int[]	intArray	=	{12,	23,	5,	7,	19};
for	(int	index	=	0;	index	<	intArray.length;	index++)	{	//	(1)	using	for(;;)
loop
		sum	+=	intArray[index];
}

The	for(;;)	loop	at	(1)	is	rewritten	using	the	for(:)	loop	in	Figure	6.6.

Figure	6.6	Enhanced	for	Statement

The	body	of	the	loop	is	executed	for	each	element	in	the	array,	where	the	variable
element	successively	denotes	the	current	element	in	the	array	intArray.	When	the
loop	terminates,	the	variable	sum	will	contain	the	sum	of	all	elements	in	the	array.	We	do
not	care	about	the	position	of	the	elements	in	the	array,	just	that	the	loop	iterates	over	all
elements	of	the	array.

From	Figure	6.6	we	see	that	the	for(:)	loop	header	has	two	parts.	The	expression	must
evaluate	to	a	reference	value	that	refers	to	an	array—that	is,	the	array	we	want	to	iterate
over.	The	array	can	be	an	array	of	primitive	values	or	objects,	or	even	an	array	of	arrays.
The	expression	is	evaluated	only	once.	The	element	declaration	specifies	a	local	variable
that	can	be	assigned	a	value	of	the	element	type	of	the	array.	The	type	of	the	array
intArray	in	Figure	6.6	is	int[],	and	the	element	type	is	int.	The	element	variable	of
type	int	can	be	assigned	int	values	from	the	array	of	int.	However,	this	assignment
might	require	either	a	boxing	or	an	unboxing	conversion,	with	optional	widening

conversion.

The	element	variable	is	local	to	the	loop	block	and	is	not	accessible	after	the	loop
terminates.	Also,	changing	the	value	of	the	current	variable	does	not	change	any	value	in
the	array.	The	loop	body,	which	can	be	a	simple	statement	or	a	statement	block,	is
executed	for	each	element	in	the	array	and	there	is	no	danger	of	any	out-of-bounds	errors.

The	for(:)	loop	has	its	limitations.	Specifically,	we	cannot	change	element	values,	and
this	kind	of	loop	does	not	provide	any	provision	for	positional	access	using	an	index.	The
for(:)	loop	only	increments	by	one	and	always	in	a	forward	direction.	It	does	not	allow
iterations	over	several	arrays	simultaneously.	Under	such	circumstances,	the	for(;;)
loop	can	be	more	convenient.

Here	are	some	code	examples	of	legal	for(:)	loops:
Click	here	to	view	code	image

//	Some	1-dim	arrays:
int[]					intArray	=				{10,	20,	30};
Integer[]	intObjArray	=	{10,	20,	30};
String[]		strArray	=				{“one”,	“two”};

//	Some	2-dim	arrays:
Object[][]	objArrayOfArrays	=	{intObjArray,	strArray};
Number[][]	numArrayOfArrays	=	{{1.5,	2.5},	intObjArray,	{100L,	200L}};
int[][]				intArrayOfArrays	=	{{20},	intArray,	{40}};

//	Iterate	over	an	array	of	Strings.
//	Expression	type	is	String[],	and	element	type	is	String.
//	String	is	assignable	to	Object	(widening	conversion).
for	(Object	obj	:	strArray)	{}

//	Iterate	over	an	array	of	ints.
//	Expression	type	is	int[],	and	element	type	is	int.
//	int	is	assignable	to	Integer	(boxing	conversion)
for	(Integer	iRef	:	intArrayOfArrays[0]){}

//	Iterate	over	an	array	of	Integers.
//	Expression	type	is	Integer[],	and	element	type	is	Integer.
//	Integer	is	assignable	to	int	(unboxing	conversion)
for	(int	i	:	intObjArray){}

//	Iterate	over	a	2-dim	array	of	ints.
//	Outer	loop:	expression	type	is	int[][],	and	element	type	is	int[].
//	Inner	loop:	expression	type	is	int[],	and	element	type	is	int.
for	(int[]	row	:	intArrayOfArrays)
		for	(int	val	:	row)	{}

//	Iterate	over	a	2-dim	array	of	Numbers.
//	Outer	loop:	expression	type	is	Number[][],	and	element	type	is	Number[].
//	Outer	loop:	Number[]	is	assignable	to	Object[]	(widening	conversion).
//	Inner	loop:	expression	type	is	Object[],	and	element	type	is	Object.
for	(Object[]	row	:	numArrayOfArrays)
		for	(Object	obj	:	row)	{}

//	Outer	loop:	expression	type	is	Integer[][],	and	element	type	is	Integer[].
//	Outer	loop:	Integer[]	is	assignable	to	Number[].
//	Inner	loop:	expression	type	is	int[],	and	element	type	is	int.
//	Inner	loop:	int	is	assignable	to	double.
for	(Number[]	row	:	new	Integer[][]	{intObjArray,	intObjArray,	intObjArray})

		for	(double	num	:	new	int[]	{})	{}

Here	are	some	code	examples	of	for(:)	loops	that	are	not	legal:
Click	here	to	view	code	image

//	Expression	type	is	Number[][],	and	element	type	is	Number[].
//	Number[]	is	not	assignable	to	Number.
for	(Number	num	:	numArrayOfArrays)	{}							//	Compile-time	error.

//	Expression	type	is	Number[],	and	element	type	is	Number.
//	Number	is	not	assignable	to	int.
for	(int	row	:	numArrayOfArrays[0])	{}							//	Compile-time	error.

//	Outer	loop:	expression	type	is	int[][],	and	element	type	is	int[].
//	int[]	is	not	assignable	to	Integer[].
for	(Integer[]	row	:	intArrayOfArrays)							//	Compile-time	error.
		for	(int	val	:	row)	{}

//	Expression	type	is	Object[][],	and	element	type	is	Object[].
//	Object[]	is	not	assignable	to	Integer[].
for	(Integer[]	row	:	objArrayOfArrays)	{}				//	Compile-time	error.

//	Outer	loop:	expression	type	is	String[],	and	element	type	is	String.
//	Inner	loop:	expression	type	is	String,	which	is	not	legal	here.	Not	an
array.
for	(String	str	:	strArray)
		for	(char	val	:	str)	{}																				//	Compile-time	error.

When	using	the	for(:)	loop	to	iterate	over	an	array,	the	two	main	causes	of	errors	are	an
expression	in	the	loop	header	that	does	not	represent	an	array	and/or	an	element	type	of
the	array	that	is	not	assignable	to	the	local	variable	declared	in	the	loop	header.

6.4	Transfer	Statements
Java	provides	six	language	constructs	for	transferring	control	in	a	program:

•	break

•	continue

•	return

•	try-catch-finally

•	throw

•	assert

This	section	discusses	the	first	three	statements.	Except	for	the	assert	statement	(not	on
the	OCAJP8	exam),	the	remaining	statements	are	discussed	in	subsequent	sections.

Note	that	Java	does	not	have	a	goto	statement,	although	goto	is	a	reserved	word.

Labeled	Statements
A	statement	may	have	a	label:

label	:	statement

A	label	is	any	valid	identifier;	it	always	immediately	precedes	the	statement.	Label	names
exist	in	their	own	namespace,	so	that	they	do	not	conflict	with	names	of	packages,	classes,
interfaces,	methods,	fields,	and	local	variables.	The	scope	of	a	label	is	the	statement
prefixed	by	the	label,	meaning	that	it	cannot	be	redeclared	as	a	label	inside	the	labeled
statement—analogous	to	the	scope	of	local	variables.
Click	here	to	view	code	image

L1:	if	(i	>	0)	{
		L1:	System.out.println(i);				//	(1)	Not	OK.	Label	redeclared.
}

L1:	while	(i	<	0)	{													//	(2)	OK.
		L2:	System.out.println(i);
}

L1:	{																											//	(3)	OK.	Labeled	block.
		int	j	=	10;
		System.out.println(j);
}

L1:	try	{																							//	(4)	OK.	Labeled	try-catch-finally	block.
		int	j	=	10,	k	=	0;
		L2:	System.out.println(j/k);
}	catch	(ArithmeticException	ae)	{
		L3:	ae.printStackTrace();
}	finally	{
		L4:	System.out.println(“Finally	done.”);
}

A	statement	can	have	multiple	labels:
Click	here	to	view	code	image

LabelA:	LabelB:	System.out.println(“Mutliple	labels.	Use	judiciously.”);

A	declaration	statement	cannot	have	a	label:
Click	here	to	view	code	image

L0:	int	i	=	0;																		//	Compile-time	error!

A	labeled	statement	is	executed	as	if	it	was	unlabeled,	unless	it	is	the	break	or
continue	statement.	This	behavior	is	discussed	in	the	next	two	subsections.

The	 	Statement
The	break	statement	comes	in	two	forms:	unlabeled	and	labeled.
Click	here	to	view	code	image

break;													//	the	unlabeled	form
break	label;									//	the	labeled	form

The	unlabeled	break	statement	terminates	loops	(for(;;),	for(:),	while,	do-
while)	and	switch	statements,	and	transfers	control	out	of	the	current	context	(i.e.,	the
closest	enclosing	block).	The	rest	of	the	statement	body	is	skipped,	and	execution
continues	after	the	enclosing	statement.

In	Example	6.6,	the	break	statement	at	(1)	is	used	to	terminate	a	for(;;)	loop.	Control
is	transferred	to	(2)	when	the	value	of	i	is	equal	to	4	at	(1),	skipping	the	rest	of	the	loop

body	and	terminating	the	loop.

Example	6.6	also	shows	that	the	unlabeled	break	statement	terminates	only	the
innermost	loop	or	switch	statement	that	contains	the	break	statement.	The	break
statement	at	(3)	terminates	the	inner	for(;;)	loop	when	j	is	equal	to	2,	and	execution
continues	in	the	outer	switch	statement	at	(4)	after	the	for(;;)	loop.

Example	6.6	The	break	Statement
Click	here	to	view	code	image

class	BreakOut	{

		public	static	void	main(String[]	args)	{
				System.out.println(“i				sqrt(i)”);
				for	(int	i	=	1;	i	<=	5;	++i)	{
						if	(i	==	4)
								break;																														//	(1)	Terminate	loop.	Control	to
(2).
						//	Rest	of	loop	body	skipped	when	i	gets	the	value	4.
						System.out.printf(“%d				%.2f%n”,	i,	Math.sqrt(i));
				}	//	end	for
				//	(2)	Continue	here.
				int	n	=	2;
				switch	(n)	{
						case	1:
								System.out.println(n);
								break;
						case	2:
								System.out.println(“Inner	for(;;)	loop:	“);
								for	(int	j	=	0;	j	<=	n;	j++)	{
										if	(j	==	2)
												break;																										//	(3)	Terminate	loop.	Control	to
(4).
										System.out.println(“j	=	”	+	j);
								}
						default:
								System.out.println(“default:	n	=	”	+	n);	//	(4)	Continue	here.
				}
		}
}

Output	from	the	program:
i				sqrt(i)
1				1.00
2				1.41
3				1.73
Inner	for(;;)	loop:
j	=	0
j	=	1
default:	n	=	2

A	labeled	break	statement	can	be	used	to	terminate	any	labeled	statement	that	contains
the	break	statement.	Control	is	then	transferred	to	the	statement	following	the	enclosing
labeled	statement.	In	the	case	of	a	labeled	block,	the	rest	of	the	block	is	skipped	and
execution	continues	with	the	statement	following	the	block:
Click	here	to	view	code	image

out:																								//	Label.
{																											//	(1)	Labeled	block.
		//	…
		if	(j	==	10)	break	out;			//	(2)	Terminate	block.	Control	to	(3).
		System.out.println(j);				//	Rest	of	the	block	not	executed	if	j	==	10.
		//	…
}
//	(3)	Continue	here.

In	Example	6.7,	the	program	continues	to	add	the	elements	below	the	diagonal	of	a	square
matrix	until	the	sum	is	greater	than	10.	Two	nested	for	loops	are	defined	at	(1)	and	(2).
The	outer	loop	is	labeled	outer	at	(1).	The	unlabeled	break	statement	at	(3)	transfers
control	to	(5)	when	it	is	executed;	that	is,	it	terminates	the	inner	loop	and	control	is
transferred	to	the	statement	after	the	inner	loop.	The	labeled	break	statement	at	(4)
transfers	control	to	(6)	when	it	is	executed;	that	is,	it	terminates	both	the	inner	and	the
outer	loop,	transferring	control	to	the	statement	after	the	loop	labeled	outer.

Example	6.7	Labeled	break	Statement
Click	here	to	view	code	image

class	LabeledBreakOut	{
		public	static	void	main(String[]	args)	{
				int[][]	squareMatrix	=	{{4,	3,	5},	{2,	1,	6},	{9,	7,	8}};
				int	sum	=	0;
				outer:	for	(int	i	=	0;	i	<	squareMatrix.length;	++i){			//	(1)	label
								for	(int	j	=	0;	j	<	squareMatrix[i].length;	++j)	{		//	(2)
										if	(j	==	i)	break;									//	(3)	Terminate	inner	loop.	Control	to
(5).
										System.out.println(“Element[”	+	i	+	“,	”	+	j	+	“]:	”	+
																														squareMatrix[i][j]);
										sum	+=	squareMatrix[i][j];
										if	(sum	>	10)	break	outer;	//	(4)	Terminate	both	loops.	Control	to
(6).
								}	//	end	inner	loop
								//	(5)	Continue	with	update	expression	in	the	outer	loop	header.
						}	//	end	outer	loop
				//	(6)	Continue	here.
				System.out.println(“sum:	”	+	sum);
		}
}

Output	from	the	program:
Element[1,	0]:	2
Element[2,	0]:	9
sum:	11

The	 	Statement
Like	the	break	statement,	the	continue	statement	comes	in	two	forms:	unlabeled	and
labeled.
Click	here	to	view	code	image

continue;													//	the	unlabeled	form
continue	label;									//	the	labeled	form

The	continue	statement	can	be	used	only	in	a	for(;;),	for(:),	while,	or	do-

while	loop	to	prematurely	stop	the	current	iteration	of	the	loop	body	and	proceed	with
the	next	iteration,	if	possible.	In	the	case	of	the	while	and	do-while	loops,	the	rest	of
the	loop	body	is	skipped—that	is,	the	current	iteration	is	stopped,	with	execution
continuing	with	the	loop	condition.	In	the	case	of	the	for(;;)	loop,	the	rest	of	the	loop
body	is	skipped,	with	execution	continuing	with	the	update	expression.

In	Example	6.8,	an	unlabeled	continue	statement	is	used	to	skip	an	iteration	in	a
for(;;)	loop.	Control	is	transferred	to	(2)	when	the	value	of	i	is	equal	to	4	at	(1),
skipping	the	rest	of	the	loop	body	and	continuing	with	the	update	expression	in	the
for(;;)	statement.

Example	6.8	continue	Statement
Click	here	to	view	code	image

class	Skip	{
		public	static	void	main(String[]	args)	{
				System.out.println(“i				sqrt(i)”);
				for	(int	i	=	1;	i	<=	5;	++i)	{
						if	(i	==	4)	continue;													//	(1)	Control	to	(2).
						//	Rest	of	loop	body	skipped	when	i	has	the	value	4.
						System.out.printf(“%d				%.2f%n”,	i,	Math.sqrt(i));
						//	(2)	Continue	with	update	expression	in	the	loop	header.
				}	//	end	for
		}
}

Output	from	the	program:
i				sqrt(i)
1				1.00
2				1.41
3				1.73
5				2.24

A	labeled	continue	statement	must	occur	within	a	labeled	loop	that	has	the	same	label.
Execution	of	the	labeled	continue	statement	then	transfers	control	to	the	end	of	that
enclosing	labeled	loop.	In	Example	6.9,	the	unlabeled	continue	statement	at	(3)
transfers	control	to	(5)	when	it	is	executed;	that	is,	the	rest	of	the	loop	body	is	skipped	and
execution	continues	with	the	update	expression	in	the	inner	loop.	The	labeled	continue
statement	at	(4)	transfers	control	to	(6)	when	it	is	executed;	that	is,	it	terminates	the	inner
loop	but	execution	continues	with	the	update	expression	in	the	loop	labeled	outer.	It	is
instructive	to	compare	the	output	from	Example	6.7	(labeled	break)	and	that	from
Example	6.9	(labeled	continue).

Example	6.9	Labeled	continue	Statement
Click	here	to	view	code	image

class	LabeledSkip	{
		public	static	void	main(String[]	args)	{
				int[][]	squareMatrix	=	{{4,	3,	5},	{2,	1,	6},	{9,	7,	8}};
				int	sum	=	0;
				outer:	for	(int	i	=	0;	i	<	squareMatrix.length;	++i){			//	(1)	label
								for	(int	j	=	0;	j	<	squareMatrix[i].length;	++j)	{		//	(2)
										if	(j	==	i)	continue;																													//	(3)	Control	to
(5).
										System.out.println(“Element[”	+	i	+	“,	”	+	j	+	“]:	”	+
														squareMatrix[i][j]);
										sum	+=	squareMatrix[i][j];
										if	(sum	>	10)	continue	outer;																					//	(4)	Control	to
(6).
										//	(5)	Continue	with	update	expression	in	the	inner	loop	header.
								}	//	end	inner	loop
								//	(6)	Continue	with	update	expression	in	the	outer	loop	header.
						}	//	end	outer	loop
				System.out.println(“sum:	”	+	sum);
		}
}

Output	from	the	program:
Element[0,	1]:	3
Element[0,	2]:	5
Element[1,	0]:	2
Element[1,	2]:	6
Element[2,	0]:	9
sum:	25

The	 	Statement
The	return	statement	is	used	to	stop	execution	of	a	method	(or	a	constructor)	and
transfer	control	back	to	the	calling	code	(also	called	the	caller	or	invoker).	The	usage	of
the	two	forms	of	the	return	statement	is	dictated	by	whether	that	statement	is	used	in	a
void	or	a	non-void	method	(Table	6.1).	The	first	form	does	not	return	any	value	to	the
calling	code,	but	the	second	form	does.	Note	that	the	keyword	void	does	not	represent
any	type.

Table	6.1	The	return	Statement

In	Table	6.1,	the	expression	must	evaluate	to	a	primitive	value	or	a	reference	value,	and	its
type	must	be	assignable	to	the	return	type	specified	in	the	method	header	(§5.6,	p.	158,
and	§7.9,	p.	312).	See	also	the	discussion	on	covariant	return	in	connection	with	method
overriding	in	§7.2,	p.	268.

As	can	be	seen	from	Table	6.1,	a	void	method	need	not	have	a	return	statement—in
which	case	the	control	typically	returns	to	the	caller	after	the	last	statement	in	the
method’s	body	has	been	executed.	However,	a	void	method	can	specify	only	the	first
form	of	the	return	statement.	This	form	of	the	return	statement	can	also	be	used	in
constructors,	as	they	likewise	do	not	return	a	value.

Table	6.1	also	shows	that	the	first	form	of	the	return	statement	is	not	allowed	in	a	non-
void	method.	The	second	form	of	the	return	statement	is	mandatory	in	a	non-void
method,	if	the	method	execution	is	not	terminated	programmatically—for	example,	by
throwing	an	exception.	Example	6.10	illustrates	the	use	of	the	return	statement
summarized	in	Table	6.1.	A	recommended	best	practice	is	to	document	the	value	returned
by	a	method	in	a	Javadoc	comment	using	the	@return	tag.

Example	6.10	The	return	Statement
Click	here	to	view	code	image

public	class	ReturnDemo	{

		public	static	void	main	(String[]	args)	{	//	(1)	void	method	can	use
return.
				if	(args.length	==	0)	return;
				output(checkValue(args.length));
		}

		static	void	output(int	value)	{		//	(2)	void	method	need	not	use	return.
				System.out.println(value);
				return	‘a’;																				//	Not	OK.	Cannot	return	a	value.
		}

		static	int	checkValue(int	i)	{			//	(3)	Non-void	method:	Any	return
statement
																																			//					must	return	a	value.
				if	(i	>	3)
						return	i;																				//	OK.
				else
						return	2.0;																		//	Not	OK.	double	not	assignable	to	int.
		}

		static	int	absentMinded()	{						//	(4)	Non-void	method.
				throw	new	RuntimeException();		//	OK:	No	return	statement	provided,	but
																																			//	method	terminates	by	throwing	an
exception.
		}
}

	Review	Questions

6.7	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	code?
Click	here	to	view	code	image

class	MyClass	{
		public	static	void	main(String[]	args)	{
				boolean	b	=	false;
				int	i	=	1;
				do	{

						i++;
						b	=	!	b;
				}	while	(b);
				System.out.println(i);
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	b	is	an	invalid	condition	for	the	do-
while	statement.

(b)	The	code	will	fail	to	compile	because	the	assignment	b	=	!	b	is	not	allowed.

(c)	The	code	will	compile	without	error,	and	will	print	1	at	runtime.

(d)	The	code	will	compile	without	error,	and	will	print	2	at	runtime.

(e)	The	code	will	compile	without	error,	and	will	print	3	at	runtime.

6.8	What	will	be	the	output	when	running	the	following	program?
Click	here	to	view	code	image

public	class	StillMyClass	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				int	j;
				for	(j	=	0;	j	<	10;	++j)	{	i++;	}
				System.out.println(i	+	”	”	+	j);
		}
}

Select	the	two	correct	answers.

(a)	The	first	number	printed	will	be	9.

(b)	The	first	number	printed	will	be	10.

(c)	The	first	number	printed	will	be	11.

(d)	The	second	number	printed	will	be	9.

(e)	The	second	number	printed	will	be	10.

(f)	The	second	number	printed	will	be	11.

6.9	Which	of	the	following	for	statements	is	valid?

Select	the	one	correct	answer.

(a)	int	j	=	10;	for	(int	i	=	0,	j	+=	90;	i	<	j;	i++)	{	j-
-;	}

(b)	for	(int	i	=	10;	i	=	0;	i--)	{}

(c)	for	(int	i	=	0,	j	=	100;	i	<	j;	i++,	--j)	{;}

(d)	int	i,	j;	for	(j	=	100;	i	<	j;	j--)	{	i	+=	2;	}

(e)	int	i	=	100;	for	((i	>	0);	i--)	{}

6.10	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

class	AnotherClass	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				for	(;	i	<	10;	i++)	;							//	(1)
				for	(i	=	0;;	i++)	break;				//	(2)
				for	(i	=	0;	i	<	10;)	i++;			//	(3)
				for	(;;)	;																		//	(4)
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	of	errors	in	the	for	loop	at	(1).

(b)	The	code	will	fail	to	compile	because	of	errors	in	the	for	loop	at	(2).

(c)	The	code	will	fail	to	compile	because	of	errors	in	the	for	loop	at	(3).

(d)	The	code	will	fail	to	compile	because	of	errors	in	the	for	loop	at	(4).

(e)	The	code	will	compile	without	error,	and	the	program	will	run	and	terminate
without	any	output.

(f)	The	code	will	compile	without	error,	but	will	never	terminate	when	run.

6.11	Which	of	the	following	statements	are	valid	when	occurring	on	their	own?

Select	the	three	correct	answers.

(a)	while	()	break;

(b)	do	{	break;	}	while	(true);

(c)	if	(true)	{	break;	}

(d)	switch	(1)	{	default:	break;	}

(e)	for	(;true;)	break;

6.12	Given	the	following	code	fragment,	which	of	the	following	lines	will	be	a	part	of
the	output?

Click	here	to	view	code	image
outer:
for	(int	i	=	0;	i	<	3;	i++)	{
		for	(int	j	=	0;	j	<	2;	j++)	{
				if	(i	==	j)	{
						continue	outer;
				}
				System.out.println(“i=”	+	i	+	“,	j=”	+	j);
		}
}

Select	the	two	correct	answers.

(a)	i=1,	j=0

(b)	i=0,	j=1

(c)	i=1,	j=2

(d)	i=2,	j=1

(e)	i=2,	j=2

(f)	i=3,	j=3

(g)	i=3,	j=2

6.13	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	code?
Click	here	to	view	code	image

class	MyClass	{
		public	static	void	main(String[]	args)	{
				for	(int	i	=	0;	i	<	10;	i++)	{
						switch(i)	{
								case	0:
										System.out.println(i);
						}
						if	(i)	{
								System.out.println(i);
						}
				}
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	of	an	illegal	switch	expression	in	the
switch	statement.

(b)	The	code	will	fail	to	compile	because	of	an	illegal	condition	in	the	if
statement.

(c)	The	code	will	compile	without	error,	and	will	print	the	numbers	0	through	10
at	runtime.

(d)	The	code	will	compile	without	error,	and	will	print	the	number	0	at	runtime.

(e)	The	code	will	compile	without	error,	and	will	print	the	number	0	twice	at
runtime.

(f)	The	code	will	compile	without	error,	and	will	print	the	numbers	1	through	10	at
runtime.

6.14	Which	declarations,	when	inserted	at	(1),	will	result	in	the	program	compiling	and
printing	90	at	runtime?

Click	here	to	view	code	image
public	class	RQ400A10	{
		public	static	void	main(String[]	args)	{
				//	(1)	INSERT	DECLARATION	HERE
				int	sum	=	0;
				for	(int	i	:	nums)
						sum	+=	i;
				System.out.println(sum);
		}
}

Select	the	two	correct	answers.

(a)	Object[]	nums	=	{20,	30,	40};

(b)	Number[]	nums	=	{20,	30,	40};

(c)	Integer[]	nums	=	{20,	30,	40};

(d)	int[]	nums	=	{20,	30,	40};

(e)	None	of	the	above

6.15	Which	method	declarations,	when	inserted	at	(1),	will	result	in	the	program
compiling	and	printing	90	when	run?

Click	here	to	view	code	image
public	class	RQ400A30	{
		public	static	void	main(String[]	args)	{
				doIt();
		}
		//	(1)	INSERT	METHOD	DECLARATION	HERE.
}

Select	the	two	correct	answers.

(a)
public	static	void	doIt()	{
		int[]	nums	=	{20,	30,	40};
		for	(int	sum	=	0,	i	:	nums)
				sum	+=	i;
		System.out.println(sum);
}

(b)
Click	here	to	view	code	image

public	static	void	doIt()	{
		for	(int	sum	=	0,	i	:	{20,	30,	40})
				sum	+=	i;
		System.out.println(sum);
}

(c)
public	static	void	doIt()	{
		int	sum	=	0;
		for	(int	i	:	{20,	30,	40})
				sum	+=	i;
		System.out.println(sum);
}

(d)
Click	here	to	view	code	image

public	static	void	doIt()	{
		int	sum	=	0;
		for	(int	i	:	new	int[]	{20,	30,	40})
				sum	+=	i;
		System.out.println(sum);
}

(e)
public	static	void	doIt()	{
		int[]	nums	=	{20,	30,	40};
		int	sum	=	0;
		for	(int	i	:	nums)
				sum	+=	i;
		System.out.println(sum);
}

6.5	Stack-Based	Execution	and	Exception	Propagation
An	exception	in	Java	signals	the	occurrence	of	an	error	situation	due	to	the	violation	of
some	semantic	constraint	of	the	Java	programming	language	during	execution—for
example,	a	requested	file	cannot	be	found,	an	array	index	is	out	of	bounds,	or	a	network
link	failed.	Explicit	checks	in	the	code	for	such	situations	can	easily	result	in
incomprehensible	code.	Java	provides	an	exception	handling	mechanism	for
systematically	dealing	with	such	error	situations.

The	exception	mechanism	is	built	around	the	throw-and-catch	paradigm.	To	throw	an
exception	is	to	signal	that	an	unexpected	condition	has	occurred.	To	catch	an	exception	is
to	take	appropriate	action	to	deal	with	the	exception.	An	exception	is	caught	by	an
exception	handler,	and	the	exception	need	not	be	caught	in	the	same	context	in	which	it
was	thrown.	The	runtime	behavior	of	the	program	determines	which	exceptions	are
thrown	and	how	they	are	caught.	The	throw-and-catch	principle	is	embedded	in	the	try-
catch-finally	construct.

Several	threads	can	be	executing	at	the	same	time	in	the	JVM.	Each	thread	has	its	own
JVM	stack	(also	called	a	runtime	stack,	call	stack,	and	invocation	stack	in	the	literature)
that	is	used	to	handle	execution	of	methods.	Each	element	on	the	stack	(called	an
activation	frame	or	a	stack	frame)	corresponds	to	a	method	call.	Each	new	call	results	in	a
new	activation	frame	being	pushed	on	the	stack,	which	stores	all	the	pertinent	information
such	as	the	local	variables.	The	method	with	the	activation	frame	on	the	top	of	the	stack	is
the	one	currently	executing.	When	this	method	finishes	executing,	its	activation	frame	is
popped	from	the	top	of	the	stack.	Execution	then	continues	in	the	method	corresponding	to
the	activation	frame	that	is	now	uncovered	on	the	top	of	the	stack.	The	methods	on	the
stack	are	said	to	be	active,	as	their	execution	has	not	completed.	At	any	given	time,	the
active	methods	on	a	JVM	stack	make	up	what	is	called	the	stack	trace	of	a	thread’s
execution.

Example	6.11	is	a	simple	program	to	illustrate	method	execution.	It	calculates	the	average
for	a	list	of	integers,	given	the	sum	of	all	the	integers	and	the	number	of	integers.	It	uses
three	methods:

•	The	method	main()	calls	the	method	printAverage()	with	parameters	giving
the	total	sum	of	the	integers	and	the	total	number	of	integers,	(1).

•	The	method	printAverage()	in	turn	calls	the	method	computeAverage(),
(3).

•	The	method	computeAverage()	uses	integer	division	to	calculate	the	average
and	returns	the	result,	(7).

Example	6.11	Method	Execution
Click	here	to	view	code	image

public	class	Average1	{

		public	static	void	main(String[]	args)	{
				printAverage(100,	20);																																									//	(1)
				System.out.println(“Exit	main().”);																												//	(2)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				int	average	=	computeAverage(totalSum,	totalNumber);											//	(3)
				System.out.println(“Average	=	”	+																														//	(4)
								totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				System.out.println(“Exit	printAverage().”);																				//	(5)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(6)
				return	sum/number;																																													//	(7)
		}
}

Output	of	program	execution:
Computing	average.
Average	=	100	/	20	=	5
Exit	printAverage().
Exit	main().

Execution	of	Example	6.11	is	illustrated	in	Figure	6.7.	Each	method	execution	is	shown	as
a	box	with	the	local	variables	declared	in	the	method.	The	height	of	the	box	indicates	how
long	a	method	is	active.	Before	the	call	to	the	method	System.out.println()	at	(6)
in	Figure	6.7,	the	stack	trace	comprises	the	three	active	methods:	main(),
printAverage(),	and	computeAverage().	The	result	5	from	the	method
computeAverage()	is	returned	at	(7)	in	Figure	6.7.	The	output	from	the	program
corresponds	with	the	sequence	of	method	calls	in	Figure	6.7.	As	the	program	terminates
normally,	this	program	behavior	is	called	normal	execution.

Figure	6.7	Method	Execution

If	the	method	call	at	(1)	in	Example	6.11
Click	here	to	view	code	image

printAverage(100,	20);																																//	(1)

is	replaced	with
Click	here	to	view	code	image

printAverage(100,	0);																																	//	(1)

and	the	program	is	run	again,	the	output	is	as	follows:
Click	here	to	view	code	image

Computing	average.
Exception	in	thread	“main”	java.lang.ArithmeticException:	/	by	zero
								at	Average1.computeAverage(Average1.java:18)
								at	Average1.printAverage(Average1.java:10)
								at	Average1.main(Average1.java:5)

Figure	6.8	illustrates	the	program	execution	when	the	method	printAverage()	is
called	with	the	arguments	100	and	0	at	(1).	All	goes	well	until	the	return	statement	at
(7)	in	the	method	computeAverage()	is	executed.	An	error	condition	occurs	in
calculating	the	expression	sum/number,	because	integer	division	by	0	is	an	illegal

operation.	This	error	condition	is	signaled	by	the	JVM	by	throwing	an	Arithmetic-
Exception	(§6.6,	p.	233).	This	exception	is	propagated	by	the	JVM	through	the	JVM
stack	as	explained	next.

Figure	6.8	Exception	Propagation

Figure	6.8	illustrates	the	case	where	an	exception	is	thrown	and	the	program	does	not	take
any	explicit	action	to	deal	with	the	exception.	In	Figure	6.8,	execution	of	the
computeAverage()	method	is	suspended	at	the	point	where	the	exception	is	thrown.
The	execution	of	the	return	statement	at	(7)	never	gets	completed.	Since	this	method
does	not	have	any	code	to	deal	with	the	exception,	its	execution	is	likewise	terminated
abruptly	and	its	activation	frame	popped.	We	say	that	the	method	completes	abruptly.	The
exception	is	then	offered	to	the	method	whose	activation	is	now	on	the	top	of	the	stack
(method	printAverage()).	This	method	does	not	have	any	code	to	deal	with	the
exception	either,	so	its	execution	completes	abruptly.	The	statements	at	(4)	and	(5)	in	the
method	printAverage()	never	get	executed.	The	exception	now	propagates	to	the	last
active	method	(method	main()).	This	does	not	deal	with	the	exception	either.	The
main()	method	also	completes	abruptly.	The	statement	at	(2)	in	the	main()	method
never	gets	executed.	Since	the	exception	is	not	caught	by	any	of	the	active	methods,	it	is
dealt	with	by	the	main	thread’s	default	exception	handler.	The	default	exception	handler

usually	prints	the	name	of	the	exception,	with	an	explanatory	message,	followed	by	a
printout	of	the	stack	trace	at	the	time	the	exception	was	thrown.	An	uncaught	exception,	as
in	this	case,	results	in	the	death	of	the	thread	in	which	the	exception	occurred.

If	an	exception	is	thrown	during	the	evaluation	of	the	left-hand	operand	of	a	binary
expression,	then	the	right-hand	operand	is	not	evaluated.	Similarly,	if	an	exception	is
thrown	during	the	evaluation	of	a	list	of	expressions	(e.g.,	a	list	of	actual	parameters	in	a
method	call),	evaluation	of	the	rest	of	the	list	is	skipped.

If	the	line	numbers	in	the	stack	trace	are	not	printed	in	the	output	as	shown	previously,	use
the	following	command	to	run	the	program:
Click	here	to	view	code	image

>java	-Djava.compiler=NONE	Average1

6.6	Exception	Types
Exceptions	in	Java	are	objects.	All	exceptions	are	derived	from	the
java.lang.Throwable	class.	Figure	6.9	shows	a	partial	hierarchy	of	classes	derived
from	the	Throwable	class.	The	two	main	subclasses	Exception	and	Error
constitute	the	main	categories	of	throwables,	the	term	used	to	refer	to	both	exceptions	and
errors.	Figure	6.9	also	shows	that	not	all	exception	classes	are	found	in	the	java.lang
package.

Figure	6.9	Partial	Exception	Inheritance	Hierarchy

The	Throwable	class	provides	a	String	variable	that	can	be	set	to	provide	a	detail
message	when	an	exception	is	constructed.	The	purpose	of	the	detail	message	is	to	provide
more	information	about	the	actual	exception.	All	classes	of	throwables	define	a	one-
parameter	constructor	that	takes	a	string	as	the	detail	message.

The	class	Throwable	provides	the	following	common	methods	to	query	an	exception:

String	getMessage()

Returns	the	detail	message.
void	printStackTrace()

Prints	the	stack	trace	on	the	standard	error	stream.	The	stack	trace	comprises	the
method	invocation	sequence	on	the	JVM	stack	when	the	exception	was	thrown.	The
stack	trace	can	also	be	written	to	a	PrintStream	or	a	PrintWriter	by
supplying	such	a	destination	as	an	argument	to	one	of	the	two	overloaded
printStackTrace()	methods.	Any	suppressed	exceptions	associated	with	an
exception	on	the	stack	trace	are	also	printed.	It	will	also	print	the	cause	of	an
exception	(which	is	also	an	exception)	if	one	is	available.
String	toString()

Returns	a	short	description	of	the	exception,	which	typically	comprises	the	class
name	of	the	exception	together	with	the	string	returned	by	the	getMessage()
method.

In	dealing	with	throwables,	it	is	important	to	recognize	situations	in	which	particular
throwables	can	occur,	and	the	source	that	is	responsible	for	throwing	them.	By	source	we
mean:

•	The	JVM	that	is	responsible	for	throwing	the	throwable,	or

•	The	throwable	that	is	explicitly	thrown	programmatically	by	the	code	in	the
application	or	by	any	API	used	by	the	application.

In	further	discussion	of	exception	types,	we	provide	an	overview	of	situations	in	which
selected	throwables	can	occur	and	the	source	responsible	for	throwing	them.

The	 	Class
The	class	Exception	represents	exceptions	that	a	program	would	normally	want	to
catch.	Its	subclass	RuntimeException	represents	many	common	programming	errors
that	can	manifest	at	runtime	(see	the	next	subsection).	Other	subclasses	of	the
Exception	class	define	other	categories	of	exceptions,	such	as	I/O-related	exceptions	in
the	java.io	package	(IOException,	FileNotFoundException,
EOFException)	and	database-related	exceptions	in	the	java.sql	package
(SQLException).

ClassNotFoundException

The	subclass	ClassNotFoundException	signals	that	the	JVM	tried	to	load	a	class	by
its	string	name,	but	the	class	could	not	be	found.	A	typical	example	of	this	situation	is
when	the	class	name	is	misspelled	while	starting	program	execution	with	the	java
command.	The	source	in	this	case	is	the	JVM	throwing	the	exception	to	signal	that	the
class	cannot	be	found	and	therefore	execution	cannot	be	started.

The	 	Class
Runtime	exceptions	are	all	subclasses	of	the	java.lang.RuntimeException	class,
which	is	a	subclass	of	the	Exception	class.	As	these	runtime	exceptions	are	usually
caused	by	program	bugs	that	should	not	occur	in	the	first	place,	it	is	usually	more
appropriate	to	treat	them	as	faults	in	the	program	design	and	let	them	be	handled	by	the
default	exception	handler.

ArithmeticException

This	exception	represents	situations	where	an	illegal	arithmetic	operation	is	attempted,
such	as	integer	division	by	0.	It	is	typically	thrown	by	the	JVM.	See	Chapter	5	for	details
on	illegal	arithmetic	operations.

ArrayIndexOutOfBoundsException

Java	provides	runtime	checking	of	the	array	index	value,	meaning	out-of-bounds	array
indices.	The	subclass	ArrayIndexOutOfBoundsException	represents	exceptions
thrown	by	the	JVM	that	signal	out-of-bound	errors	specifically	for	arrays—that	is,	an	error
in	which	an	invalid	index	is	used	to	access	an	element	in	the	array.	The	index	value	must
satisfy	the	relation	0	≤		index	value	<	length	of	the	array.	See	§3.4,	p.	58,	covering	arrays.

ClassCastException

This	exception	is	thrown	by	the	JVM	to	signal	that	an	attempt	was	made	to	cast	a
reference	value	to	a	type	that	was	not	legal,	such	as	casting	the	reference	value	of	an
Integer	object	to	the	Long	type.	Casting	reference	values	is	discussed	in	§7.11,	p.	320.

IllegalArgumentException	and	NumberFormatException

The	IllegalArgumentException	is	thrown	programmatically	to	indicate	that	a
method	was	called	with	an	illegal	or	inappropriate	argument.	For	example,	the
ofPattern(String	pattern)	method	in	the
java.time.format.DateTimeFormatter	class	throws	an
IllegalArgumentException	when	the	letter	pattern	passed	as	an	argument	is
invalid	(§11.4,	p.	495).

The	class	NumberFormatException	is	a	subclass	of	the
IllegalArgumentException	class,	and	is	specialized	to	signal	problems	when
converting	a	string	to	a	numeric	value	if	the	format	of	the	characters	in	the	string	is	not
appropriate	for	the	conversion.	This	exception	is	also	thrown	programmatically.	The
numeric	wrapper	classes	all	have	methods	that	throw	this	exception	when	conversion	from
a	string	to	a	numeric	value	is	not	possible	(§8.3,	p.	346).

NullPointerException

This	exception	is	typically	thrown	by	the	JVM	when	an	attempt	is	made	to	use	the	null
value	as	a	reference	value	to	refer	to	an	object.	This	might	involve	calling	an	instance
method	using	a	reference	that	has	the	null	value,	or	accessing	a	field	using	a	reference
that	has	the	null	value.	This	programming	error	has	made	this	exception	one	of	the
exceptions	most	often	thrown	by	the	JVM.

The	 	Class
The	class	Error	and	its	subclasses	define	errors	that	are	invariably	never	explicitly
caught	and	are	usually	irrecoverable.	Not	surprisingly,	most	such	errors	are	signaled	by	the
JVM.	Apart	from	the	subclasses	mentioned	in	the	following	subsections,	other	subclasses
of	the	java.lang.Error	class	define	errors	that	indicate	class	linkage
(LinkageError),	thread	(ThreadDeath),	and	virtual	machine
(VirtualMachineError)	problems.

AssertionError

The	subclass	AssertionError	of	the	java.lang.Error	class	is	used	by	the	Java
assertion	facility.	This	error	is	thrown	by	the	JVM	in	response	to	the	condition	in	the
assert	statement	evaluating	to	false.	The	assertion	facility	is	not	discussed	in	this
book.

StackOverflowError

This	error	occurs	when	the	JVM	stack	has	no	more	room	for	new	method	activation
frames.	In	such	a	case,	we	say	that	the	stack	has	overflowed.	This	situation	can	occur	when
method	execution	in	an	application	recurses	too	deeply.	Here	is	a	recursive	method	to
illustrate	stack	overflow:
Click	here	to	view	code	image

public	void	callMe()	{
		System.out.println(“Don’t	do	this	at	home!”);
		callMe();
}

Once	this	method	is	called,	it	will	keep	on	calling	itself	until	the	JVM	stack	is	full,
resulting	in	the	StackOverflowError	being	thrown	by	the	JVM.

Checked	and	Unchecked	Exceptions
Except	for	RuntimeException,	Error,	and	their	subclasses,	all	exceptions	are
checked	exceptions.	That	is,	the	compiler	ensures	that	if	a	method	can	throw	a	checked
exception,	directly	or	indirectly,	the	method	must	explicitly	deal	with	it.	The	method	must
either	catch	the	exception	and	take	the	appropriate	action,	or	pass	on	the	exception	to	its
caller	(§6.9,	p.	251).

Exceptions	defined	by	the	Error	and	RuntimeException	classes	and	their
subclasses	are	known	as	unchecked	exceptions,	meaning	that	a	method	is	not	obliged	to
deal	with	these	kinds	of	exceptions	(shown	with	gray	color	in	Figure	6.9).	They	are	either

irrecoverable	(exemplified	by	the	Error	class),	in	which	case	the	program	should	not
attempt	to	deal	with	them,	or	they	are	programming	errors	(exemplified	by	the
RuntimeException	class)	and	should	usually	be	dealt	with	as	such,	and	not	as
exceptions.

Defining	Customized	Exceptions
Customized	exceptions	are	usually	defined	to	provide	fine-grained	categorization	of	error
situations,	instead	of	using	existing	exception	classes	with	descriptive	detail	messages	to
differentiate	among	the	various	situations.	New	customized	exceptions	are	usually	defined
by	either	extending	the	Exception	class	or	one	of	its	checked	subclasses,	thereby
making	the	new	exceptions	checked,	or	extending	the	RuntimeException	subclass	to
create	new	unchecked	exceptions.

As	exceptions	are	defined	by	classes,	they	can	declare	fields	and	methods,	thereby
providing	more	information	as	to	their	cause	and	remedy	when	they	are	thrown	and
caught.	The	super()	call	can	be	used	to	set	the	detail	message	for	the	exception.	Note
that	the	exception	class	must	be	instantiated	to	create	an	exception	object	that	can	be
thrown	and	subsequently	caught	and	dealt	with.	The	following	code	sketches	a	class
declaration	for	an	exception	that	can	include	all	pertinent	information	about	the	exception.
At	a	minimum,	the	new	exception	class	should	provide	a	constructor	to	set	the	detail
message.
Click	here	to	view	code	image

public	class	EvacuateException	extends	Exception	{
		//	Data
		Date	date;
		Zone	zone;
		TransportMode	transport;

		//	Constructor
		public	EvacuateException(Date	d,	Zone	z,	TransportMode	t)	{
				//	Call	the	constructor	of	the	superclass
				super(“Evacuation	of	zone	”	+	z);
				//	…
		}
		//	Methods
		//	…
}

Several	examples	in	subsequent	sections	illustrate	exception	handling.

6.7	Exception	Handling:	 ,	 ,	and	
The	mechanism	for	handling	exceptions	is	embedded	in	the	try-catch-finally
construct,	which	has	the	following	basic	form:
Click	here	to	view	code	image

try	{																																	//	try	block
		statements
}	catch	(exception_type1	parameter1)	{						//	uni-catch	clause
		statements
}
…

		catch	(exception_typen	parametern)	{						//	uni-catch	clause
		statements
}	finally	{																										//	finally	clause
		statements
}

A	few	aspects	about	the	syntax	of	this	construct	should	be	noted.	For	each	try	block,
there	can	be	zero	or	more	catch	clauses	(i.e.,	it	can	have	multiple	catch	clauses),	but
only	one	finally	clause.	The	catch	clauses	and	the	finally	clause	must	always
appear	in	conjunction	with	a	try	block,	and	in	the	right	order.	A	try	block	must	be
followed	by	at	least	one	catch	clause,	or	a	finally	clause	must	be	specified.	In
addition	to	the	try	block,	each	catch	clause	and	the	finally	clause	specify	a	block,
{	}.	The	block	notation	is	mandatory.

Exceptions	thrown	during	execution	of	the	try	block	can	be	caught	and	handled	in	a
catch	clause.	Each	catch	clause	defines	an	exception	handler.	The	header	of	the
catch	clause	specifies	exactly	one	exception	parameter.	The	exception	type	must	be	of
the	Throwable	class	or	one	of	its	subclasses.	The	type	of	the	exception	parameter	of	a
catch	clause	is	specified	by	a	single	exception	type	in	the	syntax	given	earlier,	and	such
a	catch	clause	is	called	a	uni-catch	clause.

A	finally	clause	is	guaranteed	to	be	executed,	regardless	of	the	cause	of	exit	from	the
try	block,	or	whether	any	catch	clause	was	executed.	Figure	6.10	shows	three	typical
scenarios	of	control	flow	through	the	try-catch-finally	construct.

Figure	6.10	The	try-catch-finally	Construct

The	try	block,	the	catch	clause,	and	the	finally	clause	of	a	try-catch-
finally	construct	can	contain	arbitrary	code,	which	means	that	a	try-catch-

finally	construct	can	be	nested	in	any	block	of	the	try-catch-finally	construct.
However,	such	nesting	can	easily	make	the	code	difficult	to	read	and	is	best	avoided,	if
possible.

The	 	Block
The	try	block	establishes	a	context	for	exception	handling.	Termination	of	a	try	block
occurs	as	a	result	of	encountering	an	exception,	or	from	successful	execution	of	the	code
in	the	try	block.

The	catch	clauses	are	skipped	for	all	normal	exits	from	the	try	block	when	no
exceptions	are	thrown,	and	control	is	transferred	to	the	finally	clause	if	one	is
specified	((1)	in	Figure	6.10).

For	all	exits	from	the	try	block	resulting	from	exceptions,	control	is	transferred	to	the
catch	clauses—if	any	such	clauses	are	specified—to	find	a	matching	catch	clause	((2)
in	Figure	6.10).	If	no	catch	clause	matches	the	thrown	exception,	control	is	transferred
to	the	finally	clause	if	one	is	specified	((3)	in	Figure	6.10).

The	 	Clause
Only	an	exit	from	a	try	block	resulting	from	an	exception	can	transfer	control	to	a
catch	clause.	A	catch	clause	can	catch	the	thrown	exception	only	if	the	exception	is
assignable	to	the	parameter	in	the	catch	clause	(§7.8,	p.	311).	The	code	of	the	first	such
catch	clause	is	executed,	and	all	other	catch	clauses	are	ignored.

On	exit	from	a	catch	clause,	normal	execution	continues	unless	there	is	any	uncaught
exception	that	has	been	thrown	and	not	handled.	If	this	is	the	case,	the	method	is	aborted
and	the	exception	is	propagated	up	the	JVM	stack	as	explained	in	§6.5,	p.	230.

After	a	catch	clause	has	been	executed,	control	is	always	transferred	to	the	finally
clause	if	one	is	specified.	This	is	always	true	as	long	as	there	is	a	finally	clause,
regardless	of	whether	the	catch	clause	itself	throws	an	exception.

In	Example	6.12,	the	method	printAverage()	calls	the	method
computeAverage()	in	a	try-catch	construct	at	(4).	The	catch	clause	is	declared
to	catch	exceptions	of	type	ArithmeticException.	The	catch	clause	handles	the
exception	by	printing	the	stack	trace	and	some	additional	information	at	(7)	and	(8),
respectively.	Normal	execution	of	the	program	is	illustrated	in	Figure	6.11,	which	shows
that	the	try	block	is	executed	but	no	exceptions	are	thrown,	with	normal	execution
continuing	after	the	try-catch	construct.	This	corresponds	to	Scenario	1	in	Figure	6.10.

Figure	6.11	Exception	Handling	(Scenario	1)

Example	6.12	The	try-catch	Construct
Click	here	to	view	code	image

public	class	Average2	{

		public	static	void	main(String[]	args)	{
				printAverage(100,	20);																																									//	(1)
				System.out.println(“Exit	main().”);																												//	(2)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				try	{																																																										//	(3)
						int	average	=	computeAverage(totalSum,	totalNumber);									//	(4)
						System.out.println(“Average	=	”	+																												//	(5)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				}	catch	(ArithmeticException	ae)	{																													//	(6)
						ae.printStackTrace();																																								//	(7)
						System.out.println(“Exception	handled	in	printAverage().”);		//	(8)
				}
				System.out.println(“Exit	printAverage().”);																				//	(9)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(10)
				return	sum/number;																																													//	(11)
		}
}

Output	from	the	program,	with	call	printAverage(100,	20)	at	(1):
Computing	average.
Average	=	100	/	20	=	5
Exit	printAverage().
Exit	main().

Output	from	the	program,	with	call	printAverage(100,	0)	at	(1):
Click	here	to	view	code	image

Computing	average.
java.lang.ArithmeticException:	/	by	zero
								at	Average2.computeAverage(Average2.java:23)
								at	Average2.printAverage(Average2.java:11)
								at	Average2.main(Average2.java:5)
Exception	handled	in	printAverage().
Exit	printAverage().
Exit	main().

However,	if	we	run	the	program	in	Example	6.12	with	the	following	call	in	(1):
printAverage(100,	0)

an	ArithmeticException	is	thrown	by	the	integer	division	operator	in	the	method
computeAverage().	In	Figure	6.12	we	see	that	the	execution	of	the	method
compute-Average()	is	stopped	and	the	exception	propagated	to	method
printAverage(),	where	it	is	handled	by	the	catch	clause	at	(6).	Normal	execution
of	the	method	continues	at	(9)	after	the	try-catch	construct,	as	witnessed	by	the	output
from	the	statements	at	(9)	and	(2).	This	corresponds	to	Scenario	2	in	Figure	6.10.

Figure	6.12	Exception	Handling	(Scenario	2)

In	Example	6.13,	the	main()	method	calls	the	printAverage()	method	in	a	try-
catch	construct	at	(1).	The	catch	clause	at	(3)	is	declared	to	catch	exceptions	of	type
ArithmeticException.	The	printAverage()	method	calls	the
computeAverage()	method	in	a	try-catch	construct	at	(7),	but	here	the	catch
clause	is	declared	to	catch	exceptions	of	type	IllegalArgumentException.
Execution	of	the	program	is	illustrated	in	Figure	6.13,	which	shows	that	the
ArithmeticException	is	first	propagated	to	the	catch	clause	in	the
printAverage()	method.	Because	this	catch	clause	cannot	handle	this	exception,	it
is	propagated	further	to	the	catch	clause	in	the	main()	method,	where	it	is	caught	and
handled.	Normal	execution	continues	at	(6)	after	the	exception	is	handled.

Figure	6.13	Exception	Handling	(Scenario	3)

Note	that	the	execution	of	the	try	block	at	(7)	in	the	printAverage()	method	is
never	completed:	The	statement	at	(9)	is	never	executed.	The	catch	clause	at	(10)	is
skipped.	The	execution	of	the	printAverage()	method	is	aborted:	The	statement	at
(13)	is	never	executed,	and	the	exception	is	propagated.	This	corresponds	to	Scenario	3	in
Figure	6.10.

Example	6.13	Exception	Propagation
Click	here	to	view	code	image

public	class	Average3	{

		public	static	void	main(String[]	args)	{
				try	{																																																										//	(1)
						printAverage(100,	0);																																								//	(2)
				}	catch	(ArithmeticException	ae)	{																													//	(3)
						ae.printStackTrace();																																								//	(4)
						System.out.println(“Exception	handled	in	main().”);										//	(5)
				}
				System.out.println(“Exit	main().”);																												//	(6)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				try	{																																																										//	(7)
						int	average	=	computeAverage(totalSum,	totalNumber);									//	(8)
						System.out.println(“Average	=	”	+																												//	(9)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				}	catch	(IllegalArgumentException	iae)	{																							//	(10)
						iae.printStackTrace();																																							//	(11)
						System.out.println(“Exception	handled	in	printAverage().”);		//	(12)
				}
				System.out.println(“Exit	printAverage().”);																				//	(13)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(14)
				return	sum/number;																																													//	(15)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Computing	average.
java.lang.ArithmeticException:	/	by	zero
								at	Average3.computeAverage(Average3.java:28)
								at	Average3.printAverage(Average3.java:16)
								at	Average3.main(Average3.java:6)
Exception	handled	in	main().
Exit	main().

The	scope	of	the	parameter	name	in	the	catch	clause	is	the	clause	itself.	As	mentioned
earlier,	the	type	of	the	exception	object	must	be	assignable	to	the	type	of	the	argument	in
the	catch	clause	(§7.8,	p.	311).	In	the	body	of	the	catch	clause,	the	exception	object
can	be	queried	like	any	other	object	by	using	the	parameter	name.	The	javac	compiler
also	complains	if	a	catch	clause	for	a	superclass	exception	shadows	the	catch	clause
for	a	subclass	exception,	as	the	catch	clause	of	the	subclass	exception	will	never	be
executed	(a	situation	known	as	unreachable	code).	The	following	example	shows
incorrect	order	of	the	catch	clauses	at	(1)	and	(2),	which	will	result	in	a	compile-time
error:	The	superclass	Exception	will	shadow	the	subclass	ArithmeticException.
Click	here	to	view	code	image

…
//	Compiler-time	error	at	(1).

catch	(Exception	e)	{																			//	(1)	superclass
		System.out.println(e);
}	catch	(ArithmeticException	e)	{							//	(2)	subclass
		System.out.println(e);
}
…

The	 	Clause
If	the	try	block	is	executed,	then	the	finally	clause	is	guaranteed	to	be	executed,
regardless	of	whether	any	catch	clause	was	executed.	Since	the	finally	clause	is
always	executed	before	control	transfers	to	its	final	destination,	the	finally	clause	can
be	used	to	specify	any	clean-up	code	(e.g.,	to	free	resources	such	as	files	and	net
connections).	However,	the	try-with-resources	statement	provides	a	better	solution	for
handling	resources,	and	eliminates	use	of	the	finally	clause	in	many	cases.	But	that	is	a
story	for	another	day,	as	this	topic	is	not	on	the	OCAJP8	exam.

A	try-finally	construct	can	be	used	to	control	the	interplay	between	two	actions	that
must	be	executed	in	the	correct	order,	possibly	with	other	intervening	actions.	In	the
following	code,	the	operation	in	the	calculateAverage()	method	is	dependent	on
the	success	of	the	sumNumbers()	method,	which	is	checked	by	the	value	of	the	sum
variable	before	calling	the	calculateAverage()	method:
Click	here	to	view	code	image

int	sum	=	0;
try	{
		sum	=	sumNumbers();
		//	other	actions
}	finally	{
		if	(sum	>	0)	calculateAverage();
}

This	code	guarantees	that	if	the	try	block	is	entered,	the	sumNumbers()	method	will
be	executed	first,	and	later	the	calculateAverage()	method	will	be	executed	in	the
finally	clause,	regardless	of	how	execution	proceeds	in	the	try	block.	We	can,	if
desired,	include	any	catch	clauses	to	handle	any	exceptions.

If	the	finally	clause	neither	throws	an	exception	nor	executes	a	control	transfer
statement	like	a	return	or	a	labeled	break,	the	execution	of	the	try	block	or	any
catch	clause	determines	how	execution	proceeds	after	the	finally	clause	(Figure
6.10,	p.	239).

•	If		no	exception	is	thrown	during	execution	of	the	try	block	or	the	exception	has
been	handled	in	a	catch	clause,	normal	execution	continues	after	the	finally
clause.

•	If	there	is	any	uncaught	exception	(either	because	no	catch	clause	was	found	or
because	the	catch	clause	threw	an	exception),	the	method	is	aborted	and	the
exception	is	propagated	after	the	execution	of	the	finally	clause.

The	output	of	Example	6.14	shows	that	the	finally	clause	at	(9)	is	executed,	regardless
of	whether	an	exception	is	thrown	in	the	try	block	at	(3).	If	an	exception	is	thrown,	it	is

caught	and	handled	by	the	catch	clause	at	(6).	After	the	execution	of	the	finally
clause	at	(9),	normal	execution	continues	at	(10).

Example	6.14	The	try-catch-finally	Construct
Click	here	to	view	code	image

public	class	Average4	{

		public	static	void	main(String[]	args)	{
				printAverage(100,	20);																																									//	(1)
				System.out.println(“Exit	main().”);																												//	(2)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				try	{																																																										//	(3)
						int	average	=	computeAverage(totalSum,	totalNumber);									//	(4)
						System.out.println(“Average	=	”	+																												//	(5)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				}	catch	(ArithmeticException	ae)	{																													//	(6)
						ae.printStackTrace();																																								//	(7)
						System.out.println(“Exception	handled	in	printAverage().”);		//	(8)
				}	finally	{																																																				//	(9)
						System.out.println(“Finally	done.”);
				}
				System.out.println(“Exit	printAverage().”);																				//	(10)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(11)
				return	sum/number;																																													//	(12)
		}
}

Output	from	the	program,	with	the	call	printAverage(100,	20)	at	(1):
Computing	average.
Average	=	100	/	20	=	5
Finally	done.
Exit	printAverage().
Exit	main().

Output	from	the	program,	with	the	call	printAverage(100,	0)	at	(1):
Click	here	to	view	code	image

Computing	average.
java.lang.ArithmeticException:	/	by	zero
								at	Average4.computeAverage(Average4.java:25)
								at	Average4.printAverage(Average4.java:11)
								at	Average4.main(Average4.java:5)
Exception	handled	in	printAverage().
Finally	done.
Exit	printAverage().
Exit	main().

On	exiting	from	the	finally	clause,	if	there	is	any	uncaught	exception,	the	method	is
aborted	and	the	exception	propagated	as	explained	earlier.	This	is	illustrated	in	Example
6.15.	The	method	printAverage()	is	aborted	after	the	finally	clause	at	(6)	has
been	executed,	as	the	ArithmeticException	thrown	at	(9)	is	not	handled	by

any			method.	In	this	case,	the	exception	is	handled	by	the	default	exception	handler.
Notice	the	difference	in	the	output	from	Example	6.14	and	Example	6.15.

Example	6.15	The	try-finally	Construct
Click	here	to	view	code	image

public	class	Average5	{

		public	static	void	main(String[]	args)	{
				printAverage(100,	0);																																										//	(1)
				System.out.println(“Exit	main().”);																												//	(2)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				try	{																																																										//	(3)
						int	average	=	computeAverage(totalSum,	totalNumber);									//	(4)
						System.out.println(“Average	=	”	+																												//	(5)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				}	finally	{																																																				//	(6)
						System.out.println(“Finally	done.”);
				}
				System.out.println(“Exit	printAverage().”);																				//	(7)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(8)
				return	sum/number;																																													//	(9)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Computing	average.
Finally	done.
Exception	in	thread	“main”	java.lang.ArithmeticException:	/	by	zero
								at	Average5.computeAverage(Average5.java:22)
								at	Average5.printAverage(Average5.java:11)
								at	Average5.main(Average5.java:4)

If	the	finally	clause	executes	a	control	transfer	statement,	such	as	a	return	or	a
labeled	break,	this	control	transfer	statement	determines	how	the	execution	will	proceed
—regardless	of	how	the	try	block	or	any	catch	clause	was	executed.	In	particular,	a
value	returned	by	a	return	statement	in	the	finally	clause	will	supercede	any	value
returned	by	a	return	statement	in	the	try	block	or	a	catch	clause.

Example	6.16	shows	how	the	execution	of	a	control	transfer	statement	such	as	a	return
in	the	finally	clause	affects	the	program	execution.	The	first	output	from	the	program
shows	that	the	average	is	computed	but	the	value	returned	is	from	the	return	statement
at	(8)	in	the	finally	clause,	not	from	the	return	statement	at	(6)	in	the	try	block.
The	second	output	shows	that	the	ArithmeticException	thrown	in	the
computeAverage()	method	and	propagated	to	the	printAverage()	method	is
nullified	by	the	return	statement	in	the	finally	clause.	Normal	execution	continues
after	the	return	statement	at	(8),	with	the	value	0	being	returned	from	the

printAverage()	method.

If	the	finally	clause	throws	an	exception,	this	exception	is	propagated	with	all	its
ramifications—regardless	of	how	the	try	block	or	any	catch	clause	was	executed.	In
particular,	the	new	exception	overrules	any	previously	uncaught	exception.

Example	6.16	The	finally	Clause	and	the	return	Statement
Click	here	to	view	code	image

public	class	Average6	{

		public	static	void	main(String[]	args)	{
				System.out.println(“Average:	”	+	printAverage(100,	20));							//	(1)
				System.out.println(“Exit	main().”);																												//	(2)
		}

		public	static	int	printAverage(int	totalSum,	int	totalNumber)	{
				int	average	=	0;
				try	{																																																										//	(3)
						average	=	computeAverage(totalSum,	totalNumber);													//	(4)
						System.out.println(“Average	=	”	+																												//	(5)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
						return	average;																																														//	(6)
				}	finally	{																																																				//	(7)
						System.out.println(“Finally	done.”);
						return	average*2;																																												//	(8)
				}
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);																						//	(9)
				return	sum/number;																																													//	(10)
		}
}

Output	from	the	program,	with	call	printAverage(100,	20)	in	(1):
Computing	average.
Average	=	100	/	20	=	5
Finally	done.
Average:	10
Exit	main().

Output	from	the	program,	with	call	printAverage(100,	0)	in	(1):
Computing	average.
Finally	done.
Average:	0
Exit	main().

6.8	The	 	Statement
Earlier	examples	in	this	chapter	have	shown	how	an	exception	can	be	thrown	implicitly	by
the	JVM	during	execution.	Now	we	look	at	how	an	application	can	programmatically
throw	an	exception	using	the	throw	statement.	The	general	format	of	the	throw
statement	is	as	follows:
Click	here	to	view	code	image

throw	object_reference_expression;

The	compiler	ensures	that	the	object	reference	expression	is	of	the	type	Throwable	class
or	one	of	its	subclasses.	At	runtime	a	NullPointerException	is	thrown	by	the	JVM
if	the	object	reference	expression	is	null.	This	ensures	that	a	Throwable	will	always
be	propagated.	A	detail	message	is	often	passed	to	the	constructor	when	the	exception
object	is	created.
Click	here	to	view	code	image

throw	new	ArithmeticException(“Integer	division	by	0”);

When	an	exception	is	thrown,	normal	execution	is	suspended.	The	runtime	system
proceeds	to	find	a	catch	clause	that	can	handle	the	exception.	The	search	starts	in	the
context	of	the	current	try	block,	propagating	to	any	enclosing	try	blocks	and	through
the	JVM	stack	to	find	a	handler	for	the	exception.	Any	associated	finally	clause	of	a
try	block	encountered	along	the	search	path	is	executed.	If	no	handler	is	found,	then	the
exception	is	dealt	with	by	the	default	exception	handler	at	the	top	level.	If	a	handler	is
found,	normal	execution	resumes	after	the	code	in	its	catch	clause	has	been	executed,
barring	any	rethrowing	of	an	exception.

In	Example	6.17,	an	exception	is	thrown	using	a	throw	statement	at	(17).	This	exception
is	propagated	to	the	main()	method,	where	it	is	caught	and	handled	by	the	catch
clause	at	(3).	Note	that	the	finally	clauses	at	(6)	and	(14)	are	executed.	Execution
continues	normally	at	(7).

Example	6.17	Throwing	Exceptions
Click	here	to	view	code	image

public	class	Average7	{

		public	static	void	main(String[]	args)	{
				try	{																																																										//	(1)
						printAverage(100,	0);																																								//	(2)
				}	catch	(ArithmeticException	ae)	{																													//	(3)
						ae.printStackTrace();																																								//	(4)
						System.out.println(“Exception	handled	in	main().”);										//	(5)
				}	finally	{
						System.out.println(“Finally	in	main().”);																				//	(6)
				}
				System.out.println(“Exit	main().”);																												//	(7)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)	{
				try	{																																																										//	(8)
						int	average	=	computeAverage(totalSum,	totalNumber);									//	(9)
						System.out.println(“Average	=	”	+																												//	(10)
										totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				}	catch	(IllegalArgumentException	iae)	{																							//	(11)
						iae.printStackTrace();																																							//	(12)
						System.out.println(“Exception	handled	in	printAverage().”);		//	(13)
				}	finally	{
						System.out.println(“Finally	in	printAverage().”);												//	(14)
				}
				System.out.println(“Exit	printAverage().”);																				//	(15)
		}

		public	static	int	computeAverage(int	sum,	int	number)	{
				System.out.println(“Computing	average.”);
				if	(number	==	0)																																															//	(16)
						throw	new	ArithmeticException(“Integer	division	by	0”);						//	(17)
				return	sum/number;																																													//	(18)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Computing	average.
Finally	in	printAverage().
java.lang.ArithmeticException:	Integer	division	by	0
								at	Average7.computeAverage(Average7.java:33)
								at	Average7.printAverage(Average7.java:18)
								at	Average7.main(Average7.java:6)
Exception	handled	in	main().
Finally	in	main().
Exit	main().

6.9	The	 	Clause
A	throws	clause	can	be	specified	in	a	method	or	a	constructor	header	to	declare	any
checked	exceptions	that	can	be	thrown	by	a	statement	in	the	body	of	a	method	or	a
constructor.	It	is	declared	immediately	preceding	the	body	of	the	method	or	the
constructor.

Click	here	to	view	code	image

…	throws	ExceptionType1,	ExceptionType2,…,	ExceptionTypen	{	…	}

Each	ExceptionTypei	is	an	exception	type,	although	usually	only	checked	exceptions	are
specified.	The	compiler	enforces	that	if	a	checked	exception	can	be	the	result	of	executing
a	method	or	a	constructor,	then	either	the	exception	type	of	this	exception	or	a	supertype
of	its	exception	type	is	specified	in	the	throws	clause	of	the	method	or	the	constructor.
The	throws	clause	can	specify	unchecked	exceptions,	but	this	is	seldom	done	and	the
compiler	does	not	enforce	any	restrictions	on	their	usage.

The	throws	clause	is	part	of	the	contract	that	a	method	or	a	constructor	offers	to	its
clients.	The	throws	clause	can	specify	any	number	of	exception	types,	even	those	that
are	not	thrown	by	the	method	or	the	constructor.	The	compiler	simply	ensures	that	any
checked	exception	that	can	actually	be	thrown	in	the	method	or	constructor	body	is
covered	by	the	throws	clause.	Of	course,	the	clients	cannot	ignore	the	checked
exceptions	in	the	throws	clause.

In	a	method	or	a	constructor,	a	checked	exception	can	be	thrown	directly	by	a	throw
statement,	or	indirectly	by	calling	other	methods	or	constructors	that	can	throw	a	checked
exception.	If	a	checked	exception	is	thrown,	it	must	be	handled	in	one	of	three	ways:

•	By	using	a	try	block	and	catching	the	exception	in	a	handler	and	dealing	with	it

•	By	using	a	try	block	and	catching	the	exception	in	a	handler,	but	throwing	another
exception	that	is	either	unchecked	or	declared	in	its	throws	clause

•	By	explicitly	allowing	propagation	of	the	exception	to	its	caller	by	declaring	it	in	the
throws	clause	of	its	header

This	mechanism	(also	known	as	catch-or-declare)	ensures	that	a	checked	exception	will
be	dealt	with,	regardless	of	the	path	of	execution.	This	aids	development	of	robust
programs,	as	allowance	can	be	made	for	many	contingencies.	Native	methods	can	also
declare	checked	exceptions	in	their	throws	clause,	but	the	compiler	is	not	able	to	check
them	for	consistency.

In	Example	6.18,	a	new	checked	exception	is	defined,	where	the	checked	exception	class
IntegerDivisionByZero	extends	the	Exception	class.	The	method	main()
calls	the	method	printAverage()	in	a	try	block	at	(1).	In	the	if	statement	at	(9),	the
method	computeAverage()	throws	the	checked	exception
IntegerDivisionByZero.	Neither	the	computeAverage()	method	nor	the
printAverage()	method	catches	the	exception,	but	instead	throws	it	to	the	caller,	as
declared	in	the	throws	clauses	in	their	headers	at	(6)	and	(8).	The	exception	propagates
to	the	main()	method.	Since	the	printAverage()	method	was	called	from	the
context	of	the	try	block	at	(1)	in	the	main()	method,	the	exception	is	successfully
caught	by	its	catch	clause	at	(3).	The	exception	is	handled	and	the	finally	clause	at
(4)	executed,	with	normal	execution	resuming	from	(5).	If	the	method	main()	did	not
catch	the	exception,	it	would	have	to	declare	this	exception	in	a	throws	clause.	In	that
case,	the	exception	would	end	up	being	handled	by	the	default	exception	handler.

Example	6.18	The	throws	Clause
Click	here	to	view	code	image

//	File:	IntegerDivisionByZero.java
public	class	IntegerDivisionByZero	extends	Exception	{
		IntegerDivisionByZero(String	str)	{	super(str);	}
}

//	File:	Average8.java
public	class	Average8	{
		public	static	void	main(String[]	args)	{
				try	{																																																										//	(1)
						printAverage(100,	0);																																								//	(2)
				}	catch	(IntegerDivisionByZero	idbz)	{																									//	(3)
						idbz.printStackTrace();
						System.out.println(“Exception	handled	in	main().”);
				}	finally	{																																																				//	(4)
						System.out.println(“Finally	done	in	main().”);
				}
				System.out.println(“Exit	main().”);																												//	(5)
		}

		public	static	void	printAverage(int	totalSum,	int	totalNumber)
						throws	IntegerDivisionByZero	{																															//	(6)
				int	average	=	computeAverage(totalSum,	totalNumber);
				System.out.println(“Average	=	”	+
								totalSum	+	”	/	”	+	totalNumber	+	”	=	”	+	average);
				System.out.println(“Exit	printAverage().”);																				//	(7)
		}

		public	static	int	computeAverage(int	sum,	int	number)
						throws	IntegerDivisionByZero	{																															//	(8)
				System.out.println(“Computing	average.”);
				if	(number	==	0)																																															//	(9)
						throw	new	IntegerDivisionByZero(“Integer	Division	By	Zero”);
				return	sum/number;																																													//	(10)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Computing	average.
IntegerDivisionByZero:	Integer	Division	By	Zero
								at	Average8.computeAverage(Average8.java:27)
								at	Average8.printAverage(Average8.java:17)
								at	Average8.main(Average8.java:5)
Exception	handled	in	main().
Finally	done	in	main().
Exit	main().

As	mentioned	earlier,	the	exception	type	specified	in	the	throws	clause	can	be	a
superclass	of	the	actual	exceptions	thrown;	that	is,	the	exceptions	thrown	must	be
assignable	to	the	type	of	the	exceptions	specified	in	the	throws	clause.	If	a	method	or	a
constructor	can	throw	a	checked	exception,	then	the	throws	clause	must	declare	its
exception	type	or	a	supertype	of	its	exception	type;	otherwise,	a	compile-time	error	will
occur.	In	the	printAverage()	method,	the	method	header	could	specify	the	superclass

Exception	of	the	subclass	IntegerDivisionByZero	in	the	throws	clause.	This
would	also	entail	that	the	main()	method	either	catch	an	Exception	or	declare	it	in	a
throws	clause.
Click	here	to	view	code	image

public	static	void	main(String[]	args)	throws	Exception	{
		/*	…	*/
}

public	static	void	printAverage(int	totalSum,	int	totalNumber)	throws
Exception	{
		/*	…	*/
}

It	is	generally	considered	bad	programming	style	to	specify	exception	superclasses	in	the
throws	clause	of	the	header	when	the	actual	exceptions	thrown	are	instances	of	their
subclasses.	It	is	also	recommended	to	use	the	@throws	tag	in	a	Javadoc	comment	to
document	the	checked	exceptions	that	a	method	or	a	constructor	can	throw,	together	with
any	unchecked	exceptions	that	might	also	be	relevant	to	catch.

Overriding	the	 	Clause
A	subclass	can	override	a	method	defined	in	its	superclass	by	providing	a	new
implementation	(§7.2,	p.	268).	What	happens	when	a	superclass	method	with	a	list	of
exceptions	in	its	throws	clause	is	overridden	in	a	subclass?	The	method	declaration	in
the	subclass	need	not	specify	a	throws	clause	if	it	does	not	throw	any	checked
exceptions,	and	if	it	does,	it	can	specify	only	checked	exception	classes	that	are	already	in
the	throws	clause	of	the	superclass	method,	or	that	are	subclasses	of	the	checked
exceptions	in	the	throws	clause	of	the	superclass	method.	As	a	consequence,	an
overriding	method	cannot	allow	more	checked	exceptions	in	its	throws	clause	than	the
superclass	method	does.	Allowing	more	checked	exceptions	in	the	overriding	method
would	create	problems	for	clients	who	already	deal	with	the	exceptions	specified	in	the
superclass	method.	Such	clients	would	be	ill	prepared	if	an	object	of	the	subclass	threw	a
checked	exception	they	were	not	prepared	for.	However,	there	are	no	restrictions	on
specifying	unchecked	exceptions	in	the	throws	clause	of	the	overriding	method.	The
preceding	discussion	also	applies	to	methods	from	an	interface	that	a	class	implements,	as
these	methods	are	overridden	by	any	class	implementing	the	interface.

In	the	following	code,	the	method	superclassMethodX	in	superclass	A	is	overridden
in	subclass	B.	The	throws	clause	of	the	method	in	subclass	B	at	(2)	specifies	a	subset	of
the	checked	exceptions	specified	in	the	throws	clause	at	(1)	and	adds	the	more	specific
subclass	exception,	SubFirstException,	of	the	superclass	exception,	First-
Exception,	specified	in	the	throws	clause	at	(1).
Click	here	to	view	code	image

//	New	exception	classes:
class	FirstException				extends	Exception	{	}
class	SecondException			extends	Exception	{	}
class	ThirdException				extends	Exception	{	}
class	SubFirstException	extends	FirstException	{	}

//	Superclass
class	A	{
		//	…
		protected	void	superclassMethodX()
				throws	FirstException,	SecondException,	ThirdException	{/*	…	*/}					//
(1)
		//	…
}
//	Subclass
class	B	extends	A	{
		//	…
		@Override	protected	void	superclassMethodX()
				throws	FirstException,	ThirdException,	SubFirstException	{	/*	…	*/	}	//
(2)
		//	…
}

6.10	Advantages	of	Exception	Handling
Robustness	refers	to	the	ability	of	a	software	system	to	respond	to	errors	during	execution.
A	system	should	respond	to	unexpected	situations	at	runtime	in	a	responsible	way.
Applications	that	provide	the	user	with	frequent	cryptic	messages	with	error	codes	or	that
repeatedly	give	the	user	the	silent	treatment	when	something	goes	wrong	can	hardly	be
considered	robust.

The	exception	handling	mechanism	in	Java	offers	the	following	advantages	that	facilitate
developing	robust	applications	in	Java:

•	Separation	of	Exception	Handling	Code

The	code	for	handling	error	situations	can	be	separated	from	the	code	for	the
program	logic	by	using	the	exception	handling	constructs	provided	by	the	language.
Code	that	can	result	in	error	situations	is	confined	in	the	try	block,	and	their
handling	in	the	catch	clause.

•	Transparent	Exception	Propagation

Propagation	of	a	checked	exception	in	the	JVM	stack	cannot	be	ignored	by	an	active
method.	The	method	must	comply	with	the	catch-or-declare	requirement:	either
catch	and	handle	the	exception,	or	propagate	it	by	declaring	it	in	the	method’s
throws	clause.	Error	situations	causing	exception	propagation	are	thus	always
detected,	and	can	be	caught	and	remedied.

•	Exception	Categorization	and	Specialization

The	exception	and	error	classes	in	the	Java	SE	platform	API	are	organized	in	an
inheritance	hierarchy	(Figure	6.9,	p.	234).	Classes	higher	up	in	this	hierarchy
represent	categories	of	exceptions	and	errors	(Exception,
RuntimeException,	IO-Exception,	Error),	whereas	classes	lower	in	this
hierarchy	represent	more	specific	exceptions	and	errors
(NullPointerException,	FileNotFoundException,
AssertionError).	The	try-catch	construct	allows	flexibility	in	catching	and
handling	exceptions.	A	catch	clause	can	specify	an	exception	category	for	coarse-
grained	exception	handling,	as	the	exception	category	class	will	subsume	its	more

specific	exception	subclasses,	or	it	can	specify	a	more	specific	exception	class	for
fine-grained	exception	handling.	Best	practice	dictates	that	fine-grained	exception
handling	be	used.

	Review	Questions

6.16	Which	digits,	and	in	which	order,	will	be	printed	when	the	following	program	is
run?

Click	here	to	view	code	image
public	class	DemoClass	{
		public	static	void	main(String[]	args)	{
				int	k=0;
				try	{
						int	i	=	5/k;
				}	catch	(ArithmeticException	e)	{
						System.out.println(“1”);
				}	catch	(RuntimeException	e)	{
						System.out.println(“2”);
						return;
				}	catch	(Exception	e)	{
						System.out.println(“3”);
				}	finally	{
						System.out.println(“4”);
				}
				System.out.println(“5”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	only	print	5.

(b)	The	program	will	only	print	1	and	4,	in	that	order.

(c)	The	program	will	only	print	1,	2,	and	4,	in	that	order.

(d)	The	program	will	only	print	1,	4,	and	5,	in	that	order.

(e)	The	program	will	only	print	1,	2,	4,	and	5,	in	that	order.

(f)	The	program	will	only	print	3	and	5,	in	that	order.

6.17	Given	the	following	program,	which	statements	are	true?
Click	here	to	view	code	image

public	class	Exceptions	{
		public	static	void	main(String[]	args)	{
				try	{
						if	(args.length	==	0)	return;
						System.out.println(args[0]);
				}	finally	{
						System.out.println(“The	end”);
				}
		}
}

Select	the	two	correct	answers.

(a)	If	run	with	no	arguments,	the	program	will	produce	no	output.

(b)	If	run	with	no	arguments,	the	program	will	print	The	end.

(c)	The	program	will	throw	an	ArrayIndexOutOfBoundsException.

(d)	If	run	with	one	argument,	the	program	will	simply	print	the	given	argument.

(e)	If	run	with	one	argument,	the	program	will	print	the	given	argument	followed
by	"The	end".

6.18	Which	of	the	following	statements	are	true?

Select	the	two	correct	answers.

(a)	If	an	exception	is	not	caught	in	a	method,	the	method	will	terminate	and	normal
execution	will	resume.

(b)	An	overriding	method	must	declare	that	it	throws	the	same	exception	classes	as
the	method	it	overrides.

(c)	The	main()	method	of	a	program	can	declare	that	it	throws	checked
exceptions.

(d)	A	method	declaring	that	it	throws	an	exception	of	a	certain	class	may	throw
instances	of	any	subclass	of	that	exception	class.

(e)	finally	clauses	are	executed	if,	and	only	if,	an	exception	gets	thrown	while
inside	the	corresponding	try	block.

6.19	Which	digits,	and	in	which	order,	will	be	printed	when	the	following	program	is
run?

Click	here	to	view	code	image
public	class	RQ6A19	{
		public	static	void	main(String[]	args)	throws	InterruptedException	{
				try	{
						throwIt();
						System.out.println(“1”);
				}	finally	{
						System.out.println(“2”);
				}
				System.out.println(“3”);
		}

		//	InterruptedException	is	a	direct	subclass	of	Exception.
		static	void	throwIt()	throws	InterruptedException	{
				throw	new	InterruptedException(“Time	to	go	home.”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	2	and	throw	InterruptedException.

(b)	The	program	will	print	1	and	2,	in	that	order.

(c)	The	program	will	print	1,	2,	and	3,	in	that	order.

(d)	The	program	will	print	2	and	3,	in	that	order.

(e)	The	program	will	print	3	and	2,	in	that	order.

(f)	The	program	will	print	1	and	3,	in	that	order.

6.20	What	is	wrong	with	the	following	code?
Click	here	to	view	code	image

public	class	RQ6A20	{
		public	static	void	main(String[]	args)	throws	A	{
				try	{
						action();
				}	finally	{
						System.out.println(“Done.”);
				}	catch	(A	e)	{
						throw	e;
				}
		}

		public	static	void	action()	throws	B	{
				throw	new	B();
		}
}

class	A	extends	Throwable	{}

class	B	extends	A	{}

Select	the	one	correct	answer.

(a)	The	main()	method	must	declare	that	it	throws	B.

(b)	The	finally	clause	must	follow	the	catch	clause	in	the	main()	method.

(c)	The	catch	clause	in	the	main()	method	must	declare	that	it	catches	B	rather
than	A.

(d)	A	single	try	block	cannot	be	followed	by	both	catch	and	finally	clauses.

(e)	The	declaration	of	class	A	is	illegal.

6.21	Which	throws	clause	should	be	inserted	at	(1)	for	the	overriding	method
compute()	in	the	following	code	so	that	the	code	will	compile	without	errors?

Click	here	to	view	code	image
class	A	{
		//	InterruptedException	is	a	direct	subclass	of	Exception.
		void	compute()	throws	ArithmeticException,	InterruptedException	{
				div(5,	5);
		}

		int	div(int	i,	int	j)	throws	ArithmeticException	{
				return	i/j;
		}
}

public	class	Client	extends	A	{
		void	compute()	/*	(1)	INSERT	throws	CLAUSE	HERE.	*/	{
				try	{
						div(5,	0);

				}	catch	(ArithmeticException	e)	{
						return;
				}
				throw	new	RuntimeException(“ArithmeticException	was	expected.”);
		}
}

Select	the	one	correct	answer.

(a)	No	throws	clause	is	necessary.

(b)	throws	ArithmeticException

(c)	throws	InterruptedException

(d)	throws	RuntimeException

(e)	throws	ArithmeticException,	InterruptedException

	Chapter	Summary

The	following	information	was	covered	in	this	chapter:

•	The	selection	statements:	if,	if-else,	switch

•	The	iteration	statements:	for(;;),	for(:),	while,	do-while

•	The	transfer	statements:	break,	continue,	return

•	Exception	handling	and	exception	classes	in	the	core	API

•	Defining	customized	exception	types

•	The	try-catch-finally	construct	and	control	flow	paths	through	the	construct

•	Using	multiple	catch	clauses	with	the	try	statement

•	Throwing	exceptions	programmatically	with	the	throw	statement

•	Using	the	throws	clause	to	specify	checked	exceptions

	Programming	Exercises

6.1	Create	different	versions	of	a	program	that	finds	all	the	primes	smaller	than	100.
Create	one	version	that	uses	only	the	for(;;)	loop	(i.e.,	no	while	or	do-
while).	Create	another	version	that	uses	only	the	while	loop.

6.2	Here	is	a	skeleton	of	a	system	for	simulating	a	nuclear	power	plant.	Implement	the
methods	in	the	class	named	Control.	Modify	the	method	declarations	if
necessary.	The	Javadoc	comments	for	each	method	give	a	description	of	what	the
implementation	should	do.	Some	of	the	methods	in	the	other	classes	have
unspecified	implementations.	Assume	that	these	methods	have	been	properly
implemented	and	provide	hooks	to	the	rest	of	the	system.

Click	here	to	view	code	image
package	energy;

/**	A	PowerPlant	with	a	reactor	core.	*/
public	class	PowerPlant	{
		/**	Each	power	plant	has	a	reactor	core.
						This	field	has	package	accessibility	so	that	the	Control	class,
						defined	in	the	same	package,	can	access	it.	*/
		final	Reactor	core;

		/**	Initializes	the	power	plant,	creates	a	reactor	core.	*/
		public	PowerPlant()	{
				core	=	new	Reactor();
		}

		/**	Sounds	the	alarm	to	evacuate	the	power	plant.	*/
		public	void	soundEvacuateAlarm()	{
				//	…	implementation	unspecified	…
		}

		/**	@return	the	level	of	reactor	output	that	is	most	desirable	at	this
time.
						(Units	are	unspecified.)	*/
		public	int	getOptimalThroughput()	{
				//	…	implementation	unspecified	…
				return	0;
		}

		/**	The	main	entry	point	of	the	program:	sets	up	a	PowerPlant	object
						and	a	Control	object	and	lets	the	Control	object	run	the	power	plant.
*/
		public	static	void	main(String[]	args)	{
				PowerPlant	plant	=	new	PowerPlant();
				Control	ctrl	=	new	Control(plant);
				ctrl.runSystem();
		}
}

//__

/**	A	reactor	core	that	has	a	throughput	that	can	be	either	decreased	or
				increased.	*/
class	Reactor	{
		/**	@return	the	current	throughput	of	the	reactor.	(Units	are	unspecified.)
*/
		public	int	getThroughput()	{
				//	…	implementation	unspecified	…
				return	0;
		}

		/**	@return	true	if	the	reactor	status	is	critical,	false	otherwise.	*/
		public	boolean	isCritical()	{
				//	…	implementation	unspecified	…
				return	false;
		}

		/**	Asks	the	reactor	to	increase	throughput.	*/
		void	increaseThroughput()	throws	ReactorCritical	{
				//	…	implementation	unspecified	…
		}

		/**	Asks	the	reactor	to	decrease	throughput.	*/
		void	decreaseThroughput()	{
				//	…	implementation	unspecified	…
		}

}

//__

/**	This	exception	class	should	be	used	to	report	that	the	reactor	status	is
				critical.	*/
class	ReactorCritical	extends	Exception	{}

//__

/**	A	controller	that	will	manage	the	power	plant	to	make	sure	that	the
				reactor	runs	with	optimal	throughput.	*/
class	Control	{

		private	final	PowerPlant	thePlant;

		static	final	int	TOLERANCE	=	10;

		/**	@param	p	the	power	plant	to	control	*/
		public	Control(PowerPlant	p)	{
				thePlant	=	p;
		}

		/**	Runs	the	power	plant	by	continuously	monitoring	the
						optimal	throughput	and	the	actual	throughput	of	the	reactor.
						If	the	throughputs	differ	by	more	than	10	units	(i.e.	tolerance),
						adjust	the	reactor	throughput.
						If	the	reactor	goes	critical,	the	evacuate	alarm	is
						sounded	and	the	reactor	is	shut	down.
						The	runSystem()	method	calls	the	methods	needAdjustment(),
						adjustThroughput(),	and	shutdown().	*/
		public	void	runSystem()	{
				//	…	provide	implementation	here	…
		}

		/**	Reports	whether	the	throughput	of	the	reactor	needs	adjusting.
						This	method	should	also	monitor	and	report	if	the	reactor	goes
critical.
						@param	target	the	desired	throughput.
						@return	true	if	the	optimal	and	actual	throughput	values	differ	by
						more	than	10	units.	*/
		public	boolean	needAdjustment(int	target)	{
				//	…	provide	implementation	here	…
				return	true;
		}

		/**	Adjusts	the	throughput	of	the	reactor	by	calling	increaseThroughput()
						and	decreaseThroughput()	methods	until	the	actual	throughput	is	within
						10	units	of	the	target	throughput.
						@param	target	the	desired	throughput.	*/
		public	void	adjustThroughput(int	target)	{
				//	…	provide	implementation	here	…
		}

		/**	Shuts	down	the	reactor	by	lowering	the	throughput	to	0.	*/
		public	void	shutdown()	{
				//	…	provide	implementation	here	…
		}
}

7.	Object-Oriented	Programming

7.1	Single	Implementation	Inheritance
Inheritance	is	one	of	the	fundamental	mechanisms	for	code	reuse	in	object-oriented
programming	(OOP).	It	allows	new	classes	to	be	derived	from	existing	ones.	The	new
class	(also	called	a	subclass,	subtype,	derived	class,	or	child	class)	can	inherit	members
from	the	old	class	(also	called	a	superclass,	supertype,	base	class,	or	parent	class).	The
subclass	can	add	new	behavior	and	properties	and,	under	certain	circumstances,	modify	its
inherited	behavior.

In	Java,	implementation	inheritance	(also	known	as	class	inheritance)	is	achieved	by
extending	classes	(i.e.,	adding	new	fields	and	methods)	and	modifying	inherited	members
(§7.2,	p.	268).	Inheritance	of	members	is	closely	tied	to	their	declared	accessibility.	If	a
superclass	member	is	accessible	by	its	simple	name	in	the	subclass	(without	the	use	of	any
extra	syntax	like	super),	that	member	is	considered	inherited.	Conversely,	private,
overridden,	and	hidden	members	of	the	superclass	are	not	inherited.	Inheritance	should	not

be	confused	with	the	existence	of	such	members	in	the	state	of	a	subclass	object	(Example
7.1).

A	subclass	specifies	the	name	of	its	superclass	in	the	subclass	header	using	the	extends
clause.
Click	here	to	view	code	image

class	TubeLight	extends	Light	{	…	}			//	TubeLight	is	a	subclass	of	Light.

The	subclass	specifies	only	the	additional	new	and	modified	members	in	its	class	body.
The	rest	of	its	declaration	is	made	up	of	its	inherited	members.	If	no	extends	clause	is
specified	in	the	header	of	a	class	declaration,	the	class	implicitly	inherits	from	the
java.lang.Object	class	(§8.2,	p.	342).	This	implicit	inheritance	is	assumed	in	the
declaration	of	the	Light	class	at	(1)	in	Example	7.1.	Also	in	Example	7.1,	the	subclass
TubeLight	at	(2)	explicitly	uses	the	extends	clause	and	specifies	only	members	other
than	those	that	it	already	inherits	from	the	superclass	Light	(which,	in	turn,	inherits	from
the	Object	class).	Members	of	the	superclass	Light,	which	are	accessible	by	their
simple	names	in	the	subclass	TubeLight,	are	inherited	by	the	subclass,	as	evident	from
the	output	in	Example	7.1.

Private	members	of	the	superclass	are	not	inherited	by	the	subclass	and	can	be	accessed
only	indirectly.	The	private	field	indicator	of	the	superclass	Light	is	not	inherited,
but	exists	in	the	subclass	object	and	is	indirectly	accessible	through	public	methods.

Using	appropriate	accessibility	modifiers,	the	superclass	can	limit	which	members	can	be
accessed	directly	and,	therefore,	inherited	by	its	subclasses	(§4.7,	p.	123).	As	shown	in
Example	7.1,	the	subclass	can	use	the	inherited	members	as	if	they	were	declared	in	its
own	class	body.	This	is	not	the	case	for	members	that	are	declared	as	private	in	the
superclass.	Members	that	have	package	accessibility	in	the	superclass	are	also	not
inherited	by	subclasses	in	other	packages,	as	these	members	are	accessible	by	their	simple
names	only	in	subclasses	within	the	same	package	as	the	superclass.

Since	constructors	(§7.5,	p.	282)	are	not	members	of	a	class,	they	are	not	inherited	by	a
subclass.

Example	7.1	Extending	Classes:	Inheritance	and	Accessibility
Click	here	to	view	code	image

//	File:	Utility.java
class	Light	{																											//	(1)
		//	Instance	fields:
												int					noOfWatts;										//	Wattage
		private			boolean	indicator;										//	On	or	off
		protected	String		location;											//	Placement

		//	Static	field:
		private	static	int	counter;											//	Number	of	Light	objects	created

		//	No-argument	constructor:
		Light()	{
				noOfWatts	=	50;
				indicator	=	true;
				location		=	“X”;

				counter++;
		}

		//	Instance	methods:
		public		void				switchOn()		{	indicator	=	true;	}
		public		void				switchOff()	{	indicator	=	false;	}
		public		boolean	isOn()						{	return	indicator;	}
		private	void				printLocation()	{
				System.out.println(“Location:	”	+	location);
		}

		//	Static	methods:
		public	static	void	writeCount()	{
				System.out.println(“Number	of	lights:	”	+	counter);
		}
		//…
}
//__
class	TubeLight	extends	Light	{									//	(2)	Subclass	uses	the	extends
clause.
		//	Instance	fields:
		private	int	tubeLength	=	54;
		private	int	colorNo				=	10;

		//	Instance	methods:
		public	int	getTubeLength()	{	return	tubeLength;	}

		public	void	printInfo()	{
				System.out.println(“From	the	subclass:”);
				System.out.println(“Tube	length:	“		+	tubeLength);
				System.out.println(“Color	number:	”	+	colorNo);
				System.out.println(“Tube	length:	“		+	getTubeLength());
				System.out.println();
				System.out.println(“From	the	superclass:”);
				System.out.println(“Wattage:	“						+	noOfWatts);					//	Inherited.
//		System.out.println(“Indicator:	“				+	indicator);					//	Not	inherited.
				System.out.println(“Location:	“					+	location);						//	Inherited.
//		System.out.println(“Counter:	“			+	counter);										//	Not	inherited.
				switchOn();																																											//	Inherited
				switchOff();																																										//	Inherited
				System.out.println(“Indicator:	“				+	isOn());								//	Inherited.
//		printLocation();																																						//	Not	inherited.
				writeCount();																																									//	Inherited.
		}
		//	…
}
//__
public	class	Utility	{																		//	(3)
		public	static	void	main(String[]	args)	{
				new	TubeLight().printInfo();
		}
}

Output	from	the	program:
From	the	subclass:
Tube	length:	54
Color	number:	10
Tube	length:	54

From	the	superclass:
Wattage:	50
Location:	X

Indicator:	false
Number	of	lights:	1

In	Java,	a	class	can	extend	only	one	class;	that	is,	it	can	have	only	one	immediate
superclass.	This	kind	of	inheritance	is	sometimes	called	single	or	linear	implementation
inheritance.	The	name	is	appropriate,	as	the	subclass	inherits	the	implementations	of	its
superclass	members.	The	inheritance	relationship	can	be	depicted	as	an	inheritance
hierarchy	(also	called	a	class	hierarchy).	Classes	higher	up	in	the	hierarchy	are	more
generalized	(often	called	broader),	as	they	abstract	the	class	behavior.	Classes	lower	down
in	the	hierarchy	are	more	specialized	(often	called	narrower),	as	they	customize	the
inherited	behavior	by	additional	properties	and	behavior.	Figure	7.1	illustrates	the
inheritance	relationship	between	the	class	Light,	which	represents	the	more	general
abstraction,	and	its	more	specialized	subclasses.	The	java.lang.Object	class	is
always	at	the	top	(the	root)	of	any	Java	inheritance	hierarchy,	as	all	classes,	with	the
exception	of	the	Object	class	itself,	inherit	(either	directly	or	indirectly)	from	this	class.

Figure	7.1	Inheritance	Hierarchy

Relationships:	is-a	and	has-a
Inheritance	defines	the	relationship	is-a	(also	called	the	superclass–subclass	relationship)
between	a	superclass	and	its	subclasses.	Thus,	an	object	of	a	subclass	is-a	superclass
object,	and	can	be	used	wherever	an	object	of	the	superclass	can	be	used.	This	criterion	is
often	employed	as	a	litmus	test	for	choosing	inheritance	in	object-oriented	design.	It	has
particular	consequences	for	how	objects	can	be	used.	An	object	of	the	TubeLight	class
is-an	object	of	the	superclass	Light.	Referring	to	Figure	7.1,	an	object	of	the
TubeLight	class	can	be	used	wherever	an	object	of	the	superclass	Light	can	be	used.
The	inheritance	relationship	is	transitive:	If	class	B	extends	class	A	and	class	C	extends
class	B,	then	class	C	will	also	inherit	from	class	A	via	class	B.	An	object	of	the
SpotLightBulb	class	is-an	object	of	the	class	Light.	The	is-a	relationship	does	not
hold	between	peer	classes:	An	object	of	the	LightBulb	class	is	not	an	object	of	the	class
TubeLight,	and	vice	versa.

Whereas	inheritance	defines	the	relationship	is-a	between	a	superclass	and	its	subclasses,
aggregation	defines	the	relationship	has-a	(also	called	the	whole–part	relationship)
between	an	instance	of	a	class	and	its	constituents	(also	called	parts).	Aggregation
comprises	the	usage	of	objects.	An	instance	of	class	Light	has	(or	uses)	the	following
parts:	a	field	to	store	its	wattage	(noOfWatts),	a	field	to	store	whether	it	is	on	or	off
(indicator),	and	a	String	object	to	store	its	location	(denoted	by	the	field	reference
location).	In	Java,	a	composite	object	cannot	contain	other	objects.	It	can	store	only
reference	values	of	its	constituent	objects	in	its	fields.	This	relationship	defines	an
aggregation	hierarchy	(also	called	object	hierarchy)	that	embodies	the	has	a	relationship.
As	explained	in	§1.7,	p.	12,	constituent	objects	can	be	shared	between	objects.	If	their
lifetimes	are	dependent	on	the	lifetime	of	the	composite	object,	then	this	relationship	is
called	composition,	and	implies	strong	ownership	of	the	parts	by	the	composite	object.
Inheritance	and	aggregation	are	compared	in	§7.13,	p.	331.

The	Supertype–Subtype	Relationship
A	class	defines	a	reference	type,	a	data	type	whose	objects	can	be	accessed	only	by
references.	Therefore	the	inheritance	hierarchy	can	be	regarded	as	a	type	hierarchy,
embodying	the	supertype–subtype	relationship	between	reference	types.	In	the	context	of
Java,	the	supertype–subtype	relationship	implies	that	the	reference	value	of	a	subtype
object	can	be	assigned	to	a	supertype	reference,	because	a	subtype	object	can	be
substituted	for	a	supertype	object.	This	assignment	involves	a	widening	reference
conversion	(§5.1,	p.	145),	as	references	are	assigned	up	the	inheritance	hierarchy.	Using
the	reference	types	in	Example	7.1,	the	following	code	assigns	the	reference	value	of	an
object	of	the	subtype	TubeLight	to	the	reference	light	of	the	supertype	Light:
Click	here	to	view	code	image

Light	light	=	new	TubeLight();															//	(1)	widening	reference
conversion

An	implicit	widening	conversion	takes	place	under	assignment,	as	the	reference	value	of	a
narrower	type	(subtype	TubeLight)	object	is	being	assigned	to	a	reference	of	broader
type	(supertype	Light).	We	can	now	use	the	reference	light	to	invoke	those	methods

on	the	subtype	object	that	are	inherited	from	the	supertype	Light:
Click	here	to	view	code	image

light.switchOn();																												//	(2)

Note	that	the	compiler	knows	about	only	the	declared	type	(static	type)	of	the	reference
light,	which	is	Light,	and	ensures	that	only	methods	from	this	type	can	be	called
using	the	reference	light.	However,	at	runtime,	the	reference	light	will	refer	to	an
object	of	the	subtype	TubeLight	when	the	call	to	the	method	switchOn()	is
executed.	It	is	the	type	of	the	object	that	the	reference	refers	to	at	runtime	that	determines
which	method	is	executed.	The	subtype	object	inherits	the	switchOn()	method	from	its
supertype	Light,	so	this	method	is	executed.	The	type	of	the	object	that	the	reference
refers	to	at	runtime	is	often	called	the	dynamic	type	of	the	reference.

One	might	be	tempted	to	invoke	methods	exclusive	to	the	TubeLight	subtype	via	the
supertype	reference	light:
Click	here	to	view	code	image

light.getTubeLength();																							//	(3)	Not	OK.

This	code	will	not	work,	as	the	compiler	does	not	know	which	object	the	reference	light
will	denote	at	runtime;	it	merely	knows	the	declared	type	of	the	reference.	As	the
declaration	of	the	class	Light	does	not	have	a	method	called	getTubeLength(),	this
method	call	at	(3)	results	in	a	compile-time	error.	As	we	shall	see	later	in	this	chapter,
eliciting	subtype-specific	behavior	using	a	supertype	reference	requires	a	narrowing
reference	conversion	with	an	explicit	cast	(§7.11,	p.	320).

The	rest	of	this	chapter	elaborates	on	various	aspects	of	OOP.	Understanding	them	is
fundamental	in	understanding	the	consequences	of	the	subtype–supertype	relationship.

7.2	Overriding	Methods

Instance	Method	Overriding
Under	certain	circumstances,	a	subclass	can	override	instance	methods	that	it	inherits	from
its	superclass.	Overriding	such	a	method	allows	the	subclass	to	provide	its	own
implementation	of	the	method.	The	overridden	method	in	the	superclass	is	not	inherited	by
the	subclass.	When	the	method	is	invoked	on	an	object	of	the	subclass,	it	is	the	method
implementation	in	the	subclass	that	is	executed.	The	new	method	in	the	subclass	must
abide	by	the	following	rules	of	method	overriding:

•	The	new	method	definition	in	the	subclass	must	have	the	same	method	signature.	In
other	words,	the	method	name,	and	the	types	and	the	number	of	parameters,
including	their	order,	must	be	the	same	as	in	the	overridden	method	of	the
superclass.

Whether	parameters	in	the	overriding	method	should	be	final	is	at	the	discretion
of	the	subclass	(§3.7,	p.	86).	A	method’s	signature	does	not	comprise	the	final
modifier	of	parameters,	only	their	types	and	order.

•	The	return	type	of	the	overriding	method	can	be	a	subtype	of	the	return	type	of	the

overridden	method	(called	covariant	return,	p.	273).

•	The	new	method	definition	cannot	narrow	the	accessibility	of	the	method,	but	it	can
widen	it	(§4.7,	p.	123).

•	The	new	method	definition	can	throw	either	all	or	none,	or	a	subset	of	the	checked
exceptions	(including	their	subclasses)	that	are	specified	in	the	throws	clause	of
the	overridden	method	in	the	superclass	(§6.9,	p.	253).

These	requirements	also	apply	to	interfaces,	where	a	subinterface	can	override	abstract
and	default	method	declarations	from	its	superinterfaces	(§7.6,	p.	290).

Example	7.2	illustrates	overriding,	overloading,	and	hiding	of	members	in	a	class.	Figure
7.2	gives	an	overview	of	the	two	main	classes	in	Example	7.2.	The	new	definition	of	the
energyCost()	method	at	(7)	in	the	subclass	TubeLight	has	the	same	signature	and
the	same	return	type	as	the	method	at	(2)	in	the	superclass	Light.	The	new	definition
specifies	a	subset	of	the	exceptions	(ZeroHoursException)	thrown	by	the	overridden
method	(the	exception	class	InvalidHoursException	is	a	superclass	of
NegativeHoursException	and	ZeroHoursException).	The	new	definition	also
widens	the	accessibility	(public)	from	what	it	was	in	the	overridden	definition
(protected).	The	overriding	method	declares	the	parameter	to	be	final,	but	this	has
no	bearing	in	overriding	the	method.

Figure	7.2	Inheritance	Hierarchy	for	Example	7.2	and	Example	7.3

The	astute	reader	will	have	noticed	the	@Override	annotation	preceding	the	method
definition	at	(7).	The	compiler	will	now	report	an	error	if	the	method	definition	at	(7)	does
not	override	an	inherited	method.	The	annotation	helps	to	ensure	that	the	method
definition	overrides	the	inherited	method,	rather	than	overloading	another	method	silently.

Invocation	of	the	method	energyCost()	on	an	object	of	subclass	TubeLight	using
references	of	the	subclass	and	the	superclass	at	(15)	and	(16)	results	in	the	new	definition
at	(7)	being	executed,	since	both	references	are	aliases	of	the	TubeLight	object	created
at	(12).
Click	here	to	view	code	image

tubeLight.energyCost(50);																					//	(15)	Invokes	method	at	(7).
light1.energyCost(50);																								//	(16)	Invokes	method	at	(7).

Not	surprisingly,	the	invocation	of	the	method	energyCost()	on	an	object	of
superclass	Light,	using	a	reference	of	the	superclass	at	(17),	results	in	the	overridden
definition	at	(2)	being	executed:
Click	here	to	view	code	image

light2.energyCost(50);																								//	(17)	Invokes	method	at	(2).

Example	7.2	Overriding,	Overloading,	and	Hiding
Click	here	to	view	code	image

//	File:	Client2.java
//	Exceptions
class	InvalidHoursException	extends	Exception	{}
class	NegativeHoursException	extends	InvalidHoursException	{}
class	ZeroHoursException	extends	InvalidHoursException	{}

class	Light	{

		protected	String	lightType	=	“Generic	Light”;			//	(1)	Instance	field

		protected	double	energyCost(int	noOfHours)						//	(2)	Instance	method
						throws	InvalidHoursException	{
				System.out.print(“>>	Light.energyCost(int):	“);
				if	(noOfHours	<	0)
						throw	new	NegativeHoursException();
				double	cost	=	00.20	*	noOfHours;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	cost);
				return	cost;
		}

		public	Light	makeInstance()	{																			//	(3)	Instance	method
				System.out.print(“>>	Light.makeInstance():	“);
				return	new	Light();
		}

		public	void	showSign()	{																								//	(4)	Instance	method
				System.out.print(“>>	Light.showSign():	“);
				System.out.println(“Let	there	be	light!”);
		}

		public	static	void	printLightType()	{											//	(5)	Static	method
				System.out.print(“>>	Static	Light.printLightType():	“);
				System.out.println(“Generic	Light”);
		}
}
//__
class	TubeLight	extends	Light	{

		public	static	String	lightType	=	“Tube	Light”;		//	(6)	Hiding	field	at	(1).

		@Override
		public	double	energyCost(final	int	noOfHours)			//	(7)	Overriding	instance
						throws	ZeroHoursException	{																	//					method	at	(2).
				System.out.print(“>>	TubeLight.energyCost(int):	“);
				if	(noOfHours	==	0)
						throw	new	ZeroHoursException();
				double	cost	=	00.10	*	noOfHours;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	cost);
				return	cost;
		}

		public	double	energyCost()	{										//	(8)	Overloading	method	at	(7).
				System.out.print(“>>	TubeLight.energyCost():	“);
				double	flatrate	=	20.00;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	flatrate);
				return	flatrate;
		}

		@Override
		public	TubeLight	makeInstance()	{					//	(9)	Overriding	instance	method	at
(3).
				System.out.print(“>>	TubeLight.makeInstance():	“);
				return	new	TubeLight();
		}

		public	static	void	printLightType()	{	//	(10)	Hiding	static	method	at	(5).
				System.out.print(“>>	Static	TubeLight.printLightType():	“);
				System.out.println(lightType);
		}
}
//__
public	class	Client2	{
		public	static	void	main(String[]	args)						//	(11)
						throws	InvalidHoursException	{

				TubeLight	tubeLight	=	new	TubeLight();				//	(12)
				Light					light1				=	tubeLight;										//	(13)	Aliases.
				Light					light2				=	new	Light();								//	(14)

				System.out.println(“Invoke	overridden	instance	method:”);
				tubeLight.energyCost(50);																	//	(15)	Invokes	method	at	(7).
				light1.energyCost(50);																				//	(16)	Invokes	method	at	(7).
				light2.energyCost(50);																				//	(17)	Invokes	method	at	(2).

				System.out.println(
								”\nInvoke	overridden	instance	method	with	covariant	return:”);
				System.out.println(
								light2.makeInstance().getClass());				//	(18)	Invokes	method	at	(3).
				System.out.println(
								tubeLight.makeInstance().getClass());	//	(19)	Invokes	method	at	(9).

				System.out.println(“\nAccess	hidden	field:”);
				System.out.println(tubeLight.lightType);		//	(20)	Accesses	field	at	(6).
				System.out.println(light1.lightType);					//	(21)	Accesses	field	at	(1).
				System.out.println(light2.lightType);					//	(22)	Accesses	field	at	(1).

				System.out.println(“\nInvoke	hidden	static	method:”);
				tubeLight.printLightType();																//	(23)	Invokes	method	at
(10).
				light1.printLightType();																			//	(24)	Invokes	method	at	(5).
				light2.printLightType();																			//	(25)	Invokes	method	at	(5).

				System.out.println(“\nInvoke	overloaded	method:”);
				tubeLight.energyCost();																				//	(26)	Invokes	method	at	(8).
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Invoke	overridden	instance	method:
>>	TubeLight.energyCost(int):	Energy	cost	for	Tube	Light:	5.0
>>	TubeLight.energyCost(int):	Energy	cost	for	Tube	Light:	5.0
>>	Light.energyCost(int):	Energy	cost	for	Generic	Light:	10.0

Invoke	overridden	instance	method	with	covariant	return:
>>	Light.makeInstance():	class	Light
>>	TubeLight.makeInstance():	class	TubeLight

Access	hidden	field:
Tube	Light
Generic	Light
Generic	Light

Invoke	hidden	static	method:
>>	Static	TubeLight.printLightType():	Tube	Light
>>	Static	Light.printLightType():	Generic	Light
>>	Static	Light.printLightType():	Generic	Light

Invoke	overloaded	method:
>>	TubeLight.energyCost():	Energy	cost	for	Tube	Light:	20.0

Here	are	a	few	more	facts	to	note	about	overriding.	First,	a	subclass	must	use	the	keyword
super	to	invoke	an	overridden	method	in	the	superclass	(p.	276).

Second,	a	final	method	cannot	be	overridden,	because	the	modifier	final	prevents
method	overriding.	An	attempt	to	override	a	final	method	will	result	in	a	compile-time
error.	An	abstract	method,	in	contrast,	requires	the	non-abstract	subclasses	to	override
the	method,	so	as	to	provide	an	implementation.

Third,	the	accessibility	modifier	private	for	a	method	means	that	the	method	is	not
accessible	outside	the	class	in	which	it	is	defined;	therefore,	a	subclass	cannot	override	it.
However,	a	subclass	can	give	its	own	definition	of	such	a	method,	which	may	have	the
same	signature	as	the	method	in	its	superclass.

Fourth,	a	subclass	within	the	same	package	as	the	superclass	can	override	any	non-final
and	non-private	methods	declared	in	the	superclass.	However,	a	subclass	in	a	different
package	can	override	only	the	non-final	methods	that	are	declared	as	either	public	or
protected	in	the	superclass.

Fifth,	an	instance	method	in	a	subclass	cannot	override	a	static	method	in	the
superclass.	The	compiler	will	flag	such	an	attempt	as	an	error.	A	static	method	is	class-
specific	and	not	part	of	any	object,	while	overriding	methods	are	invoked	on	behalf	of
objects	of	the	subclass.	However,	a	static	method	in	a	subclass	can	hide	a	static	method
in	the	superclass,	as	we	shall	see	(p.	275).	Constructors,	since	they	are	not	methods,
cannot	be	overridden.

Covariant	 	in	Overriding	Methods
In	Example	7.2,	the	definition	of	the	method	makeInstance()	at	(9)	overrides	the
method	definition	at	(3).	Note	that	the	method	signatures	are	the	same,	but	the	return	type
at	(9)	is	a	subtype	of	the	return	type	at	(3).	The	method	at	(9)	returns	an	object	of	the
subtype	TubeLight,	whereas	the	method	at	(3)	returns	an	object	of	the	supertype
Light.	This	is	an	example	of	covariant	return.

Depending	on	whether	we	call	the	method	makeInstance()	on	an	object	of	the
subtype	TubeLight	or	an	object	of	the	supertype	Light,	the	respective	method
definition	will	be	executed.	The	code	at	(18)	and	(19)	illustrates	which	object	is	returned
by	the	method,	depending	on	which	method	definition	is	executed.

Note	that	covariant	return	applies	only	to	reference	types,	not	to	primitive	types.	For
example,	changing	the	return	type	of	the	energyCost()	method	at	(7)	to	float	will
result	in	a	compile-time	error.	There	is	no	supertype–subtype	relationship	between
primitive	types.

Overriding	versus	Overloading
Method	overriding	should	not	be	confused	with	method	overloading	(§3.2,	p.	52).

Method	overriding	always	requires	the	same	method	signature	(name	and	parameter	types)
and	the	same	or	covariant	return	types.	Overloading	occurs	when	the	method	names	are
the	same,	but	the	parameter	lists	differ.	Therefore,	to	overload	methods,	the	parameters
must	differ	in	either	type,	order,	or	number.	As	the	return	type	is	not	a	part	of	the	method
signature,	just	having	different	return	types	is	not	enough	to	overload	methods.

Only	non-final	instance	methods	in	the	superclass	that	are	directly	accessible	from	the
subclass	using	their	simple	name	can	be	overridden.	Both	instance	and	static	methods	can
be	overloaded	in	the	class	they	are	defined	in	or	in	a	subclass	of	their	class.

Invoking	an	overridden	method	in	the	superclass	from	a	subclass	requires	a	special	syntax
(e.g.,	the	keyword	super).	This	is	not	necessary	for	invoking	an	overloaded	method	in
the	superclass	from	a	subclass.	If	the	right	kinds	of	arguments	are	passed	in	the	method
call	occurring	in	the	subclass,	the	overloaded	method	in	the	superclass	will	be	invoked.	In
Example	7.2,	the	method	energyCost()	at	(2)	in	class	Light	is	overridden	in	class
TubeLight	at	(7)	and	overloaded	at	(8).	When	invoked	at	(26),	the	overloaded
definition	at	(8)	is	executed.

For	overloaded	methods,	which	method	implementation	will	be	executed	at	runtime	is
determined	at	compile	time	(§7.10,	p.	316).	In	contrast,	for	overridden	methods,	the
method	implementation	to	be	executed	is	determined	at	runtime	(§7.12,	p.	329).	Table	7.1
provides	a	comparison	between	overriding	and	overloading.

Table	7.1	Overriding	versus	Overloading

7.3	Hiding	Members

Field	Hiding
A	subclass	cannot	override	inherited	fields	of	the	superclass,	but	it	can	hide	them.	The
subclass	can	define	fields	with	the	same	name	as	in	the	superclass.	If	this	is	the	case,	the
fields	in	the	superclass	cannot	be	accessed	in	the	subclass	by	their	simple	names;
therefore,	they	are	not	inherited	by	the	subclass.	A	hidden	static	field	can	always	be
invoked	by	using	the	superclass	name	in	the	subclass	declaration.	Additionally,	the
keyword	super	can	be	used	in	non-static	code	in	the	subclass	declaration	to	access
hidden	static	fields	(§7.4,	p.	276).

The	following	distinction	between	invoking	instance	methods	on	an	object	and	accessing
fields	of	an	object	must	be	noted.	When	an	instance	method	is	invoked	on	an	object	using
a	reference,	it	is	the	dynamic	type	of	the	reference	(i.e.,	the	type	of	the	current	object
denoted	by	the	reference	at	runtime),	not	the	declared	type	of	the	reference,	that
determines	which	method	implementation	will	be	executed.	In	Example	7.2	at	(15),	(16),

and	(17),	this	is	evident	from	invoking	the	overridden	method	energyCost():	The
method	from	the	class	corresponding	to	the	current	object	is	executed,	regardless	of	the
declared	reference	type.	When	a	field	of	an	object	is	accessed	using	a	reference,	it	is	the
declared	type	of	the	reference,	not	the	type	of	the	current	object	denoted	by	the	reference,
that	determines	which	field	will	actually	be	accessed.	In	Example	7.2	at	(20),	(21),	and
(22),	this	is	evident	from	accessing	the	hidden	field	lightType:	The	field	accessed	is
the	one	declared	in	the	class	corresponding	to	the	declared	reference	type,	regardless	of
the	object	denoted	by	the	reference	at	runtime.

In	contrast	to	method	overriding,	where	an	instance	method	cannot	override	a	static
method,	there	are	no	such	restrictions	on	the	hiding	of	fields.	The	field	lightType	is
static	in	the	subclass,	but	not	in	the	superclass.	The	declared	type	of	the	fields	need	not
be	the	same	either—only	the	field	name	matters	in	the	hiding	of	fields.

Static	Method	Hiding
A	static	method	in	a	subclass	cannot	override	an	instance	method	from	the	superclass,	but
it	can	hide	a	static	method	from	the	superclass	if	the	exact	requirements	for	overriding
instance	methods	are	fulfilled	(§7.2,	p.	268).	A	hidden	superclass	static	method	is	not
inherited.	The	compiler	will	flag	the	code	as	containing	an	error	if	the	signatures	are	the
same,	but	the	other	requirements	regarding	return	type,	throws	clause,	and	accessibility
are	not	met.	If	the	signatures	are	different,	the	method	name	is	overloaded,	not	hidden.

A	call	to	a	static	or	final	method	is	bound	to	a	method	implementation	at	compile
time	(private	methods	are	implicitly	final).	Example	7.2	illustrates	invocation	of
static	methods.	Analogous	to	accessing	fields,	the	static	method	invoked	in	(23),	(24),	and
(25)	is	determined	by	the	declared	type	of	the	reference.	In	(23),	the	declared	reference
type	is	TubeLight;	therefore,	the	static	method	printLightType()	at	(10)	in	this
class	is	invoked.	In	(24)	and	(25),	the	declared	reference	type	is	Light,	and	the	hidden
static	method	printLightType()	at	(5)	in	that	class	is	invoked.	This	is	borne	out	by
the	output	from	the	program.

Analogous	to	hidden	fields,	a	hidden	static	method	can	always	be	invoked	by	using	the
superclass	name	or	by	using	the	keyword	super	in	non-static	code	in	the	subclass
declaration	(§7.4,	p.	276).

Table	7.2	summarizes	the	consequences	when	a	subclass	method	has	the	same	signature	as
a	method	in	the	superclass.

Table	7.2	Same	Signature	for	Subclass	and	Superclass	Method

7.4	The	Object	Reference	
The	this	reference	can	be	used	in	non-static	code	to	refer	to	the	current	object	(§3.2,	p.
50).	The	keyword	super,	in	contrast,	can	be	used	in	non-static	code	to	access	fields	and
invoke	methods	from	the	superclass	(Table	4.1,	p.	115).	The	keyword	super	provides	a
reference	to	the	current	object	as	an	instance	of	its	superclass.	In	method	invocations	with
super,	the	method	from	the	superclass	is	invoked	regardless	of	what	the	actual	type	of
the	current	object	is	or	whether	the	current	class	overrides	the	method.	This	approach	is
typically	used	to	invoke	methods	that	are	overridden,	and	to	access	members	that	are
hidden	in	the	subclass.	Unlike	the	this	keyword,	the	super	keyword	cannot	be	used	as
an	ordinary	reference.	For	example,	it	cannot	be	assigned	to	other	references	or	cast	to
other	reference	types.

Example	7.3	uses	the	classes	Light	and	TubeLight	from	Example	7.2,	which	are	also
shown	in	Figure	7.2.	In	Example	7.3,	the	class	NeonLight	extends	the	class
TubeLight.	The	declaration	of	the	method	demonstrate()	at	(11)	in	the	class
NeonLight	makes	use	of	the	super	keyword	to	access	members	higher	up	in	its
inheritance	hierarchy.	This	is	the	case	when	the	showSign()	method	is	invoked	at	(12).
This	method	is	defined	at	(4)	in	the	class	Light,	rather	than	in	the	immediate	superclass
TubeLight	of	the	subclass	NeonLight.	The	overridden	method	energyCost()	at
(7)	and	its	overloaded	version	at	(8)	in	the	class	TubeLight	are	invoked,	using	the
object	reference	super	at	(13)	and	(14),	respectively.

The	superclass	Light	has	a	field	named	lightType	and	a	method	named
energyCost	defined	at	(1)	and	(2),	respectively.	One	might	be	tempted	to	use	the
syntax	super.super.energyCost(20)	in	the	subclass	NeonLight	to	invoke	this
method,	but	this	is	not	a	valid	construct.	One	might	also	be	tempted	to	cast	the	this
reference	to	the	class	Light	and	try	again,	as	shown	at	(15).	The	output	shows	that	the
method	energyCost()	at	(7)	in	the	class	TubeLight	was	executed,	not	the	one	from
the	class	Light.	The	reason	is	that	a	cast	simply	changes	the	type	of	the	reference	(in	this
case	to	Light),	not	the	class	of	the	object	(which	is	still	NeonLight).	Method
invocation	is	determined	by	the	class	of	the	current	object,	resulting	in	the	inherited
method	energyCost()	in	the	class	TubeLight	being	executed.	There	is	no	way	to
invoke	the	method	energyCost()	in	the	class	Light	from	the	subclass	NeonLight,
without	declaring	a	reference	of	the	type	Light.

At	(16),	the	keyword	super	is	used	to	access	the	field	lightType	at	(6)	in	the	class
TubeLight,	but	is	redundant	in	this	case.	At	(17),	the	field	lightType	from	the	class
Light	is	accessed	successfully	by	casting	the	this	reference,	because	it	is	the	type	of
the	reference	that	determines	which	field	is	accessed.	From	non-static	code	in	a	subclass,
it	is	possible	to	directly	access	fields	in	a	class	higher	up	in	the	inheritance	hierarchy	by
casting	the	this	reference.	However,	it	is	futile	to	cast	the	this	reference	to	invoke
instance	methods	in	a	class	higher	up	in	the	inheritance	hierarchy,	as	illustrated	earlier	for
the	overridden	method	energyCost().

Finally,	the	calls	to	the	static	methods	at	(18)	and	(19)	using	the	super	and	this

references,	respectively,	exhibit	runtime	behavior	analogous	to	accessing	fields,	as
discussed	previously.

Example	7.3	Using	the	super	Keyword
Click	here	to	view	code	image

//	File:	Client3.java
//Exceptions
class	InvalidHoursException	extends	Exception	{}
class	NegativeHoursException	extends	InvalidHoursException	{}
class	ZeroHoursException	extends	InvalidHoursException	{}

class	Light	{

		protected	String	lightType	=	“Generic	Light”;			//	(1)	Instance	field

		protected	double	energyCost(int	noOfHours)						//	(2)	Instance	method
						throws	InvalidHoursException	{
				System.out.print(“>>	Light.energyCost(int):	“);
				if	(noOfHours	<	0)
						throw	new	NegativeHoursException();
				double	cost	=	00.20	*	noOfHours;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	cost);
				return	cost;
		}

		public	Light	makeInstance()	{																			//	(3)	Instance	method
				System.out.print(“>>	Light.makeInstance():	“);
				return	new	Light();
		}

		public	void	showSign()	{																								//	(4)	Instance	method
				System.out.print(“>>	Light.showSign():	“);
				System.out.println(“Let	there	be	light!”);
		}

		public	static	void	printLightType()	{											//	(5)	Static	method
				System.out.print(“>>	Static	Light.printLightType():	“);
				System.out.println(“Generic	Light”);
		}
}
//__
class	TubeLight	extends	Light	{

		public	static	String	lightType	=	“Tube	Light”;		//	(6)	Hiding	field	at	(1).

		@Override
		public	double	energyCost(final	int	noOfHours)			//	(7)	Overriding	instance
						throws	ZeroHoursException	{																	//					method	at	(2).
				System.out.print(“>>	TubeLight.energyCost(int):	“);
				if	(noOfHours	==	0)
						throw	new	ZeroHoursException();
				double	cost	=	00.10	*	noOfHours;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	cost);
				return	cost;
		}

		public	double	energyCost()	{										//	(8)	Overloading	method	at	(7).
				System.out.print(“>>	TubeLight.energyCost():	“);
				double	flatrate	=	20.00;
				System.out.println(“Energy	cost	for	”	+	lightType	+	“:	”	+	flatrate);

				return	flatrate;
		}

		@Override
		public	TubeLight	makeInstance()	{					//	(9)	Overriding	instance	method	at
(3).
				System.out.print(“>>	TubeLight.makeInstance():	“);
				return	new	TubeLight();
		}

		public	static	void	printLightType()	{	//	(10)	Hiding	static	method	at	(5).
				System.out.print(“>>	Static	TubeLight.printLightType():	“);
				System.out.println(lightType);
		}
}
//__
class	NeonLight	extends	TubeLight	{
		//	…
		public	void	demonstrate()																							//	(11)
						throws	InvalidHoursException	{
				super.showSign();																													//	(12)	Invokes	method	at
(4)
				super.energyCost(50);																									//	(13)	Invokes	method	at
(7)
				super.energyCost();																											//	(14)	Invokes	method	at
(8)

				((Light)	this).energyCost(50);																//	(15)	Invokes	method	at
(7)

				System.out.println(super.lightType);										//	(16)	Accesses	field	at
(6)
				System.out.println(((Light)	this).lightType);	//	(17)	Accesses	field	at
(1)

				super.printLightType();																							//	(18)	Invokes	method	at
(10)
				((Light)	this).printLightType();														//	(19)	Invokes	method	at
(5)
		}
}
//__
public	class	Client3	{
		public	static	void	main(String[]	args)
						throws	InvalidHoursException	{
				NeonLight	neonRef	=	new	NeonLight();
				neonRef.demonstrate();
		}
}

Output	from	the	program:
Click	here	to	view	code	image

>>	Light.showSign():	Let	there	be	light!
>>	TubeLight.energyCost(int):	Energy	cost	for	Tube	Light:	5.0
>>	TubeLight.energyCost():	Energy	cost	for	Tube	Light:	20.0
>>	TubeLight.energyCost(int):	Energy	cost	for	Tube	Light:	5.0
Tube	Light
Generic	Light
>>	Static	TubeLight.printLightType():	Tube	Light
>>	Static	Light.printLightType():	Generic	Light

	Review	Questions

7.1	Which	of	the	following	statements	are	true?

Select	the	two	correct	answers.

(a)	In	Java,	the	extends	clause	is	used	to	specify	the	inheritance	relationship.

(b)	The	subclass	of	a	non-abstract	class	can	be	declared	as	abstract.

(c)	All	members	of	the	superclass	are	inherited	by	the	subclass.

(d)	A	final	class	can	be	abstract.

(e)	A	class	in	which	all	the	members	are	declared	private	cannot	be	declared	as
public.

7.2	Which	of	the	following	statements	are	true?

Select	the	two	correct	answers.

(a)	A	class	can	be	extended	by	only	one	class.

(b)	Every	Java	object	has	a	public	method	named	equals.

(c)	Every	Java	object	has	a	public	method	named	length.

(d)	A	class	can	extend	any	number	of	classes.

(e)	A	non-final	class	can	be	extended	by	any	number	of	classes.

7.3	Given	the	following	classes	and	declarations,	which	statements	are	true?
Click	here	to	view	code	image

//	Classes
class	Foo	{
		private	int	i;
		public	void	f()	{	/*	…	*/	}
		public	void	g()	{	/*	…	*/	}
}

class	Bar	extends	Foo	{
		public	int	j;
		public	void	g()	{	/*	…	*/	}
}

//	Declarations:
		Foo	a	=	new	Bar();
		Bar	b	=	new	Bar();

Select	the	three	correct	answers.

(a)	The	Bar	class	is	a	subclass	of	Foo.

(b)	The	statement	b.f();	is	legal.

(c)	The	statement	a.j	=	5;	is	legal.

(d)	The	statement	a.g();	is	legal.

(e)	The	statement	b.i	=	3;	is	legal.

7.4	Given	classes	A,	B,	and	C,	where	B	extends	A,	and	C	extends	B,	and	where	all
classes	implement	the	instance	method	void	doIt(),	how	can	the	doIt()
method	in	A	be	called	from	an	instance	method	in	C?

Select	the	one	correct	answer.

(a)	doIt();

(b)	super.doIt();

(c)	super.super.doIt();

(d)	this.super.doIt();

(e)	A.this.doIt();

(f)	((A)	this).doIt();

(g)	It	is	not	possible.

7.5	What	would	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	UserClass	{
		public	static	void	main(String[]	args)	{
				B	b	=	new	C();
				System.out.println(b.max(13,	29));
		}
}

class	A	{
		int	max(int	x,	int	y)	{	if	(x>y)	return	x;	else	return	y;	}
}

class	B	extends	A	{
		int	max(int	x,	int	y)	{	return	super.max(y,	x)	-	10;	}
}

class	C	extends	B	{
		int	max(int	x,	int	y)	{	return	super.max(x+10,	y+10);	}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile.

(b)	The	code	will	compile,	but	throw	an	exception	at	runtime.

(c)	The	code	will	compile,	and	print	13	at	runtime.

(d)	The	code	will	compile,	and	print	23	at	runtime.

(e)	The	code	will	compile,	and	print	29	at	runtime.

(f)	The	code	will	compile,	and	print	39	at	runtime.

7.6	Which	is	the	simplest	expression	that	can	be	inserted	at	(1),	so	that	the	program
prints	the	value	of	the	text	field	from	the	Message	class?

Click	here	to	view	code	image
//	File:	MyClass.java
class	Message	{
		//	The	message	that	should	be	printed:
		String	text	=	“Hello,	world!”;
}

class	MySuperclass	{
		Message	msg	=	new	Message();
}

public	class	MyClass	extends	MySuperclass	{
		public	static	void	main(String[]	args)	{
				MyClass	object	=	new	MyClass();
				object.print();
		}

		public	void	print()	{
				System.out.println(/*	(1)	INSERT	THE	SIMPLEST	EXPRESSION	HERE	*/);
		}
}

Select	the	one	correct	answer.

(a)	text

(b)	Message.text

(c)	msg.text

(d)	this.msg.text

(e)	super.msg.text

(f)	this.super.msg.text

7.7	What	would	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

class	Vehicle	{
		static	public	String	getModelName()	{	return	“Volvo”;	}
		public	long	getRegNo()	{	return	12345;	}
}

class	Car	extends	Vehicle	{
		static	public	String	getModelName()	{	return	“Toyota”;	}
		public	long	getRegNo()	{	return	54321;	}
}

public	class	TakeARide	{
		public	static	void	main(String[]	args)	{
				Car	c	=	new	Car();
				Vehicle	v	=	c;

				System.out.println(“|”	+	v.getModelName()	+	“|”	+	c.getModelName()	+
																							”|”	+	v.getRegNo()					+	“|”	+	c.getRegNo()	+
“|”);
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile.

(b)	The	code	will	compile,	and	print	|Toyota|Volvo|12345|54321|	at
runtime.

(c)	The	code	will	compile,	and	print	|Volvo|Toyota|12345|54321|	at
runtime.

(d)	The	code	will	compile,	and	print	|Toyota|Toyota|12345|12345|	at
runtime.

(e)	The	code	will	compile,	and	print	|Volvo|Volvo|12345|54321|	at
runtime.

(f)	The	code	will	compile,	and	print	|Toyota|Toyota|12345|12345|	at
runtime.

(g)	The	code	will	compile,	and	print	|Volvo|Toyota|54321|54321|	at
runtime.

7.5	Chaining	Constructors	Using	 	and	
Constructors	are	discussed	in	§3.3,	p.	53.	Other	uses	of	the	keywords	this	and	super
can	be	found	in	§7.2,	p.	268.

The	 	Constructor	Call
Constructors	cannot	be	inherited	or	overridden.	They	can	be	overloaded,	but	only	in	the
same	class.	Since	a	constructor	always	has	the	same	name	as	the	class,	each	parameter	list
must	be	different	when	defining	more	than	one	constructor	for	a	class.	In	Example	7.4,	the
class	Light	has	three	overloaded	constructors.	In	the	constructor	at	(3),	the	this
reference	is	used	to	access	the	fields	shadowed	by	the	parameters.	In	the	main()	method
at	(4),	the	appropriate	constructor	is	invoked	depending	on	the	arguments	in	the
constructor	call,	as	illustrated	by	the	program	output.

Example	7.4	Constructor	Overloading
Click	here	to	view	code	image

//	File:	DemoConstructorCall.java
class	Light	{
		//	Fields:
		private	int					noOfWatts;						//	wattage
		private	boolean	indicator;						//	on	or	off
		private	String		location;							//	placement

		//	Constructors:
		Light()	{																																		//	(1)	No-argument	constructor
				noOfWatts	=	0;
				indicator	=	false;
				location		=	“X”;
				System.out.println(“Returning	from	no-argument	constructor	no.	1.”);
		}
		Light(int	watts,	boolean	onOffState)	{																						//	(2)
				noOfWatts	=	watts;
				indicator	=	onOffState;
				location		=	“X”;
				System.out.println(“Returning	from	constructor	no.	2.”);
		}
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{		//	(3)
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
				System.out.println(“Returning	from	constructor	no.	3.”);
		}
}
//__
public	class	DemoConstructorCall	{
		public	static	void	main(String[]	args)	{																				//	(4)
				System.out.println(“Creating	Light	object	no.	1.”);
				Light	light1	=	new	Light();
				System.out.println(“Creating	Light	object	no.	2.”);
				Light	light2	=	new	Light(250,	true);
				System.out.println(“Creating	Light	object	no.	3.”);
				Light	light3	=	new	Light(250,	true,	“attic”);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Creating	Light	object	no.	1.
Returning	from	no-argument	constructor	no.	1.
Creating	Light	object	no.	2.
Returning	from	constructor	no.	2.
Creating	Light	object	no.	3.
Returning	from	constructor	no.	3.

Example	7.5	illustrates	the	use	of	the	this()	construct,	which	is	used	to	implement	local
chaining	of	constructors	in	the	class	when	an	instance	of	the	class	is	created.	The	first	two
constructors	at	(1)	and	(2)	from	Example	7.4	have	been	rewritten	using	the	this()
construct	in	Example	7.5	at	(1)	and	(2),	respectively.	The	this()	construct	can	be
regarded	as	being	locally	overloaded,	since	its	parameters	(and	hence	its	signature)	can
vary,	as	shown	in	the	body	of	the	constructors	at	(1)	and	(2).	The	this()	call	invokes	the

local	constructor	with	the	corresponding	parameter	list.	In	the	main()	method	at	(4),	the
appropriate	constructor	is	invoked	depending	on	the	arguments	in	the	constructor	call
when	each	of	the	three	Light	objects	are	created.	Calling	the	no-argument	constructor	at
(1)	to	create	a	Light	object	results	in	the	constructors	at	(2)	and	(3)	being	executed	as
well.	This	is	confirmed	by	the	output	from	the	program.	In	this	case,	the	output	shows	that
the	constructor	at	(3)	completed	first,	followed	by	the	constructor	at	(2),	and	finally	by	the
no-argument	constructor	at	(1)	that	was	called	first.	Bearing	in	mind	the	definition	of	the
constructors,	the	constructors	are	invoked	in	the	reverse	order;	that	is,	invocation	of	the
no-argument	constructor	immediately	leads	to	invocation	of	the	constructor	at	(2)	by	the
call	this(0,	false),	and	its	invocation	leads	to	the	constructor	at	(3)	being	called
immediately	by	the	call	this(watt,	ind,	"X"),	with	the	completion	of	the
execution	in	the	reverse	order	of	their	invocation.	Similarly,	calling	the	constructor	at	(2)
to	create	an	instance	of	the	Light	class	results	in	the	constructor	at	(3)	being	executed	as
well.

Java	requires	that	any	this()	call	must	occur	as	the	first	statement	in	a	constructor.	The
this()	call	can	be	followed	by	any	other	relevant	code.	This	restriction	is	due	to	Java’s
handling	of	constructor	invocation	in	the	superclass	when	an	object	of	the	subclass	is
created.	This	mechanism	is	explained	in	the	next	subsection.

Example	7.5	The	this()	Constructor	Call
Click	here	to	view	code	image

//	File:	DemoThisCall.java
class	Light	{
		//	Fields:
		private	int					noOfWatts;
		private	boolean	indicator;
		private	String		location;

		//	Constructors:
		Light()	{																																	//	(1)	No-argument	constructor
				this(0,	false);
				System.out.println(“Returning	from	no-argument	constructor	no.	1.”);
		}
		Light(int	watt,	boolean	ind)	{																													//	(2)
				this(watt,	ind,	“X”);
				System.out.println(“Returning	from	constructor	no.	2.”);
		}
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{	//	(3)
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
				System.out.println(“Returning	from	constructor	no.	3.”);
		}
}
//__
public	class	DemoThisCall	{
		public	static	void	main(String[]	args)	{																			//	(4)
				System.out.println(“Creating	Light	object	no.	1.”);
				Light	light1	=	new	Light();																														//	(5)
				System.out.println(“Creating	Light	object	no.	2.”);
				Light	light2	=	new	Light(250,	true);																					//	(6)
				System.out.println(“Creating	Light	object	no.	3.”);
				Light	light3	=	new	Light(250,	true,	“attic”);												//	(7)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Creating	Light	object	no.	1.
Returning	from	constructor	no.	3.
Returning	from	constructor	no.	2.
Returning	from	no-argument	constructor	no.	1.
Creating	Light	object	no.	2.
Returning	from	constructor	no.	3.
Returning	from	constructor	no.	2.
Creating	Light	object	no.	3.
Returning	from	constructor	no.	3.

The	 	Constructor	Call
The	super()	construct	is	used	in	a	subclass	constructor	to	invoke	a	constructor	in	the
immediate	superclass.	This	allows	the	subclass	to	influence	the	initialization	of	its
inherited	state	when	an	object	of	the	subclass	is	created.	A	super()	call	in	the
constructor	of	a	subclass	will	result	in	the	execution	of	the	relevant	constructor	from	the
superclass,	based	on	the	signature	of	the	call.	Since	the	superclass	name	is	known	in	the
subclass	declaration,	the	compiler	can	determine	the	superclass	constructor	invoked	from
the	signature	of	the	parameter	list.

A	constructor	in	a	subclass	can	access	the	class’s	inherited	members	by	their	simple
names.	The	keyword	super	can	also	be	used	in	a	subclass	constructor	to	access	inherited
members	via	its	superclass.	One	might	be	tempted	to	use	the	super	keyword	in	a
constructor	to	specify	initial	values	for	inherited	fields.	However,	the	super()	construct
provides	a	better	solution	to	initialize	the	inherited	state.

In	Example	7.6,	the	constructor	at	(3)	of	the	class	Light	has	a	super()	call	(with	no
arguments)	at	(4).	Although	the	constructor	is	not	strictly	necessary,	as	the	compiler	will
insert	one—as	explained	later—it	is	included	here	for	expositional	purposes.	The
constructor	at	(6)	of	the	class	TubeLight	has	a	super()	call	(with	three	arguments)	at
(7).	This	super()	call	will	match	the	constructor	at	(3)	of	the	superclass	Light.	This	is
evident	from	the	program	output.

Example	7.6	The	super()	Constructor	Call
Click	here	to	view	code	image

//	File:	Chaining.java
class	Light	{
		//	Fields:
		private	int					noOfWatts;
		private	boolean	indicator;
		private	String		location;

		//	Constructors:
		Light()	{																																		//	(1)	No-argument	constructor
				this(0,	false);
				System.out.println(
				“Returning	from	no-argument	constructor	no.	1	in	class	Light”);
		}
		Light(int	watt,	boolean	ind)	{																														//	(2)
				this(watt,	ind,	“X”);
				System.out.println(
				“Returning	from	constructor	no.	2	in	class	Light”);
		}
		Light(int	noOfWatts,	boolean	indicator,	String	location)	{		//	(3)
				super();																																																		//	(4)
				this.noOfWatts	=	noOfWatts;
				this.indicator	=	indicator;
				this.location		=	location;
				System.out.println(
								“Returning	from	constructor	no.	3	in	class	Light”);
		}
}
//__
class	TubeLight	extends	Light	{

		//	Instance	variables:
		private	int	tubeLength;
		private	int	colorNo;

		//	Constructors:
		TubeLight(int	tubeLength,	int	colorNo)	{																				//	(5)
				this(tubeLength,	colorNo,	100,	true,	“Unknown”);
				System.out.println(
											“Returning	from	constructor	no.	1	in	class	TubeLight”);
		}
		TubeLight(int	tubeLength,	int	colorNo,	int	noOfWatts,
												boolean	indicator,	String	location)	{													//	(6)
				super(noOfWatts,	indicator,	location);																				//	(7)
				this.tubeLength	=	tubeLength;
				this.colorNo				=	colorNo;
				System.out.println(
											“Returning	from	constructor	no.	2	in	class	TubeLight”);
		}
}
//__
public	class	Chaining	{
		public	static	void	main(String[]	args)	{
				System.out.println(“Creating	a	TubeLight	object.”);
				TubeLight	tubeLightRef	=	new	TubeLight(20,	5);												//	(8)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Creating	a	TubeLight	object.
Returning	from	constructor	no.	3	in	class	Light
Returning	from	constructor	no.	2	in	class	TubeLight
Returning	from	constructor	no.	1	in	class	TubeLight

The	super()	construct	has	the	same	restrictions	as	the	this()	construct:	If	used,	the
super()	call	must	occur	as	the	first	statement	in	a	constructor,	and	it	can	only	be	used	in
a	constructor	declaration.	This	implies	that	this()	and	super()	calls	cannot	both
occur	in	the	same	constructor.	The	this()	construct	is	used	to	chain	constructors	in	the
same	class.	The	constructor	at	the	end	of	such	a	chain	can	invoke	a	superclass	constructor
using	the	super()	construct.	Just	as	the	this()	construct	leads	to	chaining	of
constructors	in	the	same	class,	so	the	super()	construct	leads	to	chaining	of	subclass
constructors	to	superclass	constructors.	This	chaining	behavior	guarantees	that	all
superclass	constructors	are	called,	starting	with	the	constructor	of	the	class	being
instantiated,	all	the	way	to	the	top	of	the	inheritance	hierarchy,	which	is	always	the
Object	class.	Note	that	the	body	of	the	constructor	is	executed	in	the	reverse	order	to	the
call	order,	as	the	super()	call	can	occur	only	as	the	first	statement	in	a	constructor.	This
order	of	execution	ensures	that	the	constructor	from	the	Object	class	is	completed	first,
followed	by	the	constructors	in	the	other	classes	down	to	the	class	being	instantiated	in	the
inheritance	hierarchy.	It	is	called	(subclass–superclass)	constructor	chaining.	The	output
from	Example	7.6	clearly	illustrates	this	chain	of	events	when	an	object	of	the	class
TubeLight	is	created.

If	a	constructor	at	the	end	of	a	this()	chain	(which	may	not	be	a	chain	at	all	if	no

this()	call	is	invoked)	does	not	have	an	explicit	call	to	super(),	the	call	super()
(without	the	parameters)	is	implicitly	inserted	by	the	compiler	to	invoke	the	no-argument
constructor	of	the	superclass.	In	other	words,	if	a	constructor	has	neither	a	this()	call
nor	a	super()	call	as	its	first	statement,	the	compiler	inserts	a	super()	call	to	the	no-
argument	constructor	in	the	superclass.	The	code
Click	here	to	view	code	image

class	A	{
		A()	{}														//	No-argument	constructor.
		//	…
}
class	B	extends	A	{			//	No	constructors.
		//	…
}

is	equivalent	to
Click	here	to	view	code	image

class	A	{
		A()	{	super();	}				//	(1)	Call	to	no-argument	superclass	constructor
inserted.
		//	…
}
class	B	extends	A	{
		B()	{	super();	}				//	(2)	Default	constructor	inserted.
		//	…
}

where	the	compiler	inserts	a	super()	call	in	the	no-argument	constructor	for	class	A	at
(1)	and	inserts	the	default	constructor	for	class	B	at	(2).	The	super()	call	at	(2)	will
result	in	a	call	to	the	no-argument	constructor	in	B	at	(1),	and	the	super()	call	at	(1)	will
result	in	a	call	to	the	no-argument	constructor	in	the	superclass	of	A—that	is,	the	Object
class.

If	a	superclass	defines	just	non-zero	argument	constructors	(i.e.,	only	constructors	with
parameters),	its	subclasses	cannot	rely	on	the	implicit	super()	call	being	inserted.	This
will	be	flagged	as	a	compile-time	error.	The	subclasses	must	then	explicitly	call	a
superclass	constructor,	using	the	super()	construct	with	the	right	arguments.
Click	here	to	view	code	image

class	NeonLight	extends	TubeLight	{
		//	Field
		String	sign;

		NeonLight()	{																													//	(1)
				super(10,	2,	100,	true,	“Roof-top”);				//	(2)	Cannot	be	commented	out.
				sign	=	“All	will	be	revealed!”;
		}
		//	…
}

The	preceding	declaration	of	the	subclass	NeonLight	provides	a	no-argument
constructor	at	(1).	The	call	of	the	constructor	at	(2)	in	the	superclass	TubeLight	cannot
be	omitted.	If	it	is	omitted,	any	insertion	of	a	super()	call	(with	no	arguments)	in	this
constructor	will	try	to	match	a	no-argument	constructor	in	the	superclass	TubeLight,

which	provides	only	non-zero	argument	constructors.	The	class	NeonLight	will	not
compile	unless	an	explicit	valid	super()	call	is	inserted	at	(2).

If	the	superclass	provides	just	non-zero	argument	constructors	(i.e.,	it	does	not	have	a	no-
argument	constructor),	this	has	implications	for	its	subclasses.	A	subclass	that	relies	on	its
default	constructor	will	fail	to	compile,	because	the	default	constructor	of	the	subclass	will
attempt	to	call	the	(nonexistent)	no-argument	constructor	in	the	superclass.	A	constructor
in	a	subclass	must	explicitly	use	the	super()	call,	with	the	appropriate	arguments,	to
invoke	a	non-zero	argument	constructor	in	the	superclass.	This	call	is	necessary	because
the	constructor	in	the	subclass	cannot	rely	on	an	implicit	super()	call	to	the	no-
argument	constructor	in	the	superclass.

	Review	Questions

7.8	Which	constructors	can	be	inserted	at	(1)	in	MySub	without	causing	a	compile-
time	error?

Click	here	to	view	code	image
class	MySuper	{
		int	number;
		MySuper(int	i)	{	number	=	i;	}
}

class	MySub	extends	MySuper	{
		int	count;
		MySub(int	count,	int	num)	{
				super(num);
				this.count	=	count;
		}

		//	(1)	INSERT	CONSTRUCTOR	HERE
}

Select	the	one	correct	answer.

(a)	MySub()	{}

(b)	MySub(int	count)	{	this.count	=	count;	}

(c)	MySub(int	count)	{	super();	this.count	=	count;	}

(d)	MySub(int	count)	{	this.count	=	count;	super(count);
}

(e)	MySub(int	count)	{	this(count,	count);	}

(f)	MySub(int	count)	{	super(count);	this(count,	0);	}

7.9	Which	of	the	following	statements	is	true?

Select	the	one	correct	answer.

(a)	A	super()	or	this()	call	must	always	be	provided	explicitly	as	the	first
statement	in	the	body	of	a	constructor.

(b)	If	both	a	subclass	and	its	superclass	do	not	have	any	declared	constructors,	the

implicit	default	constructor	of	the	subclass	will	call	super()	when	run.

(c)	If	neither	super()	nor	this()	is	specified	as	the	first	statement	in	the	body
of	a	constructor,	this()	will	implicitly	be	inserted	as	the	first	statement.

(d)	If	super()	is	the	first	statement	in	the	body	of	a	constructor,	this()	can	be
declared	as	the	second	statement.

(e)	Calling	super()	as	the	first	statement	in	the	body	of	a	constructor	of	a
subclass	will	always	work,	since	all	superclasses	have	a	default	constructor.

7.10	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				B	b	=	new	B(“Test”);
		}
}

class	A	{
		A()	{	this(“1”,	“2”);	}

		A(String	s,	String	t)	{	this(s	+	t);	}

		A(String	s)	{	System.out.println(s);	}
}

class	B	extends	A	{
		B(String	s)	{	System.out.println(s);	}

		B(String	s,	String	t)	{	this(t	+	s	+	“3”);	}

		B()	{	super(“4”);	};
}

Select	the	one	correct	answer.

(a)	It	will	just	print	Test.

(b)	It	will	print	Test	followed	by	Test.

(c)	It	will	print	123	followed	by	Test.

(d)	It	will	print	12	followed	by	Test.

(e)	It	will	print	4	followed	by	Test.

7.6	Interfaces
Extending	classes	using	single	implementation	inheritance	creates	new	class	types.	A
superclass	reference	can	refer	to	objects	of	its	own	type	and	its	subclasses	strictly
according	to	the	inheritance	hierarchy.	Because	this	relationship	is	linear,	it	rules	out
multiple	implementation	inheritance,	in	which	a	subclass	inherits	from	more	than	one
superclass.	Instead	Java	provides	interfaces,	which	not	only	allow	new	named	reference
types	to	be	introduced,	but	also	permit	multiple	interface	inheritance.

Defining	Interfaces
A	top-level	interface	has	the	following	simplified	syntax,	which	will	suffice	for	the
purposes	of	this	book:
Click	here	to	view	code	image

accessibility_modifier	interface	interface_name
																																																							extends_interface_clause	//	Interface
header
{	//	Interface	body
				abstract_method_declarations
				default_method_declarations
				static_method_declarations
				constant_declarations
}

In	the	interface	header,	the	name	of	the	interface	is	preceded	by	the	keyword
interface.	The	interface	name	can	also	include	a	list	of	formal	type	parameters	for
declaring	a	generic	interface.	In	addition,	the	interface	header	can	specify	the	following
information:

•	The	accessibility	modifier	must	be	public,	and	the	lack	of	an	accessibility
modifier	implies	package	accessibility,	as	one	would	expect	(§4.5,	p.	118).

•	The	extends	interface	clause	specifies	a	comma-separated	list	of	any	superinterfaces
that	the	interface	extends	(p.	294).

The	interface	body	can	contain	member	declarations	that	include	any	of	the	following:

•	Abstract	method	declarations	(p.	291)

•	Default	method	declarations	(p.	297)

•	Static	method	declarations	(p.	300)

•	Constant	declarations	(p.	302)

An	interface	is	abstract	by	definition,	which	means	that	it	cannot	be	instantiated.
Declaring	an	interface	as	abstract	is	superfluous	and	seldom	done	in	practice.	It	is	the
only	non-accessibility	modifier	that	can	be	specified	for	a	top-level	interface	(apart	from
the	keyword	strictfp).

The	member	declarations	can	appear	in	any	order	in	the	interface	body,	which	can	be
empty.	Since	interfaces	are	meant	to	be	implemented	by	classes,	interface	members
implicitly	have	public	accessibility	and	the	public	modifier	can	be	omitted.	The
following	declaration	is	an	example	of	a	bare-bones	interface	that	has	an	empty	body:

interface	Playable	{	}

Interfaces	with	empty	bodies	can	be	used	as	markers	to	tag	classes	as	having	a	certain
property	or	behavior.	Such	interfaces	are	also	called	ability	interfaces.	The	Java	SE
platform	API	provides	several	examples	of	such	marker	interfaces—namely,
java.lang.Cloneable,	java.io.Serializable,	and

java.util.EventListener.

Abstract	Methods	in	Interfaces
An	interface	defines	a	contract	by	specifying	a	set	of	abstract	and	default	method
declarations,	but	provides	implementations	only	for	the	default	methods—not	for	the
abstract	methods.	The	abstract	methods	in	an	interface	are	all	implicitly	abstract	and
public	by	virtue	of	their	definitions.	Only	the	modifiers	abstract	and	public	are
allowed,	but	these	are	invariably	omitted.	An	abstract	method	declaration	has	the
following	simple	form	in	a	top-level	interface:
Click	here	to	view	code	image

return_type	method_name	(formal_parameter_list)	throws_clause;

An	abstract	method	declaration	is	essentially	a	method	header	terminated	by	a	semicolon
(;).	Note	that	an	abstract	method	is	an	instance	method	whose	implementation	will	be
provided	by	a	class	that	implements	the	interface	in	which	the	abstract	method	is	declared.
The	throws	clause	is	discussed	in	§6.9,	p.	251.

The	interface	Playable	shown	next	declares	an	abstract	method	startPlaying().
That	it	is	public	and	abstract	is	implicitly	implied.
Click	here	to	view	code	image

interface	Playable	{
		void	startPlaying();						//	Abstract	method:	no	implementation
}

An	interface	that	has	no	direct	superinterfaces	implicitly	declares	a	public	abstract	method
for	each	public	instance	method	in	the	java.lang.Object	class.

In	contrast	to	the	syntax	of	abstract	methods	in	top-level	interfaces,	abstract	methods	in
top-level	classes	must	be	explicitly	specified	with	the	keyword	abstract,	and	can	have
public,	protected,	and	package	accessibility	(§4.8,	p.	136).

Functional	interfaces,	meaning	interfaces	with	a	single	abstract	method,	are	discussed
together	with	lambda	expressions	in	§10.2,	p.	442.

The	rest	of	this	chapter	provides	numerous	examples	of	using	interfaces.

Implementing	Interfaces
A	class	can	implement,	wholly	or	partially,	zero	or	more	interfaces.	A	class	specifies	the
interfaces	it	implements	as	a	comma-separated	list	of	unique	interface	names	in	an
implements	clause	in	the	class	header.	The	interface	methods	must	all	have	public
accessibility	when	implemented	in	the	class	(or	its	subclasses).	A	class	can	neither	narrow
the	accessibility	of	an	interface	method	nor	specify	new	exceptions	in	the	method’s
throws	clause,	as	attempting	to	do	so	would	amount	to	altering	the	interface’s	contract,
which	is	illegal.	The	criteria	for	overriding	methods	also	apply	when	implementing
abstract	methods	(§7.2,	p.	268).

A	class	can	provide	implementations	of	methods	declared	in	an	interface.	To	reap	the
benefits	of	interfaces,	however,	the	class	must	also	specify	the	interface	name	in	its

implements	clause.

In	Example	7.7,	the	class	StackImpl	implements	the	interface	IStack.	It	both
specifies	the	interface	name	using	the	implements	clause	in	its	class	header	at	(2)	and
provides	the	implementation	for	the	abstract	methods	in	the	interface	at	(3)	and	(4).
Changing	the	public	accessibility	of	these	methods	in	the	class	will	result	in	a	compile-
time	error,	as	this	would	narrow	their	accessibility.

Example	7.7	Implementing	Interfaces
Click	here	to	view	code	image

//	File:	RetailSeller.java
interface	IStack	{																																																//	(1)
		void			push(Object	item);
		Object	pop();
}
//__
class	StackImpl	implements	IStack	{																															//	(2)
		protected	Object[]	stackArray;
		protected	int						tos;		//	top	of	stack

		public	StackImpl(int	capacity)	{
				stackArray	=	new	Object[capacity];
				tos								=	-1;
		}

		@Override
		public	void	push(Object	item)	{	stackArray[++tos]	=	item;	}					//	(3)

		@Override
		public	Object	pop()	{																																											//	(4)
				Object	objRef	=	stackArray[tos];
				stackArray[tos]	=	null;
				tos—;
				return	objRef;
		}

		public	Object	peek()	{	return	stackArray[tos];	}
}
//__
interface	ISafeStack	extends	IStack	{																													//	(5)
		boolean	isEmpty();
		boolean	isFull();
}
//__
class	SafeStackImpl	extends	StackImpl	implements	ISafeStack	{					//	(6)

		public	SafeStackImpl(int	capacity)	{	super(capacity);	}
		@Override	public	boolean	isEmpty()	{	return	tos	<	0;	}																			//
(7)
		@Override	public	boolean	isFull()		{	return	tos	>=	stackArray.length-1;	}//
(8)
}
//__
public	class	StackUser	{

		public	static	void	main(String[]	args)	{																								//	(9)
				SafeStackImpl	safeStackRef		=	new	SafeStackImpl(10);
				StackImpl					stackRef						=	safeStackRef;

				ISafeStack				isafeStackRef	=	safeStackRef;
				IStack								istackRef					=	safeStackRef;
				Object								objRef								=	safeStackRef;

				safeStackRef.push(“Dollars”);																																	//	(10)
				stackRef.push(“Kroner”);
				System.out.println(isafeStackRef.pop());
				System.out.println(istackRef.pop());
				System.out.println(objRef.getClass());
		}
}

Output	from	the	program:
Kroner
Dollars
class	SafeStackImpl

A	class	can	choose	to	implement	only	some	of	the	abstract	methods	of	its	interfaces	(i.e.,
give	a	partial	implementation	of	its	interfaces).	The	class	must	then	be	declared	as
abstract	(§4.6,	p.	120).	Note	that	abstract	methods	cannot	be	declared	as	static,
because	they	comprise	the	contract	fulfilled	by	the	objects	of	the	class	implementing	the
interface.	Abstract	methods	are	always	implemented	as	instance	methods.

The	interfaces	that	a	class	implements	and	the	classes	that	it	extends	(directly	or
indirectly)	are	called	supertypes	of	the	class.	Conversely,	the	class	is	a	subtype	of	its
supertypes.	Classes	implementing	interfaces	introduce	multiple	interface	inheritance	into
their	implementation	inheritance	hierarchy.	Even	so,	regardless	of	how	many	interfaces	a
class	implements	directly	or	indirectly,	it	provides	just	a	single	implementation	of	any
abstract	method	declared	in	multiple	interfaces.

Single	implementation	of	an	abstract	method	is	illustrated	by	the	following	code,	where
the	Worker	class	at	(5)	provides	only	one	implementation	of	the	doIt()	method	that	is
declared	in	both	interfaces,	at	(1)	and	(2).	The	class	Worker	fulfills	the	contract	for	both
interfaces,	as	the	doIt()	method	declarations	at	(1)	and	(2)	have	the	same	method
signature	and	return	type.	However,	the	class	Combined	at	(3)	declares	that	it
implements	the	two	interfaces,	but	does	not	provide	any	implementation	of	the	doIt()
method;	consequently,	it	must	be	declared	as	abstract.
Click	here	to	view	code	image

interface	IA	{	int	doIt();	}																						//	(1)

interface	IB	{	int	doIt();	}																						//	(2)

abstract	class	Combined	implements	IA,	IB	{	}					//	(3)

public	class	Worker	implements	IA,	IB	{											//	(4)
		@Override
		public	int	doIt()	{	return	0;	}																	//	(5)
}

If	the	doIt()	methods	in	the	two	interfaces	at	(1)	and	(2)	had	the	same	signatures	but
different	return	types,	the	Worker	class	would	not	be	able	to	implement	both	interfaces.
This	is	illustrated	by	the	next	code	snippet.	The	doIt()	methods	at	(1)	and	(2)	have	the
same	signature,	but	different	return	types.	The	Worker	class	provides	two

implementations	of	the	doIt()	method	at	(5)	and	(6),	which	results	in	compile-time
errors,	because	a	class	cannot	have	two	methods	with	the	same	signature	but	different
return	types.	Removing	either	implementation	from	the	Worker	class	will	be	flagged	as	a
compile-time	error,	because	the	Worker	class	will	not	be	implementing	both	interfaces.
There	is	no	way	the	Worker	class	can	implement	both	interfaces,	given	the	declarations
shown	in	the	code.	In	addition,	the	abstract	class	Combined	at	(3)	will	not	compile,
because	it	will	be	inheriting	two	methods	with	conflicting	abstract	method	declarations.	In
fact,	the	compiler	complains	of	duplicate	methods.
Click	here	to	view	code	image

interface	IA	{	int	doIt();	}																										//	(1)

interface	IB	{	double	doIt();	}																							//	(2)

abstract	class	Combined	implements	IA,	IB	{	}									//	(3)	Compile-time
error.

public	class	LameWorker	implements	IA,	IB	{											//	(4)
		@Override
		public	int	doIt()	{	return	0;	}																					//	(5)	Compile-time
error.
		@Override
		public	double	doIt()	{																														//	(6)	Compile-time
error.
				System.out.println(“Sorry!”);
				return	=	0.0;
		}
}

Extending	Interfaces
An	interface	can	extend	other	interfaces,	using	the	extends	clause.	Unlike	when
extending	classes,	an	interface	can	extend	several	interfaces.	The	interfaces	extended	by
an	interface	(directly	or	indirectly)	are	called	superinterfaces.	Conversely,	the	interface	is
a	subinterface	of	its	superinterfaces.	Since	interfaces	define	new	reference	types,
superinterfaces	and	subinterfaces	are	also	supertypes	and	subtypes,	respectively.

A	subinterface	inherits	from	its	superinterfaces,	all	members	of	those	superinterfaces,
except	for	the	following:

•	Abstract	or	default	methods	that	it	overrides	(p.	297)

•	Any	static	methods	declared	in	its	superinterfaces	(p.	300)

•	Any	constants	that	it	hides	(p.	302)

Barring	any	conflicts,	a	subinterface	inherits	abstract	and	default	method	declarations	that
are	not	overridden,	as	well	as	constants	that	it	does	not	hide	in	its	superinterfaces.
Abstract,	static,	and	default	method	declarations	can	also	be	overloaded,	analogous	to
method	overloading	in	classes.

Example	7.7	illustrates	the	relationships	between	classes	and	interfaces.	In	Example	7.7,
the	interface	ISafeStack	extends	the	interface	IStack	at	(5).	The	class
SafeStackImpl	both	extends	the	StackImpl	class	and	implements	the

ISafeStack	interface	at	(6).	Both	the	implementation	and	the	interface	inheritance
hierarchies	for	classes	and	interfaces	defined	in	Example	7.7	are	shown	in	Figure	7.3.

Figure	7.3	Inheritance	Hierarchies

In	UML,	an	interface	resembles	a	class.	One	way	to	differentiate	between	them	is	to	use
an	«interface»	stereotype,	as	in	Figure	7.3.	Interface	inheritance	is	depicted	in	a	similar
manner	to	implementation	inheritance,	but	is	indicated	by	an	unbroken	inheritance	arrow.

Thinking	in	terms	of	types,	every	reference	type	in	Java	is	a	subtype	of	the	Object	class.
In	turn,	any	interface	type	is	also	a	subtype	of	the	Object	class,	but	it	does	not	inherit
from	the	Object	class.	An	interface	that	has	no	direct	superinterfaces	implicitly	declares
a	public	abstract	method	for	each	public	instance	method	in	the	Object	class.
These	abstract	method	declarations	are	inherited	by	all	subinterfaces	of	such	an	interface.
Note	that	this	does	not	mean	the	implementation	is	inherited.	The	implicit	public
abstract	method	declarations	in	an	interface	allow	public	instance	methods	in	the
Object	class	to	be	invoked	on	objects	referred	to	by	an	interface	reference.	All	classes
implement	these	methods,	whether	they	are	inherited	or	overridden	from	the	Object
class.	Any	interface	can	also	provide	explicit	public	abstract	method	declarations
for	non-final	public	instance	methods	in	the	Object	class.
Click	here	to	view	code	image

interface	IStack	{																																																//	(1)
		void			push(Object	item);

		Object	pop();
		@Override	boolean	equals(Object	other);								//	public	method	in	Object
class.
		@Override	String	toString();																			//	public	method	in	Object
class.
//@Override	Class	getClass();	//	Compile-time	error!	final	method	in	Object
class.
}

It	is	instructive	to	consider	how	the	class	SafeStackImpl	implements	the	IStack
interface:	It	inherits	the	implementations	of	the	push()	and	pop()	methods	from	its
superclass	StackImpl,	which	itself	implements	the	IStack	interface	in	which	these
two	methods	are	declared.	The	class	SafeStackImpl	also	implements	the	IStack
interface	via	the	ISafeStack	interface.	The	class	SafeStackImpl	provides	its	own
implementation	of	the	isFull()	and	isEmpty()	methods	declared	in	the
ISafeStack	interface,	and	has	inherited	implementations	of	the	push()	and	pop()
methods	whose	declarations	the	ISafeStack	interface	inherits	from	its	superinterface
IStack.	This	is	readily	evident	from	the	diamond	shape	of	the	inheritance	hierarchy	in
Figure	7.3.	Note	that	there	is	only	one	single	implementation	inheritance	into	the	class
SafeStackImpl—from	its	superclass	StackImpl.	Java	does	not	support	multiple
implementation	inheritance.

The	association	between	a	class	and	any	interface	it	implements	is	called	a	realization	in
UML.	In	Figure	7.3,	there	are	three	realizations:	The	class	SafeStackImpl	implements
the	ISafeStack	interface	and	also	implicitly	implements	the	IStack	interface,	and	the
class	StackImpl	implements	the	IStack	interface.

Thus,	three	different	inheritance	relations	are	at	work	when	defining	inheritance	among
classes	and	interfaces:

1.	Single	implementation	inheritance	hierarchy	between	classes:	a	class	extends
another	class	(subclasses–superclasses).

2.	Multiple	inheritance	hierarchy	between	interfaces:	an	interface	extends	other
interfaces	(subinterfaces–superinterfaces).

3.	Multiple	interface	inheritance	hierarchy	between	classes	and	interfaces:	a	class
implements	interfaces	(realization).

Interface	References
Although	interfaces	cannot	be	instantiated,	references	of	an	interface	type	can	be	declared.
The	reference	value	of	an	object	can	be	assigned	to	references	of	the	object’s	supertypes.
In	Example	7.7,	an	object	of	the	class	SafeStackImpl	is	created	in	the	main()
method	of	the	class	StackUser	at	(9).	The	reference	value	of	the	object	is	assigned	to
references	of	all	the	object’s	supertypes,	which	are	used	to	manipulate	the	object.	The
references	are	aliases	to	the	same	SafeStackImpl	object,	but	they	can	only	be	used	to
manipulate	this	object	as	an	object	of	the	reference	type.	For	example,	calling	the	method
isFull()	on	this	object	using	the	stackRef	reference	will	be	flagged	as	a	compile-
time	error,	as	the	class	StackImpl	does	not	provide	such	a	method.	Polymorphic
behavior	of	supertype	references	is	discussed	in	§7.12,	p.	329.

Default	Methods	in	Interfaces
Only	interfaces	can	define	default	methods.	A	default	method	is	an	instance	method
declared	with	the	keyword	default	and	whose	implementation	is	provided	by	the
interface.	However,	a	default	method	in	a	top-level	interface	always	has	public
accessibility,	whether	the	keyword	public	is	specified	or	not.
Click	here	to	view	code	image

default	return_type	method_name	(formal_parameter_list)	throws_clause
				{	implementaion_of_method_body	}

A	class	implementing	an	interface	can	optionally	decide	to	override	any	default	method	in
the	interface.	If	the	class	does	not	override	a	default	method	to	provide	a	new
implementation,	the	default	implementation	provided	by	the	interface	is	inherited	by	the
class.

No	other	non-accessibility	modifiers,	such	as	abstract,	final,	or	static,	are
allowed	in	a	default	method	declaration,	except	the	keyword	strictfp.	A	default
method	is	not	abstract	because	it	provides	an	implementation;	is	not	final	because	it
can	be	overridden;	and	is	not	static	because	it	can	be	invoked	only	on	instances	of	a
class	that	implements	the	interface	in	which	the	default	method	is	declared.

Example	7.8	illustrates	the	use	of	default	methods.	The	default	method
printSlogan()	at	(1)	in	the	interface	ISlogan	is	overridden	at	(2)	in	the	class
JavaGuru,	and	inherited	by	the	class	JavaGeek	at	(3).	The	output	from	the	program
shows	that	this	is	the	case.

Example	7.8	Default	Methods	in	Interfaces
Click	here	to	view	code	image

//	File:	JavaParty.java
interface	ISlogan	{
		default	void	printSlogan()	{																							//	(1)
				System.out.println(“Happiness	is	getting	certified!”);
		}
}
//___
class	JavaGuru	implements	ISlogan	{
		@Override
		public	void	printSlogan()	{																								//	(2)	overrides	(1)
				System.out.println(“Happiness	is	catching	all	the	exceptions!”);
		}
}
//___
class	JavaGeek	implements	ISlogan	{	}																//	(3)	inherits	(1)
//___
public	class	JavaParty	{
		public	static	void	main(String[]	args)	{
				JavaGuru	guru	=	new	JavaGuru();
				guru.printSlogan();																														//	(4)
				JavaGeek	geek	=	new	JavaGeek();
				geek.printSlogan();																														//	(5)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Happiness	is	catching	all	the	exceptions!
Happiness	is	getting	certified!

The	keyword	default	in	the	context	of	a	default	method	should	not	be	confused	with
default	or	package	accessibility	of	a	method	in	a	class,	which	is	implied	in	the	absence	of
any	accessibility	modifier.	The	keyword	default	is	also	used	only	for	default	method
declarations	in	interfaces	that	provide	an	implementation	for	such	methods,	and	not	by
classes	that	override	them.

Overriding	a	default	method	from	an	interface	does	not	necessarily	imply	that	a	new
implementation	is	being	provided.	The	default	method	can	also	be	overridden	by
providing	an	abstract	method	declaration,	as	illustrated	by	the	next	code	snippet.	The
default	method	printSlogan()	at	(1)	in	the	interface	ISlogan	is	overridden	by	an
abstract	method	declaration	at	(2)	and	(3)	in	the	interface	INewSlogan	and	the	abstract
class	JavaMaster,	respectively.	This	strategy	effectively	forces	the	subtypes	of	the
interface	INewSlogan	and	of	the	abstract	class	JavaMaster	to	provide	a	new
concrete	implementation	for	the	method,	as	one	would	expect	for	an	abstract	method.
Click	here	to	view	code	image

interface	ISlogan	{
		default	void	printSlogan()	{									//	(1)	Default	method.
				System.out.println(“Happiness	is	getting	certified!”);
		}
}

interface	INewSlogan	extends	ISlogan	{
		@Override
		abstract	void	printSlogan();									//	(2)	overrides	(1)	with	abstract
method.
}

abstract	class	JavaMaster	implements	ISlogan	{
		@Override
		public	abstract	void	printSlogan();		//	(3)	overrides	(1)	with	abstract
method.
}

Problems	with	multiple	inheritance	can	arise	when	default	methods	are	inherited	from
multiple	interfaces.	Example	7.9	illustrates	one	such	case.	The	default	method
printSlogan()	is	declared	at	(1)	and	(2)	in	the	interfaces	ICheapSlogan	and
IFunny-Slogan,	respectively.	The	two	method	declarations	have	the	same	signature.
The	interface	IAvailableSlogan	at	(3)	tries	to	extend	the	two	interfaces
ICheapSlogan	and	IFunnySlogan.	If	this	was	allowed,	the	interface
IAvailableSlogan	would	inherit	two	implementations	of	methods	that	have	the	same
signature,	which	of	course	is	not	allowed—so	the	compiler	flags	it	as	an	error.	By	the
same	token,	the	compiler	flags	an	error	at	(4),	indicating	that	the	abstract	class
Wholesaler	cannot	inherit	two	methods	with	the	same	signature.

The	way	out	of	this	dilemma	is	to	override	the	conflicting	methods.	The	abstract	class
RetailSeller	that	implements	the	interfaces	ICheapSlogan	and	IFunnySlogan
overrides	the	conflicting	methods	by	providing	an	abstract	method	declaration	of	the
default	method	printSlogan()	at	(5).	Similarly,	the	class	NetSeller	that
implements	the	interfaces	ICheapSlogan	and	IFunnySlogan	overrides	the
conflicting	methods	by	providing	an	implementation	of	the	default	method
printSlogan()	at	(6).

The	upshot	of	this	solution	is	that	clients	of	the	classes	RetailSeller	and
NetSeller	now	have	to	deal	with	the	new	declarations	of	the	printSlogan()
method	provided	by	these	classes.	One	such	client	is	the	class	MutlipleInheritance
at	(10),	which	calls	the	method	printSlogan()	on	an	instance	of	class	NetSeller	at
(11).	Not	surprisingly,	the	program	output	shows	that	the	method	in	the	NetSeller	class
was	executed.

What	if	the	class	NetSeller	wanted	to	invoke	the	default	method	printSlogan()	in
the	interfaces	it	implements?	The	overridden	default	method	can	be	called	by	the
overriding	subtype	(in	this	case,	NetSeller)	using	the	keyword	super	in	conjunction
with	the	fully	qualified	name	of	the	interface	and	the	name	of	the	method,	as	shown	at	(8)
and	(9).	This	syntax	works	for	calling	overridden	default	methods	in	the	direct
superinterface,	but	not	at	any	higher	level	in	the	inheritance	hierarchy.	The	class
NetSeller	can	call	only	default	methods	in	its	direct	superinterfaces	ICheapSlogan
and	IFunnySlogan.	It	would	not	be	possible	for	the	class	NetSeller	to	call	any
default	methods	inherited	by	these	superinterfaces,	even	if	they	had	any.

Example	7.9	Default	Methods	and	Multiple	Inheritance
Click	here	to	view	code	image

//	File:	MultipleInheritance.java
interface	ICheapSlogan	{
		default	void	printSlogan()	{										//	(1)
				System.out.println(“Override,	don’t	overload.”);
		}
}
//___
interface	IFunnySlogan	{
		default	void	printSlogan()	{										//	(2)
				System.out.println(“Catch	exceptions,	not	bugs.”);
		}
}
//___
interface	IAvailableSlogan														//	(3)	Compile-time	error.
										extends	ICheapSlogan,	IFunnySlogan	{	}
//___
abstract	class	Wholesaler															//	(4)	Compile-time	error.
															implements	ICheapSlogan,	IFunnySlogan	{	}
//___
abstract	class	RetailSeller	implements	ICheapSlogan,	IFunnySlogan	{
		@Override																													//	Abstract	method.
		public	abstract	void	printSlogan();			//	(5)	overrides	(1)	and	(2).
}
//___
class	NetSeller	implements	ICheapSlogan,	IFunnySlogan	{
		@Override																													//	Concrete	method.
		public	void	printSlogan()	{											//	(6)	overrides	(1)	and	(2).
				System.out.println(“Think	outside	of	the	class.”);
		}

		public	void	invokeDirect()	{										//	(7)
				ICheapSlogan.super.printSlogan();			//	(8)	calls
ICheapSlogan.printSlogan()
				IFunnySlogan.super.printSlogan();			//	(9)	calls
IFunnySlogan.printSlogan()
		}
}
//___
public	class	MultipleInheritance	{						//	(10)
		public	static	void	main(String[]	args)	{
				NetSeller	seller	=	new	NetSeller();
				seller.printSlogan();															//	(11)
				seller.invokeDirect();
		}
}

Output	from	the	program:
Think	outside	of	the	class.
Override,	don’t	overload.
Catch	exceptions,	not	bugs.

Static	Methods	in	Interfaces
An	interface	can	also	declare	static	methods.	Static	method	declarations	in	a	top-level
interface	are	analogous	to	static	method	declarations	in	a	class	(§4.8,	p.	132).	However,	a
static	method	in	a	top-level	interface	always	has	public	accessibility,	whether	the
keyword	public	is	specified	or	not.	As	with	static	methods	in	a	class,	the	keyword
static	is	mandatory;	otherwise,	the	code	will	not	compile.	Without	the	keyword
static,	the	method	declaration	is	identical	to	that	of	an	instance	method,	but	such
instance	methods	cannot	be	declared	in	an	interface.
Click	here	to	view	code	image

static	return_type	method_name	(formal_parameter_list)	throws_clause
						{	implementaion_of_method_body	}

Static	methods	in	an	interface	differ	from	those	in	a	class	in	one	important	respect:	Static
methods	in	an	interface	cannot	be	inherited,	unlike	static	methods	in	classes.	This
essentially	means	that	such	methods	cannot	be	invoked	directly	by	calling	the	method	in
subinterfaces	or	in	classes	that	extend	or	implement	interfaces	containing	such	methods,
respectively.	A	static	method	can		be	invoked	only	by	using	its	qualified	name—that	is,	the
name	of	the	interface	in	which	it	is	declared—together	with	its	simple	name,	using	the	dot
notation	(.).

Example	7.10	illustrates	the	use	of	static	methods	in	interfaces.	The	static	method
getNumOfCylinders()	at	(1)	is	declared	in	the	IMaxEngineSize	interface.	There
are	two	implementations	of	the	method	getEngineSize(),	at	(2)	and	(3),	in	the
interface	IMaxEngineSize	and	its	subinterface	INewEngineSize,	respectively.	The
class	CarRace	implements	the	subinterface	INewEngineSize.

It	is	not	possible	to	invoke	the	method	getNumOfCylinders()	directly,	as	shown	at
(4).	It	is	also	not	possible	to	invoke	directly	the	method	getEngineSize()	from	either
interface,	as	shown	at	(6).	The	respective	implementations	of	the	static	methods	can	be
invoked	only	by	using	their	qualified	names,	as	shown	at	(5),	(7)	and	(8).	It	does	not
matter	that	a	static	method	is	redeclared	in	a	subinterface;	the	static	method	is	not
inherited.	Each	static	method	declaration	in	Example	7.10	is	a	new	method.

Example	7.10	Static	Methods	in	Interfaces
Click	here	to	view	code	image

//	File:	CarRace.java
import	static	java.lang.System.out;

interface	IMaxEngineSize	{
		static	int	getNumOfCylinders()	{	return	6;	}								//	(1)	Static	method
		static	double	getEngineSize()	{	return	1.6;	}							//	(2)	Static	method
}
//___
interface	INewEngineSize	extends	IMaxEngineSize	{
		static	double	getEngineSize()	{	return	2.4;	}							//	(3)	Static	method
}
//___
public	class	CarRace	implements	INewEngineSize	{
		public	static	void	main(String[]	args)	{
//		out.println(“No.	of	cylinders:	”	+
//															getNumOfCylinders());																//	(4)	Compile-time
error.
				out.println(“No.	of	cylinders:	”	+
								IMaxEngineSize.getNumOfCylinders());										//	(5)
//		out.println(“Engine	size:	”	+	getEngineSize());			//	(6)	Compile-time
error.
				out.println(“Max	engine	size:	”	+	IMaxEngineSize.getEngineSize());	//	(7)
				out.println(“New	engine	size:	”	+	INewEngineSize.getEngineSize());	//	(8)
		}
}

Output	from	the	program:
No.	of	cylinders:	6
Max	engine	size:	1.6
New	engine	size:	2.4

Constants	in	Interfaces
An	interface	can	also	define	named	constants.	Naming	conventions	recommend	using
uppercase	letters	for	their	names,	with	multiple	words	in	the	name	being	separated	by
underscores.	Such	constants	are	defined	by	field	declarations	and	are	considered	to	be
public,	static,	and	final.	These	modifiers	can	be	omitted	from	the	declaration.
Such	a	constant	must	be	initialized	with	an	initializer	expression.

An	interface	constant	can	be	accessed	by	any	client	(a	class	or	interface)	using	its	qualified
name,	regardless	of	whether	the	client	extends	or	implements	its	interface.	However,	if	the
client	is	a	class	that	implements	this	interface	or	is	an	interface	that	extends	this	interface,
then	the	client	can	also	access	such	constants	directly	by	their	simple	names.	Such	a	client
inherits	the	interface	constants.	Typical	usage	of	constants	in	interfaces	is	illustrated	in
Example	7.11,	showing	access	both	by	the	constant’s	simple	name	and	its	qualified	name
in	the	print	statements	at	(1)	and	(2),	respectively.

Example	7.11	Constants	in	Interfaces
Click	here	to	view	code	image

//	File:	Client.java
interface	Constants	{
		double	PI_APPROXIMATION	=	3.14;
		String	AREA_UNITS							=	“sq.cm.”;
		String	LENGTH_UNITS					=	“cm.”;
}
//__
public	class	Client	implements	Constants	{
		public	static	void	main(String[]	args)	{
				double	radius	=	1.5;

				//	(1)	Using	simple	name:
				System.out.printf(“Area	of	circle	is	%.2f	%s%n”,
															PI_APPROXIMATION	*	radius*radius,	AREA_UNITS);

				//	(2)	Using	qualified	name:
				System.out.printf(“Circumference	of	circle	is	%.2f	%s%n”,
													2.0	*	Constants.PI_APPROXIMATION	*	radius,
Constants.LENGTH_UNITS);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Area	of	circle	is	7.06	sq.cm.
Circumference	of	circle	is	9.42	cm.

Extending	an	interface	that	has	constants	is	analogous	to	extending	a	class	having	static
variables.	This	is	illustrated	by	Figure	7.4	and	Example	7.12.	Note	the	diamond	shape	of
the	inheritance	hierarchy,	indicating	the	presence	of	multiple	inheritance	paths	through
which	constants	can	be	inherited.	The	constants	IDLE	and	BUSY	at	(1)	and	(2)	in	the
interface	IBaseStates	are	inherited	by	the	subinterface	IAllStates	via	both	the
interface	IExtStatesA	and	the	interface	IExtStatesB.	In	such	cases,	the	constant	is
considered	to	be	inherited	only	once,	and	can	be	accessed	by	its	simple	name,	as	shown	at
(12)	in	Example	7.12.

Figure	7.4	Inheritance	Relationships	for	Interface	Constants

Constants	can	be	hidden	by	the	subinterfaces.	The	declaration	of	the	constant	BLOCKED	at
(6)	in	the	interface	IAllStates	hides	the	declaration	of	the	constant	at	(2)	in	the
interface	IBaseStates.	The	new	declaration	can	be	accessed	by	its	simple	name	in	a
class	implementing	the	interface	IAllStates,	as	shown	at	(10)	in	Example	7.12.	The
hidden	constant	declaration	can	always	be	accessed	by	using	its	qualified	name	as	shown
at	(11)	in	Example	7.12.

In	the	case	of	multiple	inheritance	of	interface	constants,	any	name	conflicts	can	be
resolved	by	using	the	qualified	name	to	access	the	constants.	This	is	illustrated	by	the
constant	DISMANTLED,	which	is	declared	in	both	the	IExtStatesA	and
IExtStatesB	interfaces.	Both	declarations	are	inherited	by	the	subinterface
IAllStates.	Such	declarations	are	said	to	be	ambiguous.	The	compiler	will	report	an
error	only	if	such	constants	are	accessed	by	their	simple	names,	as	shown	at	(7)	and	(8)	for
the	constant	DISMANTLE.	Only	the	qualified	name	can	be	used	to	disambiguate	such
constants	and	resolve	the	conflict,	as	shown	at	(7a)	and	(8a)	for	the	constant
DISMANTLE.

When	defining	a	set	of	related	constants,	the	recommended	practice	is	to	use	an
enumerated	type,	rather	than	named	constants	in	an	interface.

Example	7.12	Inheriting	Constants	in	Interfaces
Click	here	to	view	code	image

//	File:	Factory.java
interface	IBaseStates	{
		String	IDLE	=	“idle”;																															//	(1)
		String	BUSY	=	“busy”;																															//	(2)
		String	BLOCKED	=	“blocked”;																									//	(3)
}
//___
interface	IExtStatesA	extends	IBaseStates	{
		String	DISMANTLED	=	“dismantled”;																			//	(4)
}
//___
interface	IExtStatesB	extends	IBaseStates	{
		String	DISMANTLED	=	“kaput”;																								//	(5)
}
//___
interface	IAllStates	extends	IExtStatesB,	IExtStatesA	{
		String	BLOCKED	=	“out	of	order”;																				//	(6)	hides	(3)
//String	ABSOLETE	=	BLOCKED	+	“,	”	+
//																		DISMANTLED	+	”	and	scrapped.”;				//	(7)	Ambiguous
		String	ABSOLETE	=	BLOCKED	+	“,	”	+
									IExtStatesB.DISMANTLED	+	”	and	scrapped”;				//	(7a)
}
//___
public	class	Factory	implements	IAllStates	{
		public	static	void	main(String[]	args)	{
//		System.out.println(“Machine	A	is	”	+	DISMANTLED);												//	(8)
Ambiguous.
				System.out.println(“Machine	A	is	”	+	IExtStatesB.DISMANTLED);//	(8a)
				System.out.println(“Machine	B	is	”	+	ABSOLETE);			//
(9)		IAllStates.ABSOLETE
				System.out.println(“Machine	C	is	”	+	BLOCKED);				//	(10)
IAllStates.BLOCKED
				System.out.println(“Machine	D	is	”	+	IBaseStates.BLOCKED);	//	(11)
				System.out.println(“Machine	E	is	”	+	BUSY);							//	(12)	Simple	name
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Machine	A	is	kaput
Machine	B	is	out	of	order,	kaput	and	scrapped
Machine	C	is	out	of	order
Machine	D	is	blocked
Machine	E	is	busy

	Review	Questions

7.11	Which	of	the	following	statements	about	interfaces	are	true?

Select	the	two	correct	answers.

(a)	Interfaces	allow	multiple	implementation	inheritance.

(b)	Interfaces	can	be	extended	by	any	number	of	interfaces.

(c)	Interfaces	can	extend	any	number	of	interfaces.

(d)	Members	of	an	interface	are	never	static.

(e)	Members	of	an	interface	can	always	be	declared	static.

7.12	Which	modifiers	can	methods	declared	in	a	top-level	interface	specify?

Select	the	four	correct	answers.

(a)	public

(b)	protected

(c)	private

(d)	default

(e)	abstract

(f)	static

(g)	final

7.13	Which	modifiers	are	implicitly	implied	for	interface	variables?

Select	the	three	correct	answers.

(a)	public

(b)	protected

(c)	private

(d)	default

(e)	abstract

(f)	static

(g)	final

7.14	How	many	errors	will	the	compiler	report	for	the	following	code?
Click	here	to	view	code	image

public	interface	Vehicle	{
		final	static	int	NUMBER_OF_HEADLIGHTS;		//	(1)
		void	increaseSpeed(int	increment)	{					//	(2)
				System.out.println(“Increasing	speed	by	”	+	increment);
		}
		static	void	reduceSpeed(int	decrement);	//	(3)

		final	default	void	stop()	{													//	(4)
				System.out.println(“Slamming	the	brakes!”);
		}
}

Select	the	one	correct	answer.

(a)	No	errors

(b)	1	error

(c)	2	errors

(d)	3	errors

(e)	More	than	3	errors

7.15	Which	method	calls	can	be	inserted	at	both	(1)	and	(2),	so	that	the	following	code
will	still	compile?

Click	here	to	view	code	image
//	File:	Company.java
interface	ISlogan	{
		String	SLOGAN	=	“Happiness	shared	is	happiness	doubled!”;
		default	void	printSlogan()	{	System.out.println(SLOGAN);	}
}
//__
public	class	Company	implements	ISlogan	{
		public	static	void	main(String[]	args)	{
				Company	co	=	new	Company();
				ISlogan	sl	=	co;
				//	(1)	INSERT	THE	METHOD	CALL	HERE.
		}

		public	void	testSlogan()	{
				Company	co	=	new	Company();
				ISlogan	sl	=	co;
				//	(2)	INSERT	THE	METHOD	CALL	HERE.
		}
}

Select	the	two	correct	answers.

(a)	printSlogan();

(b)	co.printSlogan();

(c)	sl.printSlogan();

(d)	Company.printSlogan();

(e)	ISlogan.printSlogan();

7.16	Which	method	call	can	be	inserted	at	both	(1)	and	(2),	so	that	the	following	code
will	still	compile?

Click	here	to	view	code	image
//	File:	Firm.java
interface	INewSlogan	{
		String	SLOGAN	=	“Trouble	shared	is	trouble	halved!”;
		static	void	printSlogan()	{	System.out.println(SLOGAN);	}
}
//__
public	class	Firm	implements	INewSlogan	{
		public	static	void	main(String[]	args)	{
				Firm	co	=	new	Firm();
				INewSlogan	sl	=	co;
				//	(1)	INSERT	THE	STATEMENT	EXPRESSION	HERE.
		}

		void	testSlogan()	{
				Firm	co	=	new	Firm();

				INewSlogan	sl	=	co;
				//	(2)	INSERT	THE	STATEMENT	EXPRESSION	HERE.
		}
}

Select	the	one	correct	answer.

(a)	printSlogan();

(b)	co.printSlogan();

(c)	sl.printSlogan();

(d)	Firm.printSlogan();

(e)	INewSlogan.printSlogan();

7.17	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

//	File:	RaceA.java
interface	IJogger	{
		default	boolean	justDoIt(String	msg)	{	return	false;	}		//	(1)
		static		boolean	justDoIt(int	i)						{	return	true;	}			//	(2)
}

class	Athlete	implements	IJogger	{
		public	boolean	justDoIt(String	msg)		{	return	true;	}			//	(3)
		public	boolean	justDoIt(int	i)							{	return	false;	}		//	(4)
}

public	class	RaceA	{
		public	static	void	main(String[]	args)	{
				Athlete	athlete	=	new	Athlete();
				IJogger	jogger	=	athlete;
				System.out.print(jogger.justDoIt(“Run”));													//	(5)
				System.out.println(“|”	+	athlete.justDoIt(10));							//	(6)
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	true|true

(c)	true|false

(d)	false|true

(e)	false|false

7.18	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

//	File:	HouseC
interface	ISwitch	{
		default	boolean	isOn()	{	return	false;	}		//	(1)
}

class	Light	implements	ISwitch	{
		boolean	isOn()	{	return	true;	}											//	(2)

}

public	class	HouseC	{
		public	static	void	main(String[]	args)	{
				ISwitch	lightswitch	=	new	Light();
				System.out.println(lightswitch.isOn());
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	compile,	and	print	true	when	run.

(c)	The	program	will	compile,	and	print	false	when	run.

(d)	The	program	will	compile,	and	throw	an	exception	when	run.

7.19	Which	of	these	field	declarations	are	legal	within	the	body	of	an	interface?

Select	the	three	correct	answers.

(a)	public	static	int	ANSWER	=	42;

(b)	int	ANSWER;

(c)	static	final	int	ANSWER	=	42;

(d)	public	int	ANSWER	=	42;

(e)	private	static	final	int	ANSWER	=	42;

7.20	Which	statements	about	the	keywords	extends	and	implements	are	true?

Select	the	two	correct	answers.

(a)	The	keyword	extends	is	used	to	specify	that	an	interface	inherits	from
another	interface.

(b)	The	keyword	extends	is	used	to	specify	that	a	class	implements	an	interface.

(c)	The	keyword	implements	is	used	to	specify	that	an	interface	inherits	from
another	interface.

(d)	The	keyword	implements	is	used	to	specify	that	a	class	inherits	from	an
interface.

(e)	The	keyword	implements	is	used	to	specify	that	a	class	inherits	from	another
class.

7.21	Which	statement	is	true	about	the	following	code?
Click	here	to	view	code	image

//	File:	MyClass.java
abstract	class	MyClass	implements	Interface1,	Interface2	{
		public	void	f()	{	}
		public	void	g()	{	}
}

interface	Interface1	{

		int	VAL_A	=	1;
		int	VAL_B	=	2;

		void	f();
		void	g();
}

interface	Interface2	{
		int	VAL_B	=	3;
		int	VAL_C	=	4;

		void	g();
		void	h();
}

Select	the	one	correct	answer.

(a)	MyClass	implements	only	Interface1;	the	implementation	for	void
h()	from	Interface2	is	missing.

(b)	The	declarations	of	void	g()	in	the	two	interfaces	are	in	conflict,	so	the	code
will	not	compile.

(c)	The	declarations	of	int	VAL_B	in	the	two	interfaces	are	in	conflict,	so	the
code	will	not	compile.

(d)	Nothing	is	wrong	with	the	code;	it	will	compile	without	errors.

7.22	Which	declaration	can	be	inserted	at	(1)	without	resulting	in	a	compile-time	error?
interface	MyConstants	{
		int	R	=	42;
		int	S	=	69;
		//	(1)	INSERT	CODE	HERE
}

Select	the	two	correct	answers.

(a)	final	double	CIRCUMFERENCE	=	2	*	Math.PI	*	R;

(b)	int	TOTAL	=	TOTAL	+	R	+	S;

(c)	int	AREA	=	R	*	S;

(d)	public	static	MAIN	=	15;

(e)	protected	int	CODE	=	13082009;

7.7	Arrays	and	Subtyping
Table	7.3	summarizes	the	types	found	in	Java.	Only	primitive	data	and	reference	values
can	be	stored	in	variables.	Only	class	and	array	types	can	be	explicitly	instantiated	to
create	objects.

Table	7.3	Types	and	Values

Arrays	and	Subtype	Covariance
Arrays	are	objects	in	Java.	Array	types	(boolean[],	Object[],	StackImpl[])
implicitly	augment	the	inheritance	hierarchy.	The	inheritance	hierarchy	depicted	in	Figure
7.3,	for	example,	can	be	augmented	by	the	corresponding	array	types		to	produce	the	type
hierarchy	shown	in	Figure	7.5.	An	array	type	is	shown	as	a	“class”	with	the	[]	notation
appended	to	the	name	of	the	element	type.	The	class	SafeStackImpl	is	a	subclass	of
the	class	StackImpl.	The	corresponding	array	types,	SafeStackImpl[]	and
StackImpl[],	are	shown	as	the	subtype	and	the	supertype,	respectively,	in	the	type
hierarchy.	Figure	7.5	also	shows	array	types	corresponding	to	some	of	the	primitive	data
types.

Figure	7.5	Reference	Type	Hierarchy:	Arrays	and	Subtype	Covariance

From	the	type	hierarchy	in	Figure	7.5,	the	following	facts	are	apparent:

•	All	reference	types	are	subtypes	of	the	Object	type.	This	applies	to	classes,
interfaces,	enums,	and	array	types,	as	these	are	all	reference	types.

•	All	arrays	of	reference	types	are	also	subtypes	of	the	array	type	Object[],	but
arrays	of	primitive	data	types	are	not.	Note	that	the	array	type	Object[]	is	also	a
subtype	of	the	Object	type.

•	If	a	non-generic	reference	type	is	a	subtype	of	another	non-generic	reference	type,

the	corresponding	array	types	also	have	an	analogous	subtype–supertype
relationship.	This	is	called	the	subtype	covariance	relationship.

•	There	is	no	subtype–supertype	relationship	between	a	type	and	its	corresponding
array	type.

We	can	create	an	array	of	an	interface	type,	but	we	cannot	instantiate	an	interface	(as	is	the
case	with	abstract	classes).	In	the	following	declaration	statement,	the	reference
iSafeStackArray	has	type	ISafeStack[]	(i.e.,	an	array	of	the	interface	type
ISafeStack):
Click	here	to	view	code	image

ISafeStack[]	iSafeStackArray	=	new	ISafeStack[5];

The	array	creation	expression	creates	an	array	whose	element	type	is	ISafeStack.	The
array	object	can	accommodate	five	references	of	the	type	ISafeStack.	The	declaration
statement	does	not	initialize	these	references	to	refer	to	any	objects;	instead,	they	are
initialized	to	the	default	value	null.

Array	Store	Check
An	array	reference	exhibits	polymorphic	behavior	like	any	other	reference,	subject	to	its
location	in	the	type	hierarchy	(§7.12,	p.	329).	However,	a	runtime	check	is	necessary
when	objects	are	inserted	in	an	array,	as	the	next	example	illustrates.

The	following	assignment	is	valid,	as	a	supertype	reference	(StackImpl[])	can	refer	to
objects	of	its	subtype	(SafeStackImpl[]):
Click	here	to	view	code	image

StackImpl[]	stackImplArray	=	new	SafeStackImpl[2];						//	(1)

Since	StackImpl	is	a	supertype	of	SafeStackImpl,	the	following	assignment	is	also
valid:
Click	here	to	view	code	image

stackImplArray[0]	=	new	SafeStackImpl(10);														//	(2)

The	assignment	at	(2)	assigns	the	reference	value	of	a	new	SafeStackImpl	object	to
the	reference	at	index	0	in	the	SafeStackImpl[]	object	(i.e.,	the	array	of
SafeStackImpl)	created	at	(1).

Since	the	type	of	stackImplArray[i],	(0	≤	i	<	2),	is	StackImpl,	it	should	be
possible	to	make	the	following	assignment	as	well:
Click	here	to	view	code	image

stackImplArray[1]	=	new	StackImpl(20);																		//	(3)
ArrayStoreException

At	compile	time	there	are	no	problems,	as	the	compiler	cannot	deduce	that	the	array
variable	stackImplArray	will	actually	denote	a	SafeStackImpl[]	object	at
runtime.	However,	the	assignment	at	(3)	results	in	an	ArrayStoreException	being
thrown	at	runtime,	because	an	array	of	SafeStackImpl	objects	cannot	possibly	contain
objects	of	its	supertype	StackImpl.

The	array	store	check	at	runtime	ensures	that	an	object	being	stored	in	the	array	is
assignment	compatible	(p.	314)	with	the	element	type	of	the	array.	To	make	the	array	store
check	feasible	at	runtime,	the	array	retains	information	about	its	declared	element	type	at
runtime.

7.8	Reference	Values	and	Conversions
A	review	of	conversions	(§5.1,	p.	144)	is	recommended	before	proceeding	with	this
section.

Reference	values,	like	primitive	values,	can	be	assigned,	cast,	and	passed	as	arguments.
Conversions	can	occur	in	the	following	contexts:

•	Assignment

•	Method	invocation

•	Casting

The	rule	of	thumb	for	the	primitive	data	types	is	that	widening	conversions	are	permitted,
but	narrowing	conversions	require	an	explicit	cast.	The	rule	of	thumb	for	reference	values
is	that	widening	conversions	up	the	type	hierarchy	are	permitted,	but	narrowing
conversions	down	the	hierarchy	require	an	explicit	cast.	In	other	words,	conversions	that
are	from	a	subtype	to	its	supertypes	are	allowed,	but	other	conversions	require	an	explicit
cast	or	are	otherwise	illegal.	There	is	no	notion	of	promotion	for	reference	values.

7.9	Reference	Value	Assignment	Conversions
In	the	context	of	assignments,	the	following	conversions	are	permitted	(Table	5.1,	p.	147):

•	Widening	primitive	and	reference	conversions	(long	←	int,	Object	←
String)

•	Boxing	conversion	of	primitive	values,	followed	by	optional	widening	reference
conversion	(Integer	←	int,	Number	←	Integer	←	int)

•	Unboxing	conversion	of	a	primitive	value	wrapper	object,	followed	by	optional
widening	primitive	conversion	(long	←	int	←	Integer)

For	assignment	conversions	only,	the	following	conversions	are	also	possible:

•	Narrowing	conversion	for	constant	expressions	of	non-long	integer	types,	with
optional	boxing	(Byte	←	byte	←	int)

Note	that	these	rules	imply	that	a	widening	conversion	cannot	be	followed	by	any	boxing
conversion,	but	the	converse	is	permitted.

Widening	reference	conversions	typically	occur	during	assignment	up	the	type	hierarchy,
with	implicit	conversion	of	the	source	reference	value	to	that	of	the	destination	reference
type:
Click	here	to	view	code	image

Object	obj	=	“Up	the	tree”;				//	Widening	reference	conversion:	Object	<—
String
String	str1	=	obj;							//	Not	OK.	Narrowing	reference	conversion	requires	a

cast.
String	str2	=	new	Integer(10);	//	Illegal.	No	relation	between	String	and
Integer.

The	source	value	can	be	a	primitive	value,	in	which	case	the	value	is	boxed	in	a	wrapper
object	corresponding	to	the	primitive	type.	If	the	destination	reference	type	is	a	supertype
of	the	wrapper	type,	a	widening	reference	conversion	can	occur:
Click	here	to	view	code	image

Integer	iRef	=	10;		//	Only	boxing
Number	num	=	10L;			//	Boxing,	followed	by	widening:	Number	<–	Long	<–	long
Object	obj	=	100;			//	Boxing,	followed	by	widening:	Object	<–	Integer	<–	int

More	examples	of	boxing	during	assignment	can	be	found	in	§5.1,	p.	145.

Example	7.13	Assigning	and	Passing	Reference	Values
Click	here	to	view	code	image

interface	IStack																						{	/*	From	Example	7.7	*/	}
interface	ISafeStack	extends	IStack			{	/*	From	Example	7.7	*/	}
class	StackImpl	implements	IStack					{	/*	From	Example	7.7	*/	}
class	SafeStackImpl	extends	StackImpl
														implements	ISafeStack			{	/*	From	Example	7.7	*/	}

public	class	ReferenceConversion	{

		public	static	void	main(String[]	args)	{
				//	Reference	declarations:
				Object								objRef;
				StackImpl					stackRef;
				SafeStackImpl	safeStackRef;
				IStack								iStackRef;
				ISafeStack				iSafeStackRef;

				//	SourceType	is	a	class	type:
				safeStackRef		=	new	SafeStackImpl(10);
				objRef								=	safeStackRef;				//	(1)	Always	possible
				stackRef						=	safeStackRef;				//	(2)	Subclass	to	superclass	assignment
				iStackRef					=	stackRef;								//	(3)	StackImpl	implements	IStack
				iSafeStackRef	=	safeStackRef;				//	(4)	SafeStackImpl	implements
ISafeStack

				//	SourceType	is	an	interface	type:
				objRef				=	iStackRef;											//	(5)	Always	possible
				iStackRef	=	iSafeStackRef;							//	(6)	Sub-	to	super-interface
assignment

				//	SourceType	is	an	array	type:
				Object[]								objArray								=	new	Object[3];
				StackImpl[]					stackArray						=	new	StackImpl[3];
				SafeStackImpl[]	safeStackArray		=	new	SafeStackImpl[5];
				ISafeStack[]				iSafeStackArray	=	new	ISafeStack[5];
				int[]											intArray								=	new	int[10];

				//	Reference	value	assignments:
				objRef					=	objArray;											//	(7)	Always	possible
				objRef					=	stackArray;									//	(8)	Always	possible
				objArray			=	stackArray;									//	(9)	Always	possible
				objArray			=	iSafeStackArray;				//	(10)	Always	possible
				objRef					=	intArray;											//	(11)	Always	possible
				//		objArray			=	intArray;							//	(12)	Compile-time	error:

																																					//						int[]	not	subtype	of	Object[]
				stackArray	=	safeStackArray;					//	(13)	Subclass	array	to	superclass
array
				iSafeStackArray	=	safeStackArray;//	(14)	SafeStackImpl	implements
ISafeStack

				//	Method	invocation	conversions:
				System.out.println(“First	call:”);
				sendParams(stackRef,	safeStackRef,	iStackRef,
															safeStackArray,	iSafeStackArray);																				//	(15)
				//		Call	Signature:	sendParams(StackImpl,	SafeStackImpl,	IStack,
				//																													SafeStackImpl[],	ISafeStack[]);

				System.out.println(“Second	call:”);
				sendParams(iSafeStackArray,	stackRef,	iSafeStackRef,
															stackArray,	safeStackArray);																									//	(16)
				//		Call	Signature:	sendParams(ISafeStack[],	StackImpl,	ISafeStack,
				//																													StackImpl[],	SafeStackImpl[]);
		}

		public	static	void	sendParams(Object	objRefParam,	StackImpl	stackRefParam,
						IStack	iStackRefParam,	StackImpl[]	stackArrayParam,
						IStack[]	iStackArrayParam)	{																																		//	(17)
				//		Signature:	sendParams(Object,	StackImpl,	IStack,	StackImpl[],
IStack[])
				//		Print	class	name	of	object	denoted	by	the	reference	at	runtime.
				System.out.println(objRefParam.getClass());
				System.out.println(stackRefParam.getClass());
				System.out.println(iStackRefParam.getClass());
				System.out.println(stackArrayParam.getClass());
				System.out.println(iStackArrayParam.getClass());
		}
}

Output	from	the	program:
First	call:
class	SafeStackImpl
class	SafeStackImpl
class	SafeStackImpl
class	[LSafeStackImpl;
class	[LSafeStackImpl;
Second	call:
class	[LSafeStackImpl;
class	SafeStackImpl
class	SafeStackImpl
class	[LSafeStackImpl;
class	[LSafeStackImpl;

The	rules	for	reference	value	assignment	are	stated	in	this	section,	based	on	the	following
code:
Click	here	to	view	code	image

SourceType	srcRef;
//	srcRef	is	appropriately	initialized.
DestinationType	destRef	=	srcRef;

If	an	assignment	is	legal,	the	reference	value	of	srcRef	is	said	to	be	assignable	(or
assignment	compatible)	to	the	reference	of	DestinationType.	The	rules	are	illustrated
by	concrete	cases	from	Example	7.13.	Note	that	the	code	in	Example	7.13	uses	reference
types	from	Example	7.7,	p.	292.

•	If	the	SourceType	is	a	class	type,	the	reference	value	in	srcRef	may	be	assigned
to	the	destRef	reference,	provided	the	DestinationType	is	one	of	the
following:

	DestinationType	is	a	superclass	of	the	subclass	SourceType.

	DestinationType	is	an	interface	type	that	is	implemented	by	the	class
SourceType.

Click	here	to	view	code	image
objRef								=	safeStackRef;				//	(1)	Always	possible
stackRef						=	safeStackRef;				//	(2)	Subclass	to	superclass	assignment
iStackRef					=	stackRef;								//	(3)	StackImpl	implements	IStack
iSafeStackRef	=	safeStackRef;				//	(4)	SafeStackImpl	implements
ISafeStack

•	If	the	SourceType	is	an	interface	type,	the	reference	value	in	srcRef	may	be
assigned	to	the	destRef	reference,	provided	the	DestinationType	is	one	of
the	following:

	DestinationType	is	the	Object	class.

	DestinationType	is	a	superinterface	of	the	subinterface	SourceType.
Click	here	to	view	code	image

objRef				=	iStackRef;					//	(5)	Always	possible
iStackRef	=	iSafeStackRef;	//	(6)	Subinterface	to	superinterface
assignment

•	If	the	SourceType	is	an	array	type,	the	reference	value	in	srcRef	may	be
assigned	to	the	destRef	reference,	provided	the	DestinationType	is	one	of
the	following:

	DestinationType	is	the	Object	class.

	DestinationType	is	an	array	type,	where	the	element	type	of	the
SourceType	is	assignable	to	the	element	type	of	the	DestinationType.

Click	here	to	view	code	image
objRef					=	objArray;											//	(7)	Always	possible
objRef					=	stackArray;									//	(8)	Always	possible
objArray			=	stackArray;									//	(9)	Always	possible
objArray			=	iSafeStackArray;				//	(10)	Always	possible
objRef					=	intArray;											//	(11)	Always	possible
//	objArray			=	intArray;								//	(12)	Compile-time	error:
																																	//						int[]	not	subtype	of	Object[]
stackArray	=	safeStackArray;					//	(13)	Subclass	array	to	superclass
array
iSafeStackArray	=	safeStackArray;//	(14)	SafeStackImpl	implements
ISafeStack

The	rules	for	assignment	are	enforced	at	compile	time,	guaranteeing	that	no	type
conversion	error	will	occur	during	assignment	at	runtime.	Such	conversions	are	type-safe.
The	reason	the	rules	can	be	enforced	at	compile	time	is	that	they	concern	the	declared	type
of	the	reference	(which	is	always	known	at	compile	time)	rather	than	the	actual	type	of	the
object	being	referenced	(which	is	known	at	runtime).

7.10	Method	Invocation	Conversions	Involving	References
The	conversions	for	reference	value	assignment	are	also	applicable	to	method	invocation
conversions,	except	for	the	narrowing	conversion	for	constant	expressions	of	non-long
integer	type	(Table	5.1,	p.	147).	This	is	reasonable,	as	parameters	in	Java	are	passed	by
value	(§3.5,	p.	72),	requiring	that	values	of	the	actual	parameters	must	be	assignable	to
formal	parameters	of	the	compatible	types.

In	Example	7.13,	the	method	sendParams()	at	(17)	has	the	following	signature,
showing	the	types	of	the	formal	parameters:
Click	here	to	view	code	image

sendParams(Object,	StackImpl,	IStack,	StackImpl[],	IStack[])

The	method	call	at	(15)	has	the	following	signature,	showing	the	types	of	the	actual
parameters:
Click	here	to	view	code	image

sendParams(StackImpl,	SafeStackImpl,	IStack,	SafeStackImpl[],	ISafeStack[]);

Note	that	the	assignment	of	the	values	of	the	actual	parameters	to	the	corresponding
formal	parameters	is	legal,	according	to	the	rules	for	assignment	discussed	earlier.	The
method	call	at	(16)	provides	another	example	of	the	parameter	passing	conversion.	It	has
the	following	signature:
Click	here	to	view	code	image

sendParams(ISafeStack[],	StackImpl,	ISafeStack,	StackImpl[],
SafeStackImpl[]);

Analogous	to	assignment,	the	rules	for	parameter	passing	conversions	are	based	on	the
reference	type	of	the	parameters	and	are	enforced	at	compile	time.	The	output	in	Example
7.13	shows	the	class	of	the	actual	objects	referenced	by	the	formal	parameters	at	runtime,
which	in	this	case	turns	out	to	be	either	SafeStackImpl	or	SafeStackImpl[].	The
characters	[L	in	the	output	indicate	a	one-dimensional	array	of	a	class	or	interface	type
(see	the	Class.getName()	method	in	the	Java	SE	platform	API	documentation).

Overloaded	Method	Resolution
In	this	subsection,	we	take	a	look	at	some	aspects	regarding	overloaded	method	resolution
—namely,	how	the	compiler	determines	which	overloaded	method	will	be	invoked	by	a
given	method	call	at	runtime.

Resolution	of	overloaded	methods	selects	the	most	specific	method	for	execution.	One
method	is	considered	more	specific	than	another	method	if	all	actual	parameters	that	can
be	accepted	by	the	one	method	can	be	accepted	by	the	other	method.	If	more	than	one
such	method	is	present,	the	call	is	described	as	ambiguous.	The	following	overloaded
methods	illustrate	this	situation:
Click	here	to	view	code	image

private	static	void	flipFlop(String	str,	int	i,	Integer	iRef)	{	//	(1)
				out.println(str	+	”	==>	(String,	int,	Integer)”);
}
private	static	void	flipFlop(String	str,	int	i,	int	j)	{								//	(2)
				out.println(str	+	”	==>	(String,	int,	int)”);

}

Their	method	signatures	follow:
Click	here	to	view	code	image

flipFlop(String,	int,	Integer)																													//	See	(1)
flipFlop(String,	int,	int)																																	//	See	(2)

The	following	method	call	is	ambiguous:
Click	here	to	view	code	image

flipFlop(“(String,	Integer,	int)”,	new	Integer(4),	2004);		//	(3)	Ambiguous
call

	It	has	the	call	signature:
Click	here	to	view	code	image

flipFlop(String,	Integer,	int)																													//	See	(3)

The	method	at	(1)	can	be	called	with	the	second	argument	unboxed	and	the	third	argument
boxed,	as	can	the	method	at	(2)	with	only	the	second	argument	unboxed.	In	other	words,
for	the	call	at	(3),	none	of	the	methods	is	more	specific	than	the	others.

Example	7.14	illustrates	a	simple	case	of	how	method	resolution	is	done	to	choose	the
most	specific	overloaded	method.	The	method	testIfOn()	is	overloaded	at	(1)	and	(2)
in	the	class	Overload.	The	call	client.testIfOn(tubeLight)	at	(3)	satisfies
the	parameter	lists	in	both	implementations	given	at	(1)	and	(2),	as	the	reference
tubeLight	can	also	be	assigned	to	a	reference	of	its	superclass	Light.	The	most
specific	method,	(2),	is	chosen,	resulting	in	false	being	written	on	the	terminal.	The	call
client.testIfOn(light)	at	(4)	satisfies	only	the	parameter	list	in	the
implementation	given	at	(1),	resulting	in	true	being	written	on	the	terminal.	This	is	also
the	case	at	(5).	The	object	referred	to	by	the	argument	in	the	call	is	irrelevant;	rather,	it	is
the	type	of	the	argument	that	is	important	for	overloaded	method	resolution.

Example	7.14	Choosing	the	Most	Specific	Method	(Simple	Case)
Click	here	to	view	code	image

class	Light	{	/*	…	*/	}

class	TubeLight	extends	Light	{	/*	…	*/	}

public	class	Overload	{
		boolean	testIfOn(Light	aLight)									{	return	true;	}				//	(1)
		boolean	testIfOn(TubeLight	aTubeLight)	{	return	false;	}			//	(2)

		public	static	void	main(String[]	args)	{

				TubeLight	tubeLight	=	new	TubeLight();
				Light					light					=	new	Light();
				Light					light2				=	new	TubeLight();

				Overload	client	=	new	Overload();
				System.out.println(client.testIfOn(tubeLight));	//	(3)	==>	method	at	(2)
				System.out.println(client.testIfOn(light));					//	(4)	==>	method	at	(1)
				System.out.println(client.testIfOn(light2));				//	(5)	==>	method	at	(2)
		}
}

Output	from	the	program:
false
true
true

The	algorithm	used	by	the	compiler	for	the	resolution	of	overloaded	methods	incorporates
the	following	phases:

1.	The	compiler	performs	overload	resolution	without	permitting	boxing,	unboxing,	or
the	use	of	a	variable	arity	call.

2.	If	phase	(1)	fails,	the	compiler	performs	overload	resolution	allowing	boxing	and
unboxing,	but	excluding	the	use	of	a	variable	arity	call.

3.	If	phase	(2)	fails,	the	compiler	performs	overload	resolution	combining	a	variable
arity	call,	boxing,	and	unboxing.

Example	7.15	provides	some	insight	into	how	the	compiler	determines	the	most	specific
overloaded	method	using	these	three	phases.	The	example	has	six	overloaded	declarations
of	the	method	action().	The	signature	of	each	method	is	given	by	the	local	variable
signature	in	each	method.	The	first	formal	parameter	of	each	method	is	the	signature
of	the	call	that	invoked	the	method.	The	printout	from	each	method	allows	us	to	see	which
method	call	resolved	to	which	method.	The	main()	method	contains	10	calls,	(8)	to	(17),
of	the	action()	method.	In	each	call,	the	first	argument	is	the	signature	of	that	method
call.

An	important	point	to	note	is	that	the	compiler	chooses	a	fixed	arity	call	over	a	variable
arity	call,	as	seen	in	the	calls	from	(8)	to	(12):

An	unboxing	conversion	(Integer	to	int)	takes	place	for	the	call	at	(10).	A	widening
primitive	conversion	(byte	to	int)	takes	place	for	the	call	at	(11).

Variable	arity	calls	are	chosen	from	(13)	to	(17):

When	a	variable	arity	call	is	chosen,	the	method	determined	has	the	most	specific	variable
arity	parameter	that	is	applicable	for	the	actual	argument.	For	example,	in	the	method	call
at	(14),	the	type	Integer[]	is	more	specific	than	either	Number[]	or	Object[].
Note	also	the	boxing	of	the	elements	of	the	implicitly	created	array	in	the	calls	from	(13)
to	(17).

Example	7.15	Overloaded	Method	Resolution
Click	here	to	view	code	image

import	static	java.lang.System.out;

class	OverloadResolution	{

		public	void	action(String	str)	{																		//	(1)
				String	signature	=	“(String)”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	void	action(String	str,	int	m)	{											//	(2)
				String	signature	=	“(String,	int)”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	void	action(String	str,	int	m,	int	n)	{				//	(3)
				String	signature	=	“(String,	int,	int)”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	void	action(String	str,	Integer…	data)	{	//	(4)
				String	signature	=	“(String,	Integer[])”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	void	action(String	str,	Number…	data)	{		//	(5)
				String	signature	=	“(String,	Number[])”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	void	action(String	str,	Object…	data)	{		//	(6)

				String	signature	=	“(String,	Object[])”;
				out.println(str	+	”	=>	”	+	signature);
		}

		public	static	void	main(String[]	args)	{
				OverloadResolution	ref	=	new	OverloadResolution();
				ref.action(“(String)”);																																		//	(8)		calls
(1)
				ref.action(“(String,	int)”,											10);															//	(9)		calls
(2)
				ref.action(“(String,	Integer)”,							new	Integer(10));		//	(10)	calls
(2)
				ref.action(“(String,	int,	byte)”,					10,	(byte)20);					//	(11)	calls
(3)
				ref.action(“(String,	int,	int)”,						10,		20);										//	(12)	calls
(3)
				ref.action(“(String,	int,	long)”,					10,		20L);									//	(13)	calls
(5)
				ref.action(“(String,	int,	int,	int)”,	10,		20,		30);					//	(14)	calls
(4)
				ref.action(“(String,	int,	double)”,			10,		20.0);								//	(15)	calls
(5)
				ref.action(“(String,	int,	String)”,			10,		“what?”);					//	(16)	calls
(6)
				ref.action(“(String,	boolean)”,							false);												//	(17)	calls
(6)
		}
}

Output	from	the	program	(with	remarks	to	the	output	on	the	right):
Click	here	to	view	code	image

(String)	=>	(String)																															(8)	calls	(1)
(String,	int)	=>	(String,	int)																					(9)	calls	(2)
(String,	Integer)	=>	(String,	int)																	(10)	calls	(2)
(String,	int,	byte)	=>	(String,	int,	int)										(11)	calls	(3)
(String,	int,	int)	=>	(String,	int,	int)											(12)	calls	(3)
(String,	int,	long)	=>	(String,	Number[])										(13)	calls	(5)
(String,	int,	int,	int)	=>	(String,	Integer[])					(14)	calls	(4)
(String,	int,	double)	=>	(String,	Number[])								(15)	calls	(5)
(String,	int,	String)	=>	(String,	Object[])								(16)	calls	(6)
(String,	boolean)	=>	(String,	Object[])												(17)	calls	(6)

7.11	Reference	Casting	and	the	 	Operator

The	Cast	Operator
The	type	cast	expression	for	reference	types	has	the	following	syntax:
Click	here	to	view	code	image

	(destination_type)	reference_expression

where	the	reference	expression	evaluates	to	a	reference	value	of	an	object	of	some
reference	type.	A	type	cast	expression	checks	that	the	reference	value	refers	to	an	object
whose	type	is	compatible	with	the	destination	type,	meaning	that	its	type	is	a	subtype	of
the	destination	type.	The	construct	(destination_type)	is	usually	called	the	cast	operator.
The	result	of	a	type	cast	expression	for	references	is	always	a	reference	value	of	an	object.

The	literal	null	can	be	cast	to	any	reference	type.

The	next	code	snippet	illustrates	the	various	scenarios	that	arise	when	using	the	cast
operator.	In	this	discussion,	it	is	the	type	cast	expression	that	is	important,	not	the
evaluation	of	the	assignment	operator	in	the	declaration	statements.	In	(1),	the	cast	is	from
the	superclass	Object	to	the	subclass	String;	the	code	compiles	and	at	runtime	this
cast	is	permitted,	as	the	reference	obj	will	denote	an	object	of	class	String.	In	(2),	the
cast	is	from	the	superclass	Object	to	the	subclass	Integer;	the	code	compiles,	but	at
runtime	this	cast	results	in	a	ClassCastException,	since	the	reference	obj	will
denote	an	object	of	class	String,	which	cannot	be	converted	to	an	Integer.	In	(3),	the
cast	is	from	the	class	String	to	the	class	Integer.	As	these	two	classes	are	unrelated,
the	compiler	flags	an	error	for	the	cast.
Click	here	to	view	code	image

Object		obj	=	new	String(“Cast	me!”);
String		str	=	(String)	obj;									//	(1)	Cast	from	Object	to	String.
Integer	iRef1	=	(Integer)	obj;						//	(2)	Cast	from	Object	to	Integer,	but
																																				//					ClassCastException	at	runtime.
Integer	iRef2	=	(Integer)	str;						//	(3)	Compile-time	error!
																																				//					Cast	between	unrelated	types.

The	following	conversions	can	be	applied	to	the	operand	of	a	cast	operator:

•	Both	widening	and	narrowing	reference	conversions,	followed	optionally	by	an
unchecked	conversion

•	Both	boxing	and	unboxing	conversions

Boxing	and	unboxing	conversions	that	can	occur	during	casting	are	illustrated	by	the
following	code.	Again,	it	is	the	type	cast	expression	that	is	important	in	this	discussion,
rather	than	whether	the	assignment	operator	requires	one	in	the	declaration	statements.
Click	here	to	view	code	image

//	(1)	Boxing	and	casting:	Number	<—	Integer	<—	int:
Number	num	=	(Number)	100;
//	(2)	Casting,	boxing,	casting:	Object	<—	Integer	<—	int	<—	double:
Object	obj	=	(Object)	(int)	10.5;
//	(3)	Casting,	unboxing,	casting:	double	<–	int	<—	Integer	<—	Object:
double	d	=	(double)	(Integer)	obj;

Note	that	the	resulting	object	in	(1)	and	(2)	is	an	Integer,	but	the	resulting	value	in	(3)
is	a	double.	The	boxing	conversions	from	int	to	Integer	in	(1)	and	(2)	are	implicit,
and	the	unboxing	conversion	from	Integer	to	int	in	(3)	is	also	implicit.

The	 	Operator
The	binary	instanceof	operator	can	be	used	for	comparing	types.	It	has	the	following
syntax	(note	that	the	keyword	is	composed	of	lowercase	letters	only):
Click	here	to	view	code	image

reference_expression	instanceof	destination_type

The	instanceof	operator	returns	true	if	the	left-hand	operand	(i.e.,	the	reference
value	that	results	from	the	evaluation	of	reference	expression)	can	be	a	subtype	of	the

right-hand	operand	(destination_type).	It	always	returns	false	if	the	left-hand	operand	is
null.	If	the	instanceof	operator	returns	true,	the	corresponding	type	cast
expression	will	always	be	valid.	Both	the	type	cast	expression	and	the	instanceof
operators	require	a	compile-time	check	and	a	runtime	check,	as	explained	later	in	this
section.

The	compile-time	check	determines	whether	there	is	a	subtype–supertype	relationship
between	the	source	and	destination	types.	Given	that	the	type	of	the	reference	expression
is	source	type,	the	compiler	determines	whether	a	reference	of	source	type	and	a	reference
of	destination	type	can	refer	to	objects	of	a	reference	type	that	are	a	common	subtype	of
both	source	type	and	destination	type	in	the	type	hierarchy.	If	this	is	not	the	case,	then
obviously	there	is	no	relationship	between	the	types,	and	neither	the	cast	nor	the
instanceof	operator	application	would	be	valid.	At	runtime,	the	reference	expression
evaluates	to	a	reference	value	of	an	object.	It	is	the	type	of	the	actual	object	that
determines	the	outcome	of	the	operation,	as	explained	earlier.

With	the	classes	Light	and	String	as	source	type	and	destination	type,	respectively,
there	is	no	subtype–supertype	relationship	between	source	type	and	destination	type.	The
compiler	would	reject	casting	a	reference	of	type	Light	to	type	String	or	applying	the
instanceof	operator,	as	shown	at	(2)	and	(3)	in	Example	7.16.	References	of	the
classes	Light	and	TubeLight	can	refer	to	objects	of	the	class	TubeLight	(or	its
subclasses)	in	the	inheritance	hierarchy	depicted	in	Figure	7.1.	Therefore,	it	makes	sense
to	apply	the	instanceof	operator	or	cast	a	reference	of	the	type	Light	to	the	type
TubeLight	as	shown	at	(4)	and	(5),	respectively,	in	Example	7.16.

At	runtime,	the	result	of	applying	the	instanceof	operator	at	(4)	is	false,	because
the	reference	light1	of	the	class	Light	will	actually	denote	an	object	of	the	subclass
LightBulb,	and	this	object	cannot	be	denoted	by	a	reference	of	the	peer	class
TubeLight.	Applying	the	cast	at	(5)	results	in	a	ClassCastException	for	the	same
reason.	This	is	the	reason	why	cast	conversions	are	said	to	be	unsafe,	as	they	may	throw	a
ClassCastException	at	runtime.	Note	that	if	the	result	of	the	instanceof
operator	is	false,	the	cast	involving	the	operands	will	throw	a
ClassCastException.

In	Example	7.16,	the	result	of	applying	the	instanceof	operator	at	(6)	is	also	false,
because	the	reference	light1	will	still	denote	an	object	of	the	class	LightBulb,	whose
objects	cannot	be	denoted	by	a	reference	of	its	subclass	SpotLightBulb.	Thus
applying	the	cast	at	(7)	causes	a	ClassCastException	to	be	thrown	at	runtime.

The	situation	shown	at	(8),	(9),	and	(10)	illustrates	typical	usage	of	the	instanceof
operator	to	determine	which	object	a	reference	is	denoting,	so	that	it	can	be	cast	for	the
purpose	of	carrying	out	some	specific	action.	The	reference	light1	of	the	class	Light
is	initialized	to	an	object	of	the	subclass	NeonLight	at	(8).	The	result	of	the
instanceof	operator	at	(9)	is	true,	because	the	reference	light1	will	denote	an
object	of	the	subclass	NeonLight,	whose	objects	can	also	be	denoted	by	a	reference	of
its	superclass	TubeLight.	By	the	same	token,	the	cast	at	(10)	is	valid.	If	the	result	of	the

instanceof	operator	is	true,	the	cast	involving	the	operands	will	be	valid	as	well.

Example	7.16	The	instanceof	and	Cast	Operators
Click	here	to	view	code	image

//	See	Figure	7.1,	p.	267,	for	inheritance	hierarchy.
class	Light	{	/*	…	*/	}
class	LightBulb	extends	Light	{	/*	…	*/	}
class	SpotLightBulb	extends	LightBulb	{	/*	…	*/	}
class	TubeLight	extends	Light	{	/*	…	*/	}
class	NeonLight	extends	TubeLight	{	/*	…	*/	}

public	class	WhoAmI	{
		public	static	void	main(String[]	args)	{
				boolean	result1,	result2,	result3;
				Light	light1	=	new	LightBulb();																				//	(1)
				//		String	str	=	(String)	light1;																		//	(2)	Compile-time
error!
				//		result1	=	light1	instanceof	String;												//	(3)	Compile-time
error!

				result2	=	light1	instanceof	TubeLight;													//	(4)	false:	peer
class.
				//		TubeLight	tubeLight1	=	(TubeLight)	light1;					//	(5)
ClassCastException!

				result3	=	light1	instanceof	SpotLightBulb;									//	(6)	false:
superclass.
				//		SpotLightBulb	spotRef	=	(SpotLightBulb)	light1;//	(7)
ClassCastException!

				light1	=	new	NeonLight();																										//	(8)
				if	(light1	instanceof	TubeLight)	{																	//	(9)	true.
						TubeLight	tubeLight2	=	(TubeLight)	light1;							//	(10)	OK.
						//	Can	now	use	tubeLight2	to	access	an	object	of	the	class	NeonLight,
						//	but	only	those	members	that	the	object	inherits	or	overrides
						//	from	the	class	TubeLight.
				}
		}
}

As	we	have	seen,	the	instanceof	operator	effectively	determines	whether	the	reference
value	in	the	reference	on	the	left-hand	side	refers	to	an	object	whose	class	is	a	subtype	of
the	type	of	the	reference	specified	on	the	right-hand	side.	At	runtime,	it	is	the	type	of	the
actual	object	denoted	by	the	reference	on	the	left-hand	side	that	is	compared	with	the	type
specified	on	the	right-hand	side.	In	other	words,	what	matters	at	runtime	is	the	type	of	the
actual	object	denoted	by	the	reference,	not	the	declared	type	of	the	reference.

Example	7.17	provides	more	examples	of	the	instanceof	operator.	It	is	instructive	to
go	through	the	print	statements	and	understand	why	those	results	printed	out.	The	literal
null	is	not	an	instance	of	any	reference	type,	as	shown	in	the	print	statements	at	(1),	(2),
and	(16).	An	instance	of	a	superclass	is	not	an	instance	of	its	subclass,	as	shown	in	the
print	statement	at	(4).	An	instance	of	a	class	is	not	an	instance	of	a	totally	unrelated	class,
as	shown	in	the	print	statement	at	(10).	An	instance	of	a	class	is	not	an	instance	of	an
interface	type	that	the	class	does	not	implement,	as	shown	in	the	print	statement	at	(6).
Any	array	of	non-primitive	type	is	an	instance	of	both	Object	and	Object[]	types,	as

shown	in	the	print	statements	at	(14)	and	(15),	respectively.

Example	7.17	Using	the	instanceof	Operator
Click	here	to	view	code	image

//	See	Figure	7.3,	p.	295,	for	inheritance	hierarchy.
interface	IStack																						{	/*	From	Example	7.7	*/	}
interface	ISafeStack	extends	IStack			{	/*	From	Example	7.7	*/	}
class	StackImpl	implements	IStack					{	/*	From	Example	7.7	*/	}
class	SafeStackImpl	extends	StackImpl
														implements	ISafeStack			{	/*	From	Example	7.7	*/	}

public	class	Identification	{
		public	static	void	main(String[]	args)	{
				Object	obj	=	new	Object();
				StackImpl	stack	=	new	StackImpl(10);
				SafeStackImpl	safeStack	=	new	SafeStackImpl(5);
				IStack	iStack;

				String	strFormat	=	“(%d)		%-25s	instance	of	%-25s:	%s%n”;
				System.out.printf(strFormat,	1,
								null,	Object.class,
								null	instanceof	Object);						//	Always	false.
				System.out.printf(strFormat,	2,
								null,	IStack.class,
								null	instanceof	IStack);						//	Always	false.

				System.out.printf(strFormat,	3,
								stack.getClass(),	Object.class,
								stack	instanceof	Object);					//	true:	instance	of	subclass	of
Object.
				System.out.printf(strFormat,	4,
								obj.getClass(),	StackImpl.class,
								obj	instanceof	StackImpl);				//	false:	Object	not	subtype	of
StackImpl.
				System.out.printf(strFormat,	5,
								stack.getClass(),	StackImpl.class,
								stack	instanceof	StackImpl);		//	true:	instance	of	StackImpl.
				System.out.printf(strFormat,	6,
								obj.getClass(),	IStack.class,
								obj	instanceof	IStack);							//	false:	Object	does	not	implement
IStack.
				System.out.printf(strFormat,	7,
								safeStack.getClass(),	IStack.class,
								safeStack	instanceof	IStack);	//	true:	SafeStackImpl	implements
IStack.

				obj	=	stack;											//	No	cast	required:	assigning	subclass	to
superclass.
				System.out.printf(strFormat,	8,
								obj.getClass(),	StackImpl.class,
								obj	instanceof	StackImpl);				//	true:	instance	of	StackImpl.
				System.out.printf(strFormat,	9,
								obj.getClass(),	IStack.class,
								obj	instanceof	IStack);							//	true:	StackImpl	implements	IStack.
				System.out.printf(strFormat,	10,
								obj.getClass(),	String.class,
								obj	instanceof	String);							//	false:	no	relationship.

				iStack	=	(IStack)	obj;	//	Cast	required:	assigning	superclass	to

subclass.
				System.out.printf(strFormat,	11,
								iStack.getClass(),	Object.class,
								iStack	instanceof	Object);				//	true:	instance	of	subclass	of
Object.
				System.out.printf(strFormat,	12,
								iStack.getClass(),	StackImpl.class,
								iStack	instanceof	StackImpl);	//	true:	instance	of	StackImpl.

				String[]	strArray	=	new	String[10];
//		System.out.printf(strFormat,	13,
//						strArray.getClass(),	String.class,
//						strArray	instanceof	String);					//	Compile-time	error:	no
relationship.
				System.out.printf(strFormat,	14,
								strArray.getClass(),	Object.class,
								strArray	instanceof	Object);					//	true:	array	subclass	of	Object.
				System.out.printf(strFormat,	15,
								strArray.getClass(),	Object[].class,
								strArray	instanceof	Object[]);			//	true:	array	subclass	of	Object[].
				System.out.printf(strFormat,	16,
								strArray[0],	Object.class,
								strArray[0]	instanceof	Object);		//	false:	strArray[0]	is	null.
				System.out.printf(strFormat,	17,
								strArray.getClass(),	String[].class,
								strArray	instanceof	String[]);			//	true:	array	of	String.

				strArray[0]	=	“Amoeba	strip”;
				System.out.printf(strFormat,	18,
								strArray[0].getClass(),	String.class,
								strArray[0]	instanceof	String);		//	true:	strArray[0]	instance	of
String.
		}
}

Output	from	the	program:
Click	here	to	view	code	image

(1)		null																						instance	of	class	java.lang.Object			:	false
(2)		null																						instance	of	interface	IStack									:	false
(3)		class	StackImpl											instance	of	class	java.lang.Object			:	true
(4)		class	java.lang.Object				instance	of	class	StackImpl										:	false
(5)		class	StackImpl											instance	of	class	StackImpl										:	true
(6)		class	java.lang.Object				instance	of	interface	IStack									:	false
(7)		class	SafeStackImpl							instance	of	interface	IStack									:	true
(8)		class	StackImpl											instance	of	class	StackImpl										:	true
(9)		class	StackImpl											instance	of	interface	IStack									:	true
(10)		class	StackImpl											instance	of	class	java.lang.String			:	false
(11)		class	StackImpl											instance	of	class	java.lang.Object			:	true
(12)		class	StackImpl											instance	of	class	StackImpl										:	true
(14)		class	[Ljava.lang.String;	instance	of	class	java.lang.Object			:	true
(15)		class	[Ljava.lang.String;	instance	of	class	[Ljava.lang.Object;:	true
(16)		null																						instance	of	class	java.lang.Object			:	false
(17)		class	[Ljava.lang.String;	instance	of	class	[Ljava.lang.String;:	true
(18)		class	java.lang.String				instance	of	class	java.lang.String			:	true

	Review	Questions

7.23	Which	statement	about	the	following	program	is	true?

Click	here	to	view	code	image
public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				A[]	arrA;
				B[]	arrB;

				arrA	=	new	A[10];
				arrB	=	new	B[20];
				arrA	=	arrB;							//	(1)
				arrB	=	(B[])	arrA;	//	(2)
				arrA	=	new	A[10];
				arrB	=	(B[])	arrA;	//	(3)
		}
}

class	A	{}

class	B	extends	A	{}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile	because	of	the	assignment	at	(1).

(b)	When	run,	the	program	will	throw	a	java.lang.ClassCastException
in	the	assignment	at	(2).

(c)	When	run,	the	program	will	throw	a	java.lang.ClassCastException
in	the	assignment	at	(3).

(d)	The	program	will	compile	and	run	without	errors,	even	if	the	cast	operator
(B[])	in	the	statements	at	(2)	and	(3)	is	removed.

(e)	The	program	will	compile	and	run	without	errors,	but	will	not	do	so	if	the	cast
operator	(B[])	in	statements	at	(2)	and	(3)	is	removed.

7.24	Which	statements	will	cause	a	compile-time	error	in	the	following	code?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				MyClass	a;
				MySubclass	b;

				a	=	new	MyClass();													//	(1)
				b	=	new	MySubclass();										//	(2)

				a	=	b;																									//	(3)
				b	=	a;																									//	(4)

				a	=	new	MySubclass();										//	(5)
				b	=	new	MyClass();													//	(6)
		}
}

class	MySubclass	extends	MyClass	{}

Select	the	two	correct	answers.

(a)	(1)

(b)	(2)

(c)	(3)

(d)	(4)

(e)	(5)

(f)	(6)

7.25	Given	the	following	type	and	reference	declarations,	which	assignment	is	legal?
Click	here	to	view	code	image

//	Type	declarations:
interface	I1	{}
interface	I2	{}
class	C1	implements	I1	{}
class	C2	implements	I2	{}
class	C3	extends	C1	implements	I2	{}

//	Reference	declarations:
		C1	obj1	=	null;
		C2	obj2	=	null;
		C3	obj3	=	null;

Select	the	one	correct	answer.

(a)	obj2	=	obj1;

(b)	obj3	=	obj1;

(c)	obj3	=	obj2;

(d)	I1	a	=	obj2;

(e)	I1	b	=	obj3;

(f)	I2	c	=	obj1;

7.26	Given	the	following	class	and	reference	declarations,	what	can	be	said	about	the
statement	y	=	(Sub)	x?
//	Class	declarations:
class	Super	{}
class	Sub	extends	Super	{}

//	Reference	declarations:
		Super	x	=	null;
		Sub	y	=	null;

Select	the	one	correct	answer.

(a)	It	is	illegal	at	compile	time.

(b)	It	is	legal	at	compile	time,	but	might	be	illegal	at	runtime.

(c)	It	is	definitely	legal	at	runtime,	but	the	cast	operator	(Sub)	is	not	strictly
needed.

(d)	It	is	definitely	legal	at	runtime,	and	the	cast	operator	(Sub)	is	needed.

7.27	Given	three	classes	A,	B,	and	C,	where	B	is	a	subclass	of	A,	and	C	is	a	subclass	of
B,	which	one	of	these	boolean	expressions	is	true	only	when	the	reference	o

refers	to	an	object	of	class	B,	and	not	to	an	object	of	class	A	or	class	C?

Select	the	one	correct	answer.

(a)	(o	instanceof	B)	&&	(!(o	instanceof	A))

(b)	(o	instanceof	B)	&&	(!(o	instanceof	C))

(c)	!((o	instanceof	A)	||	(o	instanceof	B))

(d)	(o	instanceof	B)

(e)	(o	instanceof	B)	&&	!((o	instanceof	A)	||	(o
instanceof	C))

7.28	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	RQ07A100	{
		public	static	void	main(String[]	args)	{
				I	x	=	new	D();
				if	(x	instanceof	I)	System.out.print(“I”);
				if	(x	instanceof	J)	System.out.print(“J”);
				if	(x	instanceof	C)	System.out.print(“C”);
				if	(x	instanceof	D)	System.out.print(“D”);
				System.out.println();
		}
}
interface	I{}
interface	J{}
class	C	implements	I	{}
class	D	extends	C	implements	J	{}

Select	the	one	correct	answer.

(a)	The	program	will	not	print	any	letters.

(b)	ICD

(c)	IJD

(d)	IJCD

(e)	ID

7.29	What	is	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

class	YingYang	{
		void	yingyang(Integer	i)	{
				System.out.println(“Integer:	”	+	i);
		}

		void	yingyang(Integer[]	ints)	{
				System.out.println(“Integer[]:	”	+	ints[0]);
		}

		void	yingyang(Integer…	ints)	{
				System.out.println(“Integer…:	”	+	ints[0]);
		}
}

public	class	RQ800A50	{
		public	static	void	main(String[]	args)	{
				YingYang	yy	=	new	YingYang();
				yy.yingyang(10);
				yy.yingyang(10,12);
				yy.yingyang(new	Integer[]	{10,	20});
				yy.yingyang(new	Integer(10),	new	Integer(20));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile	because	of	errors.

(b)	The	program	will	compile,	but	throw	an	exception	at	runtime.

(c)	The	program	will	compile	and	print:
Integer:	10
Integer…:	10
Integer…:	10
Integer…:	10

(d)	The	program	will	compile	and	print:
Integer:	10
Integer…:	10
Integer[]:	10
Integer…:	10

7.30	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	RQ800A20	{
		static	void	compute(int…	ia)	{																													//	(1)
				System.out.print(“|”);
				for(int	i	:	ia)	{
						System.out.print(i	+	“|”);
				}
				System.out.println();
		}
		static	void	compute(int[]	ia1,	int…	ia2)	{																	//	(2)
				compute(ia1);
				compute(ia2);
		}
		static	void	compute(int[]	ia1,	int[]…	ia2d)	{															//	(3)
				for(int[]	ia	:	ia2d)	{
						compute(ia);
				}
		}
		public	static	void	main(String[]	args)	{
				compute(new	int[]	{10,	11},	new	int[]	{12,	13,	14});							//	(4)
				compute(15,	16);																																											//	(5)
				compute(new	int[]	{17,	18},	new	int[][]	{{19},	{20}});					//	(6)
				compute(null,	new	int[][]	{{21},	{22}});																			//	(7)
		}
}

Select	the	one	correct	answer.

(a)	The	program	does	not	compile	because	of	errors	in	one	or	more	calls	to	the
compute()	method.

(b)	The	program	compiles,	but	throws	a	NullPointerException	when	run.

(c)	The	program	compiles	and	prints:
10	11	
12	13	14
15	16	
19		
20		
21		
22		

(d)	The	program	compiles	and	prints:
12	13	14
15	16	
10	11	
19		
20		
21		
22		

7.12	Polymorphism	and	Dynamic	Method	Lookup
Which	object	a	reference	will	actually	denote	during	runtime	cannot	always	be	determined
at	compile	time.	Polymorphism	allows	a	reference	to	denote	objects	of	different	types	at
different	times	during	execution.	A	supertype	reference	exhibits	polymorphic	behavior
since	it	can	denote	objects	of	its	subtypes.

When	a	non-private	instance	method	is	invoked	on	an	object,	the	method	definition
actually	executed	is	determined	both	by	the	type	of	the	object	at	runtime	and	by	the
method	signature.	Dynamic	method	lookup	(also	known	as	late	binding,	dynamic	binding,
and	virtual	method	invocation)	is	the	process	of	determining	which	method	definition	a
method	signature	denotes	during	runtime,	based	on	the	type	of	the	object.	However,	a	call
to	a	private	instance	method	is	not	polymorphic.	Such	a	call	can	occur	only	within	the
class	and	gets	bound	to	the	private	method	implementation	at	compile	time.

The	inheritance	hierarchy	depicted	in	Figure	7.6	is	implemented	in	Example	7.18.	The
implementation	of	the	method	draw()	is	overridden	in	all	subclasses	of	the	class
Shape.	The	invocation	of	the	draw()	method	in	the	two	loops	at	(3)	and	(4)	in	Example
7.18	relies	on	the	polymorphic	behavior	of	references	and	dynamic	method	lookup.	The
array	shapes	holds	Shape	references	denoting	a	Circle,	a	Rectangle,	and	a
Square,	as	shown	at	(1).	At	runtime,	dynamic	lookup	determines	the	draw()
implementation	that	will	execute,	based	on	the	type	of	the	object	denoted	by	each	element
in	the	array.	This	is	also	the	case	for	the	elements	of	the	array	drawables	at	(2),	which
holds	IDrawable	references	that	can	be	assigned	the	reference	value	of	any	object	of	a
class	that	implements	the	IDrawable	interface.	The	first	loop	will	still	work	without	any
change	if	objects	of	new	subclasses	of	the	class	Shape	are	added	to	the	array	shapes.	If
they	did	not	override	the	draw()	method,	an	inherited	version	of	the	method	would	be
executed.	This	polymorphic	behavior	applies	to	the	array	drawables,	where	the	subtype
objects	are	guaranteed	to	have	implemented	the	IDrawable	interface.

Figure	7.6	Type	Hierarchy	That	Illustrates	Polymorphism

Polymorphism	and	dynamic	method	lookup	form	a	powerful	programming	paradigm	that
simplifies	client	definitions,	encourages	object	decoupling,	and	supports	dynamically
changing	relationships	between	objects	at	runtime.

Example	7.18	Polymorphism	and	Dynamic	Method	Lookup
Click	here	to	view	code	image

//	File:	PolymorphRefs.java
interface	IDrawable	{
		void	draw();
}
//___
class	Shape	implements	IDrawable	{
		@Override	public	void	draw()	{	System.out.println(“Drawing	a	Shape.”);	}
}
//___
class	Circle	extends	Shape	{
		@Override	public	void	draw()	{	System.out.println(“Drawing	a	Circle.”);	}
}
//___
class	Rectangle	extends	Shape	{
		@Override	public	void	draw()	{	System.out.println(“Drawing	a	Rectangle.”);
}
}
//___
class	Square	extends	Rectangle	{
		@Override	public	void	draw()	{	System.out.println(“Drawing	a	Square.”);	}
}
//___
class	Graph	implements	IDrawable	{
		@Override	public	void	draw()	{	System.out.println(“Drawing	a	Graph.”);	}
}
//___
public	class	PolymorphRefs	{
		public	static	void	main(String[]	args)	{
				Shape[]	shapes	=	{new	Circle(),	new	Rectangle(),	new	Square()};							//
(1)
				IDrawable[]	drawables	=	{new	Shape(),	new	Rectangle(),	new	Graph()};		//
(2)

				System.out.println(“Draw	shapes:”);
				for	(Shape	shape	:	shapes)																																												//
(3)
						shape.draw();

				System.out.println(“Draw	drawables:”);
				for	(IDrawable	drawable	:	drawables)																																		//
(4)
						drawable.draw();
		}
}

Output	from	the	program:
Draw	shapes:
Drawing	a	Circle.
Drawing	a	Rectangle.
Drawing	a	Square.
Draw	drawables:
Drawing	a	Shape.
Drawing	a	Rectangle.
Drawing	a	Graph.

7.13	Inheritance	versus	Aggregation
Figure	7.7	is	a	UML	class	diagram	showing	several	aggregation	relationships	and	one
inheritance	relationship.	This	class	diagram	shows	a	queue	defined	by	aggregation	and	a
stack	defined	by	inheritance,	both	of	which	are	based	on	linked	lists.	A	linked	list,	in	turn,
is	defined	by	aggregation.	Example	7.19	shows	a	non-generic	implementation	of	these
data	structures.	The	purpose	of	the	example	is	to	illustrate	inheritance	and	aggregation,	not
industrial-strength	implementation	of	queues	and	stacks.	The	class	Node	at	(1)	is
straightforward,	defining	two	fields:	one	denoting	the	data	and	the	other	denoting	the	next
node	in	the	list.	The	class	LinkedList	at	(2)	keeps	track	of	the	list	by	managing	head
and	tail	references.	Nodes	can	be	inserted	in	the	front	or	back,	but	deleted	only	from	the
front	of	the	list.

Figure	7.7	Implementing	Data	Structures	by	Inheritance	and	Aggregation

Example	7.19	Implementing	Data	Structures	by	Inheritance	and	Aggregation
Click	here	to	view	code	image

class	Node	{																																																			//	(1)
		private	Object	data;				//	Data
		private	Node			next;				//	Next	node

		//	Constructor	for	initializing	data	and	reference	to	the	next	node.
		Node(Object	data,	Node	next)	{
				this.data	=	data;
				this.next	=	next;
		}

		//	Methods:
		public	void			setData(Object	obj)	{	data	=	obj;	}
		public	Object	getData()											{	return	data;	}
		public	void			setNext(Node	node)		{	next	=	node;	}
		public	Node			getNext()											{	return	next;	}
}
//__
class	LinkedList	{																																													//	(2)
		protected	Node	head	=	null;
		protected	Node	tail	=	null;

		//	Methods:
		public	boolean	isEmpty()	{	return	head	==	null;	}
		public	void	insertInFront(Object	dataObj)	{
				if	(isEmpty())	head	=	tail	=	new	Node(dataObj,	null);

				else	head	=	new	Node(dataObj,	head);
		}
		public	void	insertAtBack(Object	dataObj)	{
				if	(isEmpty())
						head	=	tail	=	new	Node(dataObj,	null);
				else	{
						tail.setNext(new	Node(dataObj,	null));
						tail	=	tail.getNext();
				}
		}
		public	Object	deleteFromFront()	{
				if	(isEmpty())	return	null;
				Node	removed	=	head;
				if	(head	==	tail)	head	=	tail	=	null;
				else	head	=	head.getNext();
				return	removed.getData();
		}
}
//__
class	QueueByAggregation	{																																					//	(3)
		private	LinkedList	qList;

		//	Constructor
		QueueByAggregation()	{
				qList	=	new	LinkedList();
		}

		//	Methods:
		public	boolean	isEmpty()	{	return	qList.isEmpty();	}
		public	void	enqueue(Object	item)	{	qList.insertAtBack(item);	}
		public	Object	dequeue()	{
				if	(qList.isEmpty())	return	null;
				return	qList.deleteFromFront();
		}
		public	Object	peek()	{
				return	(qList.isEmpty()	?	null	:	qList.head.getData());
		}
}
//__
class	StackByInheritance	extends	LinkedList	{																		//	(4)
		public	void	push(Object	item)	{	insertInFront(item);	}
		public	Object	pop()	{
				if	(isEmpty())	return	null;
				return	deleteFromFront();
		}
		public	Object	peek()	{
				return	(isEmpty()	?	null	:	head.getData());
		}
}
//__
public	class	Client	{																																											//	(5)
		public	static	void	main(String[]	args)	{
				String	string1	=	“Queues	are	boring	to	stand	in!”;
				int	length1	=	string1.length();
				QueueByAggregation	queue	=	new	QueueByAggregation();
				for	(int	i	=	0;	i<length1;	i++)
						queue.enqueue(new	Character(string1.charAt(i)));
				while	(!queue.isEmpty())
						System.out.print(queue.dequeue());
				System.out.println();

				String	string2	=	“!no	tis	ot	nuf	era	skcatS”;

				int	length2	=	string2.length();
				StackByInheritance	stack	=	new	StackByInheritance();
				for	(int	i	=	0;	i<length2;	i++)
						stack.push(new	Character(string2.charAt(i)));
				stack.insertAtBack(new	Character(‘!’));																					//	(6)
				while	(!stack.isEmpty())
						System.out.print(stack.pop());
				System.out.println();
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Queues	are	boring	to	stand	in!
Stacks	are	fun	to	sit	on!!

Choosing	between	inheritance	and	aggregation	to	model	relationships	can	be	a	crucial
design	decision.	A	good	design	strategy	advocates	that	inheritance	should	be	used	only	if
the	relationship	is-a	is	unequivocally	maintained	throughout	the	lifetime	of	the	objects
involved;	otherwise,	aggregation	is	the	best	choice.	A	role	is	often	confused	with	an	is-a
relationship.	For	example,	given	the	class	Employee,	it	would	not	be	a	good	idea	to
model	the	roles	that	an	employee	can	play	(such	as	manager	or	cashier)	by	inheritance,	if
these	roles	change	intermittently.	Changing	roles	would	involve	a	new	object	to	represent
the	new	role	every	time	this	happens.

Code	reuse	is	also	best	achieved	by	aggregation	when	there	is	no	is-a	relationship.
Enforcing	an	artificial	is-a	relationship	that	is	not	naturally	present	is	usually	not	a	good
idea.	Since	the	class	StackByInheritance	at	(4)	in	Example	7.19	is	a	subclass	of	the
class	LinkedList	at	(2),	any	inherited	method	from	the	superclass	can	be	invoked	on	an
instance	of	the	subclass.	Also,	methods	that	contradict	the	abstraction	represented	by	the
subclass	can	be	invoked,	as	shown	at	(6).	Using	aggregation	in	such	a	case	results	in	a
better	solution,	as	demonstrated	by	the	class	QueueByAggregation	at	(3).	The	class
defines	the	operations	of	a	queue	by	delegating	such	requests	to	the	underlying	class
LinkedList.	Clients	implementing	a	queue	in	this	manner	do	not	have	access	to	the
underlying	class	and,	therefore,	cannot	break	the	abstraction.

Both	inheritance	and	aggregation	promote	encapsulation	of	implementation,	as	changes	to
the	implementation	are	localized	to	the	class.	Changing	the	contract	of	a	superclass	can
have	consequences	for	the	subclasses	(called	the	ripple	effect)	as	well	as	for	clients	that
are	dependent	on	a	particular	behavior	of	the	subclasses.

Polymorphism	is	achieved	through	inheritance	and	interface	implementation.	Code	relying
on	polymorphic	behavior	will	still	work	without	any	change	if	new	subclasses	or	new
classes	implementing	the	interface	are	added.	If	no	obvious	is-a	relationship	is	present,
polymorphism	is	best	achieved	by	using	aggregation	with	interface	implementation.

7.14	Basic	Concepts	in	Object-Oriented	Design
In	this	section,	we	provide	a	brief	explanation	of	some	basic	concepts	in	object-oriented
(OO)	design.	For	more	details,	the	reader	is	encouraged	to	consult	the	vast	body	of
literature	that	is	readily	available	on	this	subject.

Encapsulation
An	object	has	properties	and	behaviors	that	are	encapsulated	inside	the	object.	The
services	that	the	object	offers	to	its	clients	make	up	its	contract,	or	public	interface.	Only
the	contract	defined	by	the	object	is	available	to	the	clients.	The	implementation	of	its
properties	and	behavior	is	not	a	concern	of	the	clients.	Encapsulation	helps	to	make	clear
the	distinction	between	an	object’s	contract	and	implementation.	This	demarcation	has
major	consequences	for	program	development,	as	the	implementation	of	an	object	can
change	without	affecting	the	clients.	Encapsulation	also	reduces	complexity,	as	the
internals	of	an	object	are	hidden	from	the	clients,	which	cannot	alter	its	implementation.

Encapsulation	is	achieved	through	information	hiding,	by	making	judicious	use	of
language	features	provided	for	this	purpose.	Information	hiding	in	Java	can	be	achieved	at
different	levels	of	granularity:

•	Method	or	block	level

Localizing	information	in	a	method	hides	it	from	the	outside.

•	Class	level

The	accessibility	of	members	declared	in	a	class	can	be	controlled	through	member
accessibility	modifiers.	One	much-advocated	information-hiding	technique	is	to
prevent	direct	access	by	clients	to	data	maintained	by	an	object.	The	fields	of	the
object	are	private,	and	its	contract	defines	public	methods	for	the	services	provided
by	the	object.	Such	tight	encapsulation	helps	to	separate	the	use	from	the
implementation	of	a	class.

•	Package	level

Classes	that	belong	together	can	be	grouped	into	relevant	packages	by	using	the
package	statement.	Interpackage	accessibility	of	classes	can	be	controlled	by	class
accessibility	modifiers.

Cohesion
Cohesion	is	an	interclass	measure	of	how	well	structured	and	closely	related	the
functionality	is	in	a	class.	The	objective	is	to	design	classes	with	high	cohesion,	that
perform	well-defined	and	related	tasks	(also	called	functional	cohesion).	The	public
methods	of	a	highly	cohesive	class	typically	implement	a	single	specific	task	that	is
related	to	the	purpose	of	the	class.	For	example,	in	an	MVC-based	application,	the
respective	classes	for	the	Model,	the	View,	and	the	Controller	should	focus	on	providing
functionality	that	relates	to	their	individual	purpose.	In	other	words,	a	method	in	one	class
should	not	perform	a	task	that	should	actually	be	implemented	by	one	of	the	other	two
classes.

Lack	of	cohesion	in	a	class	means	that	the	purpose	of	the	class	is	not	focused,	and
unrelated	functionality	is	ending	up	in	the	class	(also	called	coincidental	cohesion)—
which	will	eventually	impact	the	maintainability	of	the	application.

Coupling
Coupling	is	a	measure	of	intraclass	dependencies.	Because	objects	need	to	interact	with
one	another,	dependencies	between	classes	are	inherent	in	OO	design.	However,	these
dependencies	should	be	minimized	to	achieve	loose	coupling,	which	facilitates	the
creation	of	extensible	applications.

One	major	source	of	intraclass	dependencies	is	the	exposure	of	implementation	details	of
an	object.	Such	details	can	be	utilized	by	other	objects,	and	this	dependency	can	impede
changes	in	the	implementation,	resulting	in	less	extensible	applications.

High	cohesion	and	loose	coupling	help	to	achieve	the	main	goals	of	OO	design:
maintainability,	reusability,	extensibility,	and	reliability.

	Review	Questions

7.31	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Polymorphism	{
		public	static	void	main(String[]	args)	{
				A	ref1	=	new	C();
				B	ref2	=	(B)	ref1;
				System.out.println(ref2.f());
		}
}

class	A											{	int	f()	{	return	0;	}	}
class	B	extends	A	{	int	f()	{	return	1;	}	}
class	C	extends	B	{	int	f()	{	return	2;	}	}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	ClassCastException	at
runtime.

(c)	The	program	will	compile,	and	print	0	when	run.

(d)	The	program	will	compile,	and	print	1	when	run.

(e)	The	program	will	compile,	and	print	2	when	run.

7.32	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Polymorphism2	{
		public	static	void	main(String[]	args)	{
				A	ref1	=	new	C();
				B	ref2	=	(B)	ref1;
				System.out.println(ref2.g());
		}
}

class	A	{
		private	int	f()	{	return	0;	}
		public	int	g()	{	return	3;	}

}
class	B	extends	A	{
		private	int	f()	{	return	1;	}
		public	int	g()	{	return	f();	}
}
class	C	extends	B	{
		public	int	f()	{	return	2;	}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	and	print	0	when	run.

(c)	The	program	will	compile,	and	print	1	when	run.

(d)	The	program	will	compile,	and	print	2	when	run.

(e)	The	program	will	compile,	and	print	3	when	run.

7.33	Which	statements	about	the	following	program	are	true?
Click	here	to	view	code	image

public	interface	HeavenlyBody	{	String	describe();	}

class	Star	{
		String	starName;
		public	String	describe()	{	return	“star	”	+	starName;	}
}

class	Planet	extends	Star	{
		String	name;
		public	String	describe()	{
				return	“planet	”	+	name	+	”	orbiting	star	”	+	starName;
		}
}

Select	the	three	correct	answers:

(a)	The	code	will	fail	to	compile.

(b)	The	code	defines	a	Planet	is-a	Star	relationship.

(c)	The	code	will	fail	to	compile	if	the	name	starName	is	replaced	with	the	name
bodyName	throughout	the	declaration	of	the	Star	class.

(d)	The	code	will	fail	to	compile	if	the	name	starName	is	replaced	with	the	name
name	throughout	the	declaration	of	the	Star	class.

(e)	An	instance	of	Planet	is	a	valid	instance	of	HeavenlyBody.

(f)	The	code	defines	a	Planet	has-a	Star	relationship.

7.34	Given	the	following	code,	which	statement	is	true?
Click	here	to	view	code	image

public	interface	HeavenlyBody	{	String	describe();	}

class	Star	implements	HeavenlyBody	{
		String	starName;

		public	String	describe()	{	return	“star	”	+	starName;	}
}

class	Planet	{
		String	name;
		Star	orbiting;
		public	String	describe()	{
				return	“planet	”	+	name	+	”	orbiting	”	+	orbiting.describe();
		}
}

Select	the	one	correct	answer:

(a)	The	code	will	fail	to	compile.

(b)	The	code	defines	a	Planet	has-a	Star	relationship.

(c)	The	code	will	fail	to	compile	if	the	name	starName	is	replaced	with	the	name
bodyName	throughout	the	declaration	of	the	Star	class.

(d)	The	code	will	fail	to	compile	if	the	name	starName	is	replaced	with	the	name
name	throughout	the	declaration	of	the	Star	class.

(e)	An	instance	of	Planet	is	a	valid	instance	of	a	HeavenlyBody.

(f)	The	code	defines	a	Planet	is-a	Star	relationship.

7.35	Which	of	the	following	statements	is	not	true?

Select	the	one	correct	answer.

(a)	Maximizing	cohesion	and	minimizing	coupling	are	the	hallmarks	of	a	well-
designed	application.

(b)	Coupling	is	an	inherent	property	of	any	nontrivial	OO	design.

(c)	Dependencies	between	classes	can	be	minimized	by	hiding	implementation
details.

(d)	Each	method	implementing	a	single	task	that	is	related	to	the	purpose	of	the
class	will	result	in	a	class	that	has	high	cohesion.

(e)	None	of	the	above.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	Inheritance	and	its	implications	in	object-oriented	programming

•	Overriding	and	hiding	of	superclass	members

•	Method	overriding	versus	method	overloading

•	Use	of	the	super	reference	to	access	superclass	members

•	Use	of	this()	and	super()	calls,	including	constructor	chaining

•	Interfaces	and	multiple	interface	inheritance

•	Subtype–supertype	relationships

•	Conversions	when	assigning,	casting,	and	passing	reference	values

•	Resolution	of	overloaded	methods

•	Identifying	the	type	of	objects	using	the	instanceof	operator

•	Polymorphism	and	dynamic	method	lookup

•	Inheritance	(is-a)	versus	aggregation	(has-a)

•	Best	practices	for	object-oriented	design:	tight	encapsulation,	loose	coupling,	and
high	cohesion	in	classes

	Programming	Exercises

7.1	Declare	an	interface	called	Function	that	has	a	method	named	evaluate	that
takes	an	int	parameter	and	returns	an	int	value.

Create	a	class	called	Half	that	implements	the	Function	interface.	The
implementation	of	the	method	evaluate()	should	return	the	value	obtained	by
dividing	the	int	argument	by	2.

In	a	client,	create	a	method	that	takes	an	arbitrary	number	of	int	values	as	a
varargs	parameter,	and	returns	an	array	that	has	length	equal	to	the	number	of
values	passed	in	the	varargs	parameter,	but	with	the	value	of	an	element	in	the	new
array	being	half	that	of	the	corresponding	value	in	the	varargs	parameter.	Let	the
implementation	of	this	method	create	an	instance	of	Half,	and	use	this	instance	to
calculate	values	for	the	array	that	is	returned.

7.2	Rewrite	the	method	that	operated	on	int	values	from	the	previous	exercise:	The
method	should	now	also	accept	a	Function	reference	as	an	argument,	and	use
this	argument	instead	of	an	instance	of	the	Half	class.

Create	a	class	called	Print	that	implements	the	method	evaluate()	in	the
Function	interface.	This	method	simply	prints	the	int	value	passed	as	an
argument,	and	returns	this	value.

Now	write	a	program	that	does	the	following:

	Prints	an	arbitrary	number	of	int	values	using	an	instance	of	the	Print	class	and
the	method	described	earlier.

	Halves	the	values	in	the	array	and	prints	the	values	again,	using	the	Half	and
Print	classes,	and	the	method	described	earlier.

8.	Fundamental	Classes

8.1	Overview	of	the	 	Package
The	java.lang	package	is	indispensable	when	programming	in	Java.	It	is	automatically
imported	into	every	source	file	at	compile	time.	The	package	contains	the	Object	class
that	is	the	superclass	of	all	classes,	and	the	wrapper	classes	(Boolean,	Character,
Byte,	Short,	Integer,	Long,	Float,	Double)	that	are	used	to	handle	primitive
values	as	objects.	It	provides	classes	essential	for	interacting	with	the	JVM	(Runtime),
for	security	(SecurityManager),	for	loading	classes	(ClassLoader),	for	dealing
with	threads	(Thread),	and	for	exceptions	(Throwable,	Error,	Exception,
RuntimeException).	The	java.lang	package	also	contains	classes	that	provide	the
standard	input,	output,	and	error	streams	(System),	string	handling	(String,
StringBuilder,	StringBuffer),	and	mathematical	functions	(Math).

Figure	8.1	shows	the	important	classes	that	are	discussed	in	detail	in	this	chapter.

Figure	8.1	Partial	Inheritance	Hierarchy	in	the	java.lang	Package

8.2	The	 	Class
All	classes	extend	the	Object	class,	either	directly	or	indirectly.	A	class	declaration,
without	the	extends	clause,	implicitly	extends	the	Object	class	(§7.1,	p.	264).	Thus,
the	Object	class	is	always	at	the	root	of	any	inheritance	hierarchy.	The	Object	class
defines	the	basic	functionality	that	all	objects	exhibit	and	all	classes	inherit.	This
relationship	also	applies	to	arrays,	since	these	are	genuine	objects	in	Java.

The	Object	class	provides	the	following	general	utility	methods	(see	Example	8.1	for
usage	of	some	of	these	methods):

boolean	equals(Object	obj)

Object	reference	and	value	equality	are	discussed	together	with	the	==	and	!=
operators	(§5.12,	p.	181).	The	equals()	method	in	the	Object	class	returns
true	only	if	the	two	references	compared	denote	the	same	object.	The	equals()
method	is	usually	overridden	to	provide	the	semantics	of	object	value	equality,	as	is
the	case	for	the	wrapper	classes	(§8.3,	p.	350)	and	the	String	class	(§8.4,	p.	363).
int	hashCode()

When	storing	objects	in	hash	tables,	this	method	can	be	used	to	get	a	hash	value	for
an	object.	This	value	is	guaranteed	to	be	consistent	during	the	execution	of	the
program,	provided	the	information	used	in	the	equals()	comparisons	on	the
object	does	not	change.	This	method	tries	to	return	distinct	integers	for	distinct
objects	as	their	default	hash	value.	The	hashCode()	method	is	usually
overridden	by	a	class,	as	is	the	case	for	the	wrapper	classes	and	the	String	class.
final	Class<?>	getClass()

Returns	the	runtime	class	of	the	object,	which	is	represented	by	an	object	of	the
class	java.lang.Class	at	runtime.

Click	here	to	view	code	image
protected	Object	clone()	throws	CloneNotSupportedException

New	objects	that	are	exactly	the	same	(i.e.,	have	identical	states)	as	the	current
object	can	be	created	by	using	the	clone()	method;	that	is,	primitive	values	and
reference	values	are	copied.	This	is	called	shallow	copying.	A	class	can	override
this	method	to	provide	its	own	notion	of	cloning.	For	example,	cloning	a	composite
object	by	recursively	cloning	the	constituent	objects	is	called	deep	copying.

When	overridden,	the	method	in	the	subclass	is	usually	declared	as	public	to
allow	any	client	to	clone	objects	of	the	class.	If	the	overriding	clone()	method	in
the	subclass	relies	on	the	clone()	method	in	the	Object	class	(i.e.,	a	shallow
copy),	the	subclass	must	implement	the	Cloneable	marker	interface	to	indicate
that	its	objects	can	be	safely	cloned.	Otherwise,	the	clone()	method	in	the
Object	class	will	throw	a	checked	CloneNotSupportedException.
String	toString()

If	a	subclass	does	not	override	this	method,	it	returns	a	textual	representation	of	the
object,	which	has	the	following	format:

Click	here	to	view	code	image

“<name	of	the	class>@<hash	code	value	of	object>”

Since	the	default	hash	value	of	an	object	is	an	int	value,	this	value	is	printed	as	a
hexadecimal	number	(e.g.,	3e25a5).	This	method	is	usually	overridden.	The
method	call	System.out.println(objRef)	will	implicitly	convert	its
argument	to	a	textual	representation	by	calling	the	toString()	method	on	the
argument.	See	also	the	binary	string	concatenation	operator	+,	discussed	in	§5.7	on
page	169.

Click	here	to	view	code	image
protected	void	finalize()	throws	Throwable

This	method	is	discussed	in	connection	with	garbage	collection	(§9.4,	p.	390).	It	is
called	on	an	object	just	before	it	is	garbage	collected,	so	that	any	cleaning	up	can	be
done.	However,	the	default	finalize()	method	in	the	Object	class	does	not
do	anything	useful.

In	addition,	the	Object	class	provides	support	for	thread	communication	in	synchronized
code,	through	the	following	methods.	This	important	topic	is	beyond	the	scope	of	this
book.

Click	here	to	view	code	image
final	void	wait(long	timeout)	throws	InterruptedException
final	void	wait(long	timeout,	int	nanos)	throws	InterruptedException
final	void	wait()	throws	InterruptedException
final	void	notify()
final	void	notifyAll()

A	thread	invokes	these	methods	on	the	object	whose	lock	it	holds.	A	thread	waits
for	notification	by	another	thread.

Example	8.1	Methods	in	the	Object	Class
Click	here	to	view	code	image

//	File:	ObjectMethods.java
class	MyClass	implements	Cloneable	{
		@Override
		public	MyClass	clone()	{
				MyClass	obj	=	null;

				try	{	obj	=	(MyClass)	super.clone();	}		//	Calls	overridden	method.
				catch	(CloneNotSupportedException	e)	{	System.out.println(e);}
				return	obj;
		}
}
//__
public	class	ObjectMethods	{
		public	static	void	main(String[]	args)	{
				//	Two	objects	of	MyClass.
				MyClass	obj1	=	new	MyClass();
				MyClass	obj2	=	new	MyClass();

				//	Two	strings.
				String	str1	=	new	String(“WhoAmI”);
				String	str2	=	new	String(“WhoAmI”);

				//	Method	hashCode()	overridden	in	String	class.
				//	Strings	that	are	equal	have	the	same	hash	code.
				System.out.println(“hash	code	for	str1:	”	+	str1.hashCode());
				System.out.println(“hash	code	for	str2:	”	+	str2.hashCode()	+	“\n”);

				//	Hash	codes	are	different	for	different	MyClass	objects.
				System.out.println(“hash	code	for	MyClass	obj1:	”	+	obj1.hashCode());
				System.out.println(“hash	code	for	MyClass	obj2:	”	+
obj2.hashCode()+”\n”);

				//	Method	equals()	overridden	in	the	String	class.
				System.out.println(“str1.equals(str2):	”	+	str1.equals(str2));
				System.out.println(“str1	==	str2:						”	+	(str1	==	str2)	+	“\n”);

				//	Method	equals()	from	the	Object	class	called.
				System.out.println(“obj1.equals(obj2):	”	+	obj1.equals(obj2));
				System.out.println(“obj1	==	obj2:						”	+	(obj1	==	obj2)	+	“\n”);

				//	The	runtime	object	that	represents	the	class	of	an	object.
				Class	rtStringClass		=	str1.getClass();
				Class	rtMyClassClass	=	obj1.getClass();
				//	The	name	of	the	class	represented	by	the	runtime	object.
				System.out.println(“Class	for	str1:	”	+	rtStringClass);
				System.out.println(“Class	for	obj1:	”	+	rtMyClassClass	+	“\n”);

				//	The	toString()	method	is	overridden	in	the	String	class.
				String	textRepStr	=	str1.toString();
				String	textRepObj	=	obj1.toString();
				System.out.println(“Text	representation	of	str1:	”	+	textRepStr);
				System.out.println(“Text	representation	of	obj1:	”	+	textRepObj	+	“\n”);

				//	Shallow	copying	of	arrays.
				MyClass[]	array1	=	{new	MyClass(),	new	MyClass(),	new	MyClass()};
				MyClass[]	array2	=	array1.clone();
				//	Array	objects	are	different,	but	share	the	element	objects.
				System.out.println(“array1	==	array2:								”	+	(array1	==	array2));
				for(int	i	=	0;	i	<	array1.length;	i++)	{
						System.out.println(“array1[”	+	i	+	“]	==	array2[”	+	i	+	“]	:	”	+
																									(array1[i]	==	array2[i]));
				}
				System.out.println();

				//	Clone	an	object	of	MyClass.
				MyClass	obj3	=	obj1.clone();
				System.out.println(“hash	code	for	MyClass	obj3:	”	+	obj3.hashCode());
				System.out.println(“obj1	==	obj3:	”	+	(obj1	==	obj3));

		}
}

Probable	output	from	the	program:
Click	here	to	view	code	image

hash	code	for	str1:	-1704812257
hash	code	for	str2:	-1704812257

hash	code	for	MyClass	obj1:	25669322
hash	code	for	MyClass	obj2:	14978587

str1.equals(str2):	true
str1	==	str2:						false

obj1.equals(obj2):	false
obj1	==	obj2:						false

Class	for	str1:	class	java.lang.String
Class	for	obj1:	class	MyClass

Text	representation	of	str1:	WhoAmI
Text	representation	of	obj1:	MyClass@187aeca

array1	==	array2:								false
array1[0]	==	array2[0]	:	true
array1[1]	==	array2[1]	:	true
array1[2]	==	array2[2]	:	true

hash	code	for	MyClass	obj3:	19770577
obj1	==	obj3:	false

	Review	Questions

8.1	What	is	the	return	type	of	the	hashCode()	method	in	the	Object	class?

Select	the	one	correct	answer.

(a)	String

(b)	int

(c)	long

(d)	Object

(e)	Class

8.2	Which	of	the	following	statements	is	true?

Select	the	one	correct	answer.

(a)	If	the	references	x	and	y	denote	two	different	objects,	the	expression
x.equals(y)	is	always	false.

(b)	If	the	references	x	and	y	denote	two	different	objects,	the	expression
(x.hashCode()	==	y.hashCode())	is	always	false.

(c)	The	hashCode()	method	in	the	Object	class	is	declared	as	final.

(d)	The	equals()	method	in	the	Object	class	is	declared	as	final.

(e)	All	arrays	have	a	method	named	clone.

8.3	Which	exception	can	the	clone()	method	of	the	Object	class	throw?

Select	the	one	correct	answer.

(a)	CloneNotSupportedException

(b)	NotCloneableException

(c)	IllegalCloneException

(d)	NoClonesAllowedException

8.3	The	Wrapper	Classes
Wrapper	classes	were	introduced	with	the	discussion	of	the	primitive	data	types	(§2.2,	p.
37),	and	also	in	connection	with	boxing	and	unboxing	of	primitive	values	(§5.1,	p.	145).
Primitive	values	in	Java	are	not	objects.	To	manipulate	these	values	as	objects,	the
java.lang	package	provides	a	wrapper	class	for	each	of	the	primitive	data	types
(shown	in	the	bottom	left	of	Figure	8.2).	The	name	of	the	wrapper	class	is	the	name	of	the
primitive	data	type	with	a	uppercase	letter,	except	for	int	(Integer)	and	char
(Character).	All	wrapper	classes	are	final.	The	objects	of	all	wrapper	classes	that
can	be	instantiated	are	immutable;	in	other	words,	the	value	in	the	wrapper	object	cannot
be	changed.

Figure	8.2	Converting	Values	among	Primitive,	Wrapper,	and	String	Types

Although	the	Void	class	is	considered	a	wrapper	class,	it	does	not	wrap	any	primitive
value	and	is	not	instantiable	(i.e.,	has	no	public	constructors).	It	just	denotes	the	Class
object	representing	the	keyword	void.	The	Void	class	will	not	be	discussed	further	in
this	section.

In	addition	to	the	methods	defined	for	constructing	and	manipulating	objects	of	primitive
values,	the	wrapper	classes	define	useful	constants,	fields,	and	conversion	methods.

Common	Wrapper	Class	Constructors
The	Character	class	has	only	one	public	constructor,	taking	a	char	value	as	its
parameter.	The	other	wrapper	classes	all	have	two	public	one-argument	constructors:
one	takes	a	primitive	value	and	the	other	takes	a	string.

WrapperType(type	v)
WrapperType(String	str)

The	type	is	a	primitive	data	type.	The	string	argument	is	converted	to	a	primitive
value	that	corresponds	to	the	WrapperType.	An	unchecked
NumberFormatException	is	thrown	if	the	string	cannot	be	converted	to	a
primitive	value	that	corresponds	to	a	numeric	WrapperType.

Wrapping	Primitive	Values	in	Objects

Boxing	is	a	convenient	way	to	wrap	a	primitive	value	in	an	object	((1a)	in	Figure	8.2	and
§5.1,	p.	145).

Character	charObj1			=	‘\n’;
Boolean			boolObj1			=	true;
Integer			intObj1				=	2014;
Double				doubleObj1	=	3.14;

A	constructor	that	takes	a	primitive	value	can	be	used	to	create	wrapper	objects	((1b)	in
Figure	8.2).
Click	here	to	view	code	image

Character	charObj1			=	new	Character(‘\n’);
Boolean			boolObj1			=	new	Boolean(true);
Integer			intObj1				=	new	Integer(2014);
Double				doubleObj1	=	new	Double(3.14);

We	can	also	use	the	valueOf()	method	that	takes	the	primitive	value	to	wrap	as	an
argument	((1c)	in	Figure	8.2).
Click	here	to	view	code	image

Character	charObj1			=	Character.valueOf(‘\n’);
Boolean			boolObj1			=	Boolean.valueOf(true);
Integer			intObj1				=	Integer.valueOf(2014);
Double				doubleObj1	=	Double.valueOf(3.14);

Converting	Strings	to	Wrapper	Objects

A	constructor	that	takes	a	String	object	representing	the	primitive	value	can	also	be
used	to	create	wrapper	objects.	The	constructors	for	the	numeric	wrapper	types	throw	an
unchecked	NumberFormatException	if	the	String	parameter	does	not	parse	to	a
valid	number	((2a)	in	Figure	8.2).
Click	here	to	view	code	image

Boolean	boolObj2			=	new	Boolean(“TrUe”);							//	case	ignored:	true
Boolean	boolObj3			=	new	Boolean(“XX”);									//	false
Integer	intObj2				=	new	Integer(“2014”);
Double		doubleObj2	=	new	Double(“3.14”);
Long				longObj1			=	new	Long(“3.14”);										//	NumberFormatException

Common	Wrapper	Class	Utility	Methods

Converting	Strings	to	Wrapper	Objects

Each	wrapper	class	(except	Character)	defines	the	static	method	valueOf(String
str)	that	returns	the	wrapper	object	corresponding	to	the	primitive	value	represented	by
the	String	object	passed	as	an	argument	((6b)	in	Figure	8.2).	This	method	for	the
numeric	wrapper	types	also	throws	a	NumberFormatException	if	the	String
parameter	is	not	a	valid	number.

Click	here	to	view	code	image
static	WrapperType	valueOf(String	str)

Click	here	to	view	code	image
Boolean	boolObj4			=	Boolean.valueOf(“false”);
Integer	intObj3				=	Integer.valueOf(“1949”);
Double		doubleObj3	=	Double.valueOf(“-3.0”);

In	addition	to	the	one-argument	valueOf()	method,	the	integer	wrapper	classes	define
an	overloaded	static	valueOf()	method	that	can	take	a	second	argument.	This	argument
specifies	the	base	(or	radix)	in	which	to	interpret	the	string	representing	the	signed	integer
in	the	first	argument.

Click	here	to	view	code	image
static	IntegerWrapperType	valueOf(String	str,	int	base)
																										throws	NumberFormatException

Click	here	to	view	code	image
Byte				byteObj1		=	Byte.valueOf(“1010”,	2);			//	Decimal	value	10
Short			shortObj2	=	Short.valueOf(“12”,	8);				//	Not	“\012”.	Decimal	value
10.
Integer	intObj4			=	Integer.valueOf(“-a”,	16);	//	Not	“-0xa”.	Decimal	value
-10.
Long				longObj2		=	Long.valueOf(“-a”,	16);				//	Not	“-0xa”.	Decimal	value
-10L.

Converting	Wrapper	Objects	to	Strings

Each	wrapper	class	overrides	the	toString()	method	from	the	Object	class.	The
overriding	method	returns	a	String	object	containing	the	string	representation	of	the
primitive	value	in	the	wrapper	object	((3)	in	Figure	8.2).

String	toString()

Click	here	to	view	code	image
String	charStr			=	charObj1.toString();					//	“\n”
String	boolStr			=	boolObj2.toString();					//	“true”
String	intStr				=	intObj1.toString();						//	“2014”
String	doubleStr	=	doubleObj1.toString();			//	“3.14”

Converting	Primitive	Values	to	Strings

Each	wrapper	class	defines	a	static	method	toString(type	v)	that	returns	the	string
corresponding	to	the	primitive	value	of	type,	which	is	passed	as	an	argument	((6a)	in
Figure	8.2).

Click	here	to	view	code	image

static	String	toString(type	v)

Click	here	to	view	code	image
String	charStr2			=	Character.toString(‘\n’);		//	“\n”
String	boolStr2			=	Boolean.toString(true);				//	“true”
String	intStr2				=	Integer.toString(2014);				//	Base	10.	“2014”
String	doubleStr2	=	Double.toString(3.14);					//	“3.14”

For	integer	primitive	types,	the	base	is	assumed	to	be	10.	For	floating-point	numbers,	the

textual	representation	(decimal	form	or	scientific	notation)	depends	on	the	sign	and	the
magnitude	(absolute	value)	of	the	number.	The	NaN	value,	positive	infinity,	and	negative
infinity	will	result	in	the	strings	"NaN",	"Infinity",	and	"-Infinity",
respectively.

In	addition,	the	wrapper	classes	Integer	and	Long	define	methods	for	converting
integers	to	string	representations	in	decimal,	binary,	octal,	and	hexadecimal	notation	(p.
353).

Converting	Wrapper	Objects	to	Primitive	Values

Unboxing	is	a	convenient	way	to	unwrap	the	primitive	value	in	a	wrapper	object	((4a)	in
Figure	8.2	and	§5.1,	p.	145).
Click	here	to	view	code	image

char				c	=	charObj1;											//	‘\n’
boolean	b	=	boolObj2;											//	true
int					i	=	intObj1;												//	2014
double		d	=	doubleObj1;									//	3.14

Each	wrapper	class	defines	a	typeValue()	method	that	returns	the	primitive	value	in	the
wrapper	object	((4b)	in	Figure	8.2).

type	typeValue()

Click	here	to	view	code	image
char				c	=	charObj1.charValue();											//	‘\n’
boolean	b	=	boolObj2.booleanValue();								//	true
int					i	=	intObj1.intValue();													//	2014
double		d	=	doubleObj1.doubleValue();							//	3.14

In	addition,	each	numeric	wrapper	class	defines	typeValue()	methods	for	converting	the
primitive	value	in	the	wrapper	object	to	a	value	of	any	numeric	primitive	data	type.	These
methods	are	discussed	later.

Wrapper	Comparison,	Equality,	and	Hash	Code

Each	wrapper	class	implements	the	Comparable<Type>	interface,	which	defines	the
following	method:

int	compareTo(Type	obj2)

This	method	returns	a	value	that	is	less	than,	equal	to,	or	greater	than	zero,	depending	on
whether	the	primitive	value	in	the	current	wrapper	Type	object	is	less	than,	equal	to,	or
greater	than	the	primitive	value	in	the	wrapper	Type	object	denoted	by	argument	obj2.
Click	here	to	view	code	image

//	Comparisons	based	on	objects	created	earlier
Character	charObj2			=	‘a’;
int	result1	=	charObj1.compareTo(charObj2);						//		result1	<	0
int	result2	=	intObj1.compareTo(intObj3);								//		result2	>	0
int	result3	=	doubleObj1.compareTo(doubleObj2);		//	result	==	0
int	result4	=	doubleObj1.compareTo(intObj1);					//	Compile-time	error!

Each	wrapper	class	overrides	the	equals()	method	from	the	Object	class.	The
overriding	method	compares	two	wrapper	objects	for	object	value	equality.

boolean	equals(Object	obj2)

Click	here	to	view	code	image
//	Comparisons	based	on	objects	created	earlier
boolean	charTest			=	charObj1.equals(charObj2);						//	false
boolean	boolTest			=	boolObj2.equals(Boolean.FALSE);	//	false
boolean	intTest				=	intObj1.equals(intObj2);								//	true
boolean	doubleTest	=	doubleObj1.equals(doubleObj2);		//	true
boolean	test							=	intObj1.equals(new	Long(2014));	//	false.	Not	same	type.

The	following	values	are	interned	when	they	are	wrapped	during	boxing.	That	is,	only	one
wrapper	object	exists	in	the	program	for	these	primitive	values	when	boxing	is	applied:

•	The	boolean	values	true	or	false

•	A	byte

•	A	char	with	a	Unicode	value	in	the	interval	[\u0000,	\u007f]	(i.e.,	decimal
interval	[0,	127])

•	An	int	or	short	value	in	the	interval	[-128,	127]

If	references	w1	and	w2	refer	to	two	wrapper	objects	that	box	the	same	value,	which	is
among	the	ones	mentioned	here,	then	w1	==	w2	is	always	true.	In	other	words,	for	the
values	listed	previously,	object	equality	and	reference	equality	give	the	same	result.
Click	here	to	view	code	image

//	Reference	and	object	equality
Byte	bRef1	=	10;
Byte	bRef2	=	10;
System.out.println(bRef1	==	bRef2);														//	true
System.out.println(bRef1.equals(bRef2));									//	true

Integer	iRef1	=	1000;
Integer	iRef2	=	1000;
System.out.println(iRef1	==	iRef2);														//	false
System.out.println(iRef1.equals(iRef2));									//	true

Each	wrapper	class	also	overrides	the	hashCode()	method	in	the	Object	class.	The
overriding	method	returns	a	hash	value	based	on	the	primitive	value	in	the	wrapper	object.

int	hashCode()

Click	here	to	view	code	image
int	index	=	charObj1.hashCode();																		//	10	(‘\n’)

Numeric	Wrapper	Classes
The	numeric	wrapper	classes	Byte,	Short,	Integer,	Long,	Float,	and	Double	are
all	subclasses	of	the	abstract	class	Number	(Figure	8.1).

Each	numeric	wrapper	class	defines	an	assortment	of	constants,	including	the	minimum

and	maximum	values	of	the	corresponding	primitive	data	type:

NumericWrapperType.MIN_VALUE
NumericWrapperType.MAX_VALUE

The	following	code	retrieves	the	minimum	and	maximum	values	of	various	numeric
types:
Click	here	to	view	code	image

byte			minByte			=	Byte.MIN_VALUE;					//	-128
int				maxInt				=	Integer.MAX_VALUE;		//	2147483647
double	maxDouble	=	Double.MAX_VALUE;			//	1.7976931348623157e+308

Converting	Numeric	Wrapper	Objects	to	Numeric	Primitive	Types

Each	numeric	wrapper	class	defines	the	following	set	of	typeValue()	methods	for
converting	the	primitive	value	in	the	wrapper	object	to	a	value	of	any	numeric	primitive
type:

byte			byteValue()
short		shortValue()
int				intValue()
long			longValue()
float		floatValue()
double	doubleValue()

See	also	(4b)	in	Figure	8.2.

The	following	code	shows	conversion	of	values	in	numeric	wrapper	objects	to	any
numeric	primitive	type:
Click	here	to	view	code	image

Byte				byteObj2			=	new	Byte((byte)	16);							//	Cast	mandatory
Integer	intObj5				=	new	Integer(42030);
Double		doubleObj4	=	new	Double(Math.PI);

short		shortVal		=	intObj5.shortValue();								//	(1)
long			longVal			=	byteObj2.longValue();
int				intVal				=	doubleObj4.intValue();							//	(2)	Truncation
double	doubleVal	=	intObj5.doubleValue();

Notice	the	potential	for	loss	of	information	at	(1)	and	(2),	when	the	primitive	value	in	a
wrapper	object	is	converted	to	a	narrower	primitive	data	type.

Converting	Strings	to	Numeric	Values

Each	numeric	wrapper	class	defines	a	static	method	parseType(String	str),	which
returns	the	primitive	numeric	value	represented	by	the	String	object	passed	as	an
argument.	The	Type	in	the	method	name	parseType	stands	for	the	name	of	a	numeric
wrapper	class,	except	for	the	name	of	the	Integer	class,	which	is	abbreviated	to	Int.
These	methods	throw	a	NumberFormatException	if	the	String	parameter	is	not	a
valid	argument	((5)	in	Figure	8.2.)

Click	here	to	view	code	image

static	type	parseType(String	str)	throws	NumberFormatException

Click	here	to	view	code	image
byte			value1	=	Byte.parseByte(“16”);
int				value2	=	Integer.parseInt(“2010”);							//	parseInt,	not	parseInteger
int				value3	=	Integer.parseInt(“7UP”);								//	NumberFormatException
double	value4	=	Double.parseDouble(“3.14”);

For	the	integer	wrapper	types,	the	overloaded	static	method	parseType()	can
additionally	take	a	second	argument,	which	can	specify	the	base	in	which	to	interpret	the
string	representing	the	signed	integer	in	the	first	argument:

Click	here	to	view	code	image

type	parseType(String	str,	int	base)	throws	NumberFormatException

Click	here	to	view	code	image
byte		value6	=	Byte.parseByte(“1010”,	2);	//	Decimal	value	10.
short	value7	=	Short.parseShort(“12”,	8);	//	“012”,	not	“\012”.	Decimal	value
10.
int			value8	=	Integer.parseInt(“-a”,	16);//	Not	“-0xa”.	Decimal	value	-10.
long		value9	=	Long.parseLong(“-a”,	16);		//	Not	“-0xa”.	Decimal	value	-10L.

Converting	Integer	Values	to	Strings	in	Different	Notations

The	wrapper	classes	Integer	and	Long	provide	static	methods	for	converting	integers
to	string	representations	in	decimal,	binary,	octal,	and	hexadecimal	notation.	Some	of
these	methods	from	the	Integer	class	are	listed	here,	but	analogous	methods	are	also
defined	in	the	Long	class.	Example	8.2	demonstrates	the	use	of	these	methods.

Click	here	to	view	code	image
static	String	toBinaryString(int	i)
static	String	toHexString(int	i)
static	String	toOctalString(int	i)

These	three	methods	return	a	string	representation	of	the	integer	argument	as	an
unsigned	integer	in	base	2,	16,	and	8,	respectively,	with	no	extra	leading	zeroes.

Click	here	to	view	code	image
static	String	toString(int	i,	int	base)
static	String	toString(int	i)

The	first	method	returns	the	minus	sign	'-'	as	the	first	character	if	the	integer	i	is
negative.	In	all	cases,	it	returns	the	string	representation	of	the	magnitude	of	the
integer	i	in	the	specified	base.

The	last	method	is	equivalent	to	the	method	toString(int	i,	int	base),
where	the	base	has	the	value	10,	and	which	returns	the	string	representation	as	a
signed	decimal	((6a)	in	Figure	8.2).

Example	8.2	String	Representation	of	Integers
Click	here	to	view	code	image

public	class	IntegerRepresentation	{
		public	static	void	main(String[]	args)	{
				int	positiveInt	=	+41;				//	0b101001,	051,	0x29
				int	negativeInt	=	-41;				//	0b11111111111111111111111111010111,
-0b101001,
																														//	037777777727,	-051,	0xffffffd7,	-0x29
				System.out.println(“String	representation	for	decimal	value:	”	+
positiveInt);
				integerStringRepresentation(positiveInt);
				System.out.println(“String	representation	for	decimal	value:	”	+
negativeInt);
				integerStringRepresentation(negativeInt);
		}

		public	static	void	integerStringRepresentation(int	i)	{
				System.out.println(“				Binary:				”	+	Integer.toBinaryString(i));
				System.out.println(“				Octal:					”	+	Integer.toOctalString(i));
				System.out.println(“				Hex:							”	+	Integer.toHexString(i));
				System.out.println(“				Decimal:			”	+	Integer.toString(i));

				System.out.println(“				Using	toString(int	i,	int	base)	method:”);
				System.out.println(“				Base	2:				”	+	Integer.toString(i,	2));
				System.out.println(“				Base	8:				”	+	Integer.toString(i,	8));
				System.out.println(“				Base	16:			”	+	Integer.toString(i,	16));
				System.out.println(“				Base	10:			”	+	Integer.toString(i,	10));
		}
}

Output	from	the	program:
Click	here	to	view	code	image

String	representation	for	decimal	value:	41
				Binary:				101001
				Octal:					51
				Hex:							29
				Decimal:			41
				Using	toString(int	i,	int	base)	method:
				Base	2:				101001
				Base	8:				51
				Base	16:			29
				Base	10:			41
String	representation	for	decimal	value:	-41
				Binary:				11111111111111111111111111010111
				Octal:					37777777727
				Hex:							ffffffd7
				Decimal:			-41
				Using	toString(int	i,	int	base)	method:
				Base	2:				-101001
				Base	8:				-51
				Base	16:			-29
				Base	10:			-41

The	 	Class
The	Character	class	defines	a	myriad	of	constants,	including	the	following,	which
represent	the	minimum	and	the	maximum	values	of	the	char	type	(§2.2,	p.	38):

Character.MIN_VALUE
Character.MAX_VALUE

The	Character	class	also	defines	a	plethora	of	static	methods	for	handling	various
attributes	of	a	character,	and	case	issues	relating	to	characters,	as	defined	by	the	Unicode
standard:

Click	here	to	view	code	image
static	int					getNumericValue(char	ch)
static	boolean	isLowerCase(char	ch)
static	boolean	isUpperCase(char	ch)
static	boolean	isTitleCase(char	ch)
static	boolean	isDigit(char	ch)
static	boolean	isLetter(char	ch)
static	boolean	isLetterOrDigit(char	ch)
static	char				toUpperCase(char	ch)
static	char				toLowerCase(char	ch)
static	char				toTitleCase(char	ch)

The	following	code	converts	a	lowercase	character	to	an	uppercase	character:
Click	here	to	view	code	image

char	ch	=	‘a’;
if	(Character.isLowerCase(ch))	ch	=	Character.toUpperCase(ch);

The	 	Class
In	addition	to	the	common	utility	methods	for	wrapper	classes	discussed	earlier	in	this
section,	the	Boolean	class	defines	the	following	wrapper	objects	to	represent	the
primitive	values	true	and	false,	respectively:

Boolean.TRUE
Boolean.FALSE

Converting	Strings	to	Boolean	Values

The	wrapper	class	Boolean	defines	the	following	static	method,	which	returns	the
boolean	value	true	only	if	the	String	argument	is	equal	to	the	string	"true",
ignoring	the	case;	otherwise,	it	returns	the	boolean	value	false.	Note	that	this	method
does	not	throw	any	exceptions,	as	its	numeric	counterparts	do.

Click	here	to	view	code	image
static	boolean	parseBoolean(String	str)

Click	here	to	view	code	image
boolean	b1	=	Boolean.parseBoolean(“TRUE”);						//	true.
boolean	b2	=	Boolean.parseBoolean(“true”);						//	true.
boolean	b3	=	Boolean.parseBoolean(“false”);					//	false.
boolean	b4	=	Boolean.parseBoolean(“FALSE”);					//	false.
boolean	b5	=	Boolean.parseBoolean(“not	true”);		//	false.

	Review	Questions

8.4	Which	of	the	following	are	wrapper	classes?

Select	the	three	correct	answers.

(a)	java.lang.Void

(b)	java.lang.Int

(c)	java.lang.Boolean

(d)	java.lang.Long

(e)	java.lang.String

8.5	Which	of	the	following	classes	do	not	extend	the	java.lang.Number	class?

Select	the	two	correct	answers.

(a)	java.lang.Float

(b)	java.lang.Byte

(c)	java.lang.Character

(d)	java.lang.Boolean

(e)	java.lang.Short

8.6	Which	of	these	classes	define	immutable	objects?

Select	the	three	correct	answers.

(a)	Character

(b)	Byte

(c)	Number

(d)	Short

(e)	Object

8.7	Which	of	these	classes	have	a	single-parameter	constructor	taking	a	string?

Select	the	two	correct	answers.

(a)	Void

(b)	Integer

(c)	Boolean

(d)	Character

(e)	Object

8.8	Which	of	the	wrapper	classes	have	a	booleanValue()	method?

Select	the	one	correct	answer

(a)	All	wrapper	classes

(b)	All	wrapper	classes	except	Void

(c)	All	wrapper	classes	that	also	implement	the	compareTo()	method

(d)	All	wrapper	classes	extending	Number

(e)	Only	the	class	Boolean

8.9	Which	statements	are	true	about	wrapper	classes?

Select	the	two	correct	answers.

(a)	String	is	a	wrapper	class.

(b)	Double	has	a	compareTo()	method.

(c)	Character	has	a	intValue()	method.

(d)	Byte	extends	Number.

8.10	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

public	class	RQ200A70	{
		public	static	void	main(String[]	args)	{
				Integer	i	=	new	Integer(-10);
				Integer	j	=	new	Integer(-10);
				Integer	k	=	-10;
				System.out.print((i==j)	+	“|”);
				System.out.print(i.equals(j)	+	“|”);
				System.out.print((i==k)	+	“|”);
				System.out.print(i.equals(k));
		}
}

Select	the	one	correct	answer.

(a)	false|true|false|true

(b)	true|true|true|true

(c)	false|true|true|true

(d)	true|true|false|true

(e)	None	of	the	above.

8.4	The	 	Class
Handling	character	sequences	is	supported	through	three	final	classes:	String,
StringBuilder,	and	StringBuffer.	The	Java	platform	uses	the	variable-length
UTF-16	encoding	to	store	characters	in	char	arrays	and	in	the	string	handling	classes.
The	UTF-16	encoding	allows	characters	whose	Unicode	values	are	in	the	range	0000	to
10FFFF.	The	char	type	represents	Unicode	values	in	the	range	0000	to	FFFF—that	is,
characters	that	can	be	represented	in	a	single	16-bit	word.	As	a	consequence,	the
supplementary	characters	are	represented	by	multiple	char	values,	or	multiple	16-bit
words,	when	these	are	stored	in	a	string	or	a	char	array.	The	string	handling	classes
provide	methods	to	handle	the	full	range	of	characters	in	the	UTF-16	encoding,	but	we
will	not	dwell	on	the	subject	in	this	book.

Immutability
The	String	class	implements	immutable	character	strings,	which	are	read-only	once	the
string	has	been	created	and	initialized.	Operations	on	a	String	object	that	modify	the
characters	return	a	new	String	object.	The	StringBuilder	class	implements
dynamic	character	strings.	The	StringBuffer	class	is	a	thread-safe	version	of	the
StringBuilder	class.

This	section	discusses	the	class	String	that	provides	facilities	for	creating,	initializing,
and	manipulating	character	strings.	The	next	section	discusses	the	StringBuilder	and
StringBuffer	classes.

Creating	and	Initializing	Strings

String	Literals	Revisited

The	easiest	way	to	create	a	String	object	is	to	use	a	string	literal:
Click	here	to	view	code	image

String	str1	=	“You	cannot	change	me!”;

A	string	literal	is	a	reference	to	a	String	object.	The	value	in	the	String	object	is	the
character	sequence	enclosed	in	the	double	quotes	of	the	string	literal.	Since	a	string	literal
is	a	reference,	it	can	be	manipulated	like	any	other	String	reference.	The	reference
value	of	a	string	literal	can	be	assigned	to	another	String	reference:	The	reference
str1	will	denote	the	String	object	with	the	value	"You	cannot	change	me!"
after	the	preceding	assignment.	A	string	literal	can	be	used	to	invoke	methods	on	its
String	object:
Click	here	to	view	code	image

int	strLength	=	“You	cannot	change	me!”.length();	//	21

The	compiler	optimizes	handling	of	string	literals	(and	compile-time	constant	expressions
that	evaluate	to	strings):	Only	one	String	object	is	shared	by	all	string-valued	constant
expressions	with	the	same	character	sequence.	Such	strings	are	said	to	be	interned,
meaning	that	they	share	a	unique	String	object	if	they	have	the	same	content.	The

String	class	maintains	a	string	literal	pool	where	such	strings	are	interned.
Click	here	to	view	code	image

String	str2	=	“You	cannot	change	me!”;						//	Already	interned.

Both	String	references	str1	and	str2	denote	the	same	interned	String
object		initialized	with	the	character	string:	"You	cannot	change	me!"	So	does	the
reference	str3	in	the	following	code.	The	compile-time	evaluation	of	the	constant
expression	involving	the	two	string	literals	results	in	a	string	that	is	already	interned:
Click	here	to	view	code	image

String	str3	=	“You	cannot”	+	”	change	me!”;	//	Compile-time	constant
expression

In	the	following	code,	both	the	references	can1	and	can2	denote	the	same	interned
String	object,	which	contains	the	string	"7Up":
Click	here	to	view	code	image

String	can1	=	7	+	“Up”;		//	Value	of	compile-time	constant	expression:	“7Up”
String	can2	=	“7Up”;					//	“7Up”

However,	in	the	following	code,	the	reference	can4	denotes	a	new	String	object	that
will	have	the	value	"7Up"	at	runtime:
Click	here	to	view	code	image

String	word	=	“Up”;
String	can4	=	7	+	word;		//	Not	a	compile-time	constant	expression.

The	sharing	of	String	objects	between	string-valued	constant	expressions	poses	no
problem,	since	the	String	objects	are	immutable.	Any	operation	performed	on	one
String	reference	will	never	have	any	effect	on	the	usage	of	other	references	denoting
the	same	object.	The	String	class	is	also	declared	as	final,	so	that	no	subclass	can
override	this	behavior.

String	Constructors

The	String	class	has	numerous	constructors	to	create	and	initialize	String	objects
based	on	various	types	of	arguments.	Here	we	present	a	few	selected	constructors:

String()

This	constructor	creates	a	new	String	object,	whose	content	is	the	empty	string,
"".
String(String	str)

This	constructor	creates	a	new	String	object,	whose	contents	are	the	same	as
those	of	the	String	object	passed	as	argument.

Click	here	to	view	code	image
String(char[]	value)
String(char[]	value,	int	offset,	int	count)

These	constructors	create	a	new	String	object,	whose	contents	are	copied	from	a
char	array.	The	second	constructor	allows	extraction	of	a	certain	number	of
characters	(count)	from	a	given	offset	in	the	array.
String(StringBuilder	builder)
String(StringBuffer	buffer)

These	constructors	allow	interoperability	with	the	StringBuilder	and
StringBuffer	classes,	respectively.

Note	that	using	a	constructor	creates	a	brand-new	String	object;	using	a	constructor
does	not	intern	the	string.	A	reference	to	an	interned	string	can	be	obtained	by	calling	the
intern()	method	in	the	String	class—although	in	practice,	there	is	usually	no	reason
to	do	so.

In	the	following	code,	the	String	object	denoted	by	str4	is	different	from	the	interned
String	object	passed	as	an	argument:
Click	here	to	view	code	image

String	str4	=	new	String(“You	cannot	change	me!”);

Constructing	String	objects	can	also	be	done	from	arrays	of	bytes,	arrays	of	characters,
or	string	builders:
Click	here	to	view	code	image

byte[]	bytes	=	{97,	98,	98,	97};
char[]	characters	=	{‘a’,	‘b’,	‘b’,	‘a’};
StringBuilder	strBuilder	=	new	StringBuilder(“abba”);
//…
String	byteStr		=	new	String(bytes);						//	Using	array	of	bytes:	“abba”
String	charStr		=	new	String(characters);	//	Using	array	of	chars:	“abba”
String	buildStr	=	new	String(strBuilder);	//	Using	string	builder:	“abba”

In	Example	8.3,	note	that	the	reference	str1	does	not	denote	the	same	String	object	as
the	references	str4	and	str5.	Using	the	new	operator	with	a	String	constructor
always	creates	a	new	String	object.	The	expression	"You	cannot"	+	words	is	not
a	constant	expression	and,	therefore,	results	in	the	creation	of	a	new	String	object.	The
local	references	str2	and	str3	in	the	main()	method	and	the	static	reference	str1	in
the	Auxiliary	class	all	denote	the	same	interned	string.	Object	value	equality	is	hardly
surprising	between	these	references.	Indeed,	it	might	be	tempting	to	use	the	operator	==

for	object	value	equality	of	string	literals,	but	this	is	not	advisable.

Example	8.3	String	Construction	and	Equality
Click	here	to	view	code	image

//	File:	StringConstruction.java
class	Auxiliary	{
		static	String	str1	=	“You	cannot	change	me!”;										//	Interned
}
//__
public	class	StringConstruction	{

		static	String	str1	=	“You	cannot	change	me!”;										//	Interned

		public	static	void	main(String[]	args)	{
				String	emptyStr	=	new	String();																						//	””
				System.out.println(“emptyStr:	"”	+	emptyStr	+	“"”);

				String	str2	=	“You	cannot	change	me!”;															//	Interned
				String	str3	=	“You	cannot”	+	”	change	me!”;										//	Interned
				String	str4	=	new	String(“You	cannot	change	me!”);			//	New	String	object

				String	words	=	”	change	me!”;
				String	str5	=	“You	cannot”	+	words;																		//	New	String	object

				System.out.println(“str1	==	str2:						”	+		(str1	==	str2));					//	(1)
true
				System.out.println(“str1.equals(str2):	”	+		str1.equals(str2));		//	(2)
true

				System.out.println(“str1	==	str3:						”	+	(str1	==	str3));						//	(3)
true
				System.out.println(“str1.equals(str3):	”	+	str1.equals(str3));			//	(4)
true

				System.out.println(“str1	==	str4:						”	+	(str1	==	str4));						//	(5)
false
				System.out.println(“str1.equals(str4):	”	+	str1.equals(str4));			//	(6)
true

				System.out.println(“str1	==	str5:						”	+	(str1	==	str5));						//	(7)
false
				System.out.println(“str1.equals(str5):	”	+	str1.equals(str5));			//	(8)
true

				System.out.println(“str1	==	Auxiliary.str1:						”	+
																							(str1	==	Auxiliary.str1));								//	(9)	true
				System.out.println(“str1.equals(Auxiliary.str1):	”	+
																								str1.equals(Auxiliary.str1));				//	(10)	true

				System.out.println(“"You	cannot	change	me!".length():	”	+
																							“You	cannot	change	me!”.length());//	(11)	21
		}
}

Output	from	the	program:
Click	here	to	view	code	image

emptyStr:	””
str1	==	str2:						true
str1.equals(str2):	true

str1	==	str3:						true
str1.equals(str3):	true
str1	==	str4:						false
str1.equals(str4):	true
str1	==	str5:						false
str1.equals(str5):	true
str1	==	Auxiliary.str1:						true
str1.equals(Auxiliary.str1):	true
“You	cannot	change	me!”.length():	21

The	 	Interface
This	interface	defines	a	readable	sequence	of	char	values.	It	is	implemented	by	all	three
classes:	String,	StringBuilder,	and	StringBuffer.	Many	methods	in	these
classes	accept	arguments	of	this	interface	type,	and	specify	it	as	their	return	type.	This
interface	facilitates	interoperability	between	these	classes.	It	defines	the	following
methods:

char	charAt(int	index)

A	character	at	a	particular	index	in	a	sequence	can	be	read	using	the	charAt()
method.	The	first	character	is	at	index	0	and	the	last	one	at	index	1	less	than	the
number	of	characters	in	the	string.	If	the	index	value	is	not	valid,	an
IndexOutOfBoundsException	is	thrown.
int	length()

This	method	returns	the	number	of	char	values	in	this	sequence.
Click	here	to	view	code	image

CharSequence	subSequence(int	start,	int	end)

This	method	returns	a	new	CharSequence	that	is	a	subsequence	of	this
sequence.	Characters	from	the	current	sequence	are	read	from	index	start	to	the
index	end-1,	inclusive.
String	toString()

This	method	returns	a	string	containing	the	characters	in	this	sequence	in	the	same
order	as	this	sequence.

Reading	Characters	from	a	String
The	following	methods	can	be	used	for	character-related	operations	on	a	string:

char	charAt(int	index)

This	method	is	defined	in	the	CharSequence	interface,	which	the	String	class
implements	(p.	360).
char[]	toCharArray()

This	method	returns	a	new	character	array,	with	length	equal	to	the	length	of	this
string,	that	contains	the	characters	in	this	string.

Click	here	to	view	code	image
void	getChars(int	srcBegin,	int	srcEnd,	char[]	dst,	int	dstBegin)

This	method	copies	characters	from	the	current	string	into	the	destination	character
array.	Characters	from	the	current	string	are	read	from	index	srcBegin	to	the
index	srcEnd-1,	inclusive.	They	are	copied	into	the	destination	array	(dst),
starting	at	index	dstBegin	and	ending	at	index	dstbegin+(srcEnd-src-
Begin)-1.	The	number	of	characters	copied	is	(srcEnd-srcBegin).	An
Index-OutOfBoundsException	is	thrown	if	the	indices	do	not	meet	the
criteria	for	the	operation.
int	length()

This	method	is	defined	in	the	CharSequence	interface,	which	the	String	class
implements	(p.	360).
boolean	isEmpty()

This	method	returns	true	if	the	length	of	the	string	is	0,	and	false
otherwise.

Example	8.4	uses	some	of	these	methods	at	(3),	(4),	(5),	and	(6).	The	program	prints	the
frequency	of	a	character	in	a	string	and	illustrates	copying	from	a	string	into	a	character
array.

Example	8.4	Reading	Characters	from	a	String
Click	here	to	view	code	image

public	class	ReadingCharsFromString	{
		public	static	void	main(String[]	args)	{
				int[]	frequencyData	=	new	int	[Character.MAX_VALUE];				//	(1)
				String	str	=	“You	cannot	change	me!”;																			//	(2)

				//	Count	the	frequency	of	each	character	in	the	string.
				for	(int	i	=	0;	i	<	str.length();	i++)	{																//	(3)
						try	{
								frequencyData[str.charAt(i)]++;																					//	(4)
						}	catch(StringIndexOutOfBoundsException	e)	{
								System.out.println(“Index	error	detected:	“+	i	+”	not	in	range.”);
						}
				}

				//	Print	the	character	frequency.
				System.out.println(“Character	frequency	for	string:	"”	+	str	+	“"”);
				for	(int	i	=	0;	i	<	frequencyData.length;	i++)	{
						if	(frequencyData[i]	!=	0)
								System.out.println((char)i	+	”	(code	“+	i	+”):	”	+	frequencyData[i]);
				}

				System.out.println(“Copying	into	a	char	array:”);
				char[]	destination	=	new	char	[str.length()	-	3];							//	3	characters
less.
				str.getChars(0,												7,	destination,	0);									//	(5)	“You	can”
				str.getChars(10,	str.length(),	destination,	7);									//	(6)	”	change
me!”
																																																												//	“not”	not
copied.
				//	Print	the	character	array.
				for	(int	i	=	0;	i	<	destination.length;	i++)	{
						System.out.print(destination[i]);
				}
				System.out.println();
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Character	Frequency	for	string:	“You	cannot	change	me!”
		(code	32):	3
!	(code	33):	1
Y	(code	89):	1
a	(code	97):	2
c	(code	99):	2
e	(code	101):	2
g	(code	103):	1
h	(code	104):	1
m	(code	109):	1
n	(code	110):	3
o	(code	111):	2
t	(code	116):	1
u	(code	117):	1
Copying	into	a	char	array:
You	can	change	me!

In	Example	8.4,	the	frequencyData	array	at	(1)	stores	the	frequency	of	each	character
that	can	occur	in	a	string.	The	string	in	question	is	declared	at	(2).	Since	a	char	value	is
promoted	to	an	int	value	in	arithmetic	expressions,	it	can	be	used	as	an	index	in	an	array.
Each	element	in	the	frequencyData	array	functions	as	a	frequency	counter	for	the
character	corresponding	to	the	index	value	of	the	element:
Click	here	to	view	code	image

frequencyData[str.charAt(i)]++;																	//	(4)

The	calls	to	the	getChars()	method	at	(5)	and	(6)	copy	particular	substrings	from	the
string	into	designated	places	in	the	destination	array,	before	printing	the	whole
character	array.

Comparing	Strings
Characters	are	compared	based	on	their	Unicode	values.
Click	here	to	view	code	image

boolean	test	=	‘a’	<	‘b’;				//	true	since	0x61	<	0x62

Two	strings	are	compared	lexicographically,	as	in	a	dictionary	or	telephone	directory,	by
successively	comparing	their	corresponding	characters	at	each	position	in	the	two	strings,
starting	with	the	characters	in	the	first	position.	The	string	"abba"	is	less	than	"aha",
since	the	second	character	'b'	in	the	string	"abba"	is	less	than	the	second	character
'h'	in	the	string	"aha".	The	characters	in	the	first	position	in	each	of	these	strings	are
equal.

The	following	public	methods	can	be	used	for	comparing	strings:

Click	here	to	view	code	image
boolean	equals(Object	obj)
boolean	equalsIgnoreCase(String	str2)

The	String	class	overrides	the	equals()	method	from	the	Object	class.	The
String	class	equals()	method	implements	String	object	value	equality	as
two	String	objects	having	the	same	sequence	of	characters.	The
equalsIgnoreCase()	method	does	the	same,	but	ignores	the	case	of	the
characters.
int	compareTo(String	str2)

The	String	class	implements	the	Comparable<String>	interface.	The
compareTo()	method	compares	the	two	strings,	and	returns	a	value	based	on	the
outcome	of	the	comparison:

•	The	value	0,	if	this	string	is	equal	to	the	string	argument

•	A	value	less	than	0,	if	this	string	is	lexicographically	less	than	the	string
argument

•	A	value	greater	than	0,	if	this	string	is	lexicographically	greater	than	the	string
argument

Here	are	some	examples	of	string	comparisons:
Click	here	to	view	code	image

String	strA	=	new	String(“The	Case	was	thrown	out	of	Court”);
String	strB	=	new	String(“the	case	was	thrown	out	of	court”);

boolean	b1	=	strA.equals(strB);													//	false
boolean	b2	=	strA.equalsIgnoreCase(strB);			//	true

String	str1	=	new	String(“abba”);
String	str2	=	new	String(“aha”);

int	compVal1	=	str1.compareTo(str2);									//	negative	value	=>	str1	<	str2

Character	Case	in	a	String

Click	here	to	view	code	image
String	toUpperCase()
String	toUpperCase(Locale	locale)
String	toLowerCase()
String	toLowerCase(Locale	locale)

Note	that	the	original	string	is	returned	if	none	of	the	characters	needs	its	case
changed,	but	a	new	String	object	is	returned	if	any	of	the	characters	needs	its
case	changed.	These	methods	delegate	the	character-by-character	case	conversion
to	corresponding	methods	from	the	Character	class.

These	methods	use	the	rules	of	the	(default)	locale	(returned	by	the	method
Locale.getDefault()),	which	embodies	the	idiosyncrasies	of	a	specific
geographical,	political,	or	cultural	region	regarding	number/date/currency	formats,
character	classification,	alphabet	(including	case	idiosyncrasies),	and	other
localizations.

Example	of	case	in	strings:
Click	here	to	view	code	image

String	strA	=	new	String(“The	Case	was	thrown	out	of	Court”);
String	strB	=	new	String(“the	case	was	thrown	out	of	court”);

String	strC	=	strA.toLowerCase();		//	Case	conversion	=>	New	String	object:
																																			//	“the	case	was	thrown	out	of	court”
String	strD	=	strB.toLowerCase();		//	No	case	conversion	=>	Same	String
object
String	strE	=	strA.toUpperCase();		//	Case	conversion	=>	New	String	object:
																																			//	“THE	CASE	WAS	THROWN	OUT	OF	COURT”

boolean	test1	=	strC	==	strA;						//	false
boolean	test2	=	strD	==	strB;						//	true
boolean	test3	=	strE	==	strA;						//	false

Concatenation	of	Strings
Concatenation	of	two	strings	results	in	a	new	string	that	consists	of	the	characters	of	the
first	string	followed	by	the	characters	of	the	second	string.	The	overloaded	operator	+	for
string	concatenation	is	discussed	in	§5.7,	p.	169.	In	addition,	the	following	method	can	be
used	to	concatenate	two	strings:

String	concat(String	str)

The	concat()	method	does	not	modify	the	String	object	on	which	it	is	invoked,	as
String	objects	are	immutable.	Instead,	the	concat()	method	returns	a	reference	to	a
brand-new	String	object:
Click	here	to	view	code	image

String	billboard	=	“Just”;
billboard.concat(”	lost	in	space.”);	//	(1)	Returned	reference	value	not
stored.
System.out.println(billboard);							//	(2)	“Just”
billboard	=	billboard.concat(”	advertise”).concat(”	here.”);		//	(3)
Chaining.
System.out.println(billboard);							//	(4)	“Just	advertise	here.”

At	(1),	the	reference	value	of	the	String	object	returned	by	the	method	concat()	is
not	stored.	This	String	object	becomes	inaccessible	after	(1).	We	see	that	the	reference
billboard	still	denotes	the	string	literal	"Just"	at	(2).

At	(3),	two	method	calls	to	the	concat()	method	are	chained.	The	first	call	returns	a
reference	value	to	a	new	String	object,	whose	content	is	"Just	advertise".	The
second	method	call	is	invoked	on	this	String	object	using	the	reference	value	that	was
returned	in	the	first	method	call.	The	second	call	results	in	yet	another	new	String
object,	whose	content	is	"Just	advertise	here.".	The	reference	value	of	this
String	object	is	assigned	to	the	reference	billboard.	Because	String	objects	are
immutable,	the	creation	of	the	temporary	String	object	with	the	content	"Just
advertise"	is	inevitable	at	(3).

Some	more	examples	of	string	concatenation	follow:
Click	here	to	view	code	image

String	motto	=	new	String(“Program	once”);					//	(1)
motto	+=	“,	execute	everywhere.”;														//	(2)
motto	=	motto.concat(”	Don’t	bet	on	it!”);					//	(3)

Note	that	a	new	String	object	is	assigned	to	the	reference	motto	each	time	in	the
assignments	at	(1),	(2),	and	(3).	The	String	object	with	the	contents	"Program
once"	becomes	inaccessible	after	the	assignment	at	(2).	The	String	object	with	the
contents	"Program	once,	execute	everywhere."	becomes	inaccessible	after
(3).	The	reference	motto	denotes	the	String	object	with	the	following	contents	after
execution	of	the	assignment	at	(3):
Click	here	to	view	code	image

“Program	once,	execute	everywhere.	Don’t	bet	on	it!”

Joining	of	 	Objects
One	operation	commonly	performed	on	a	sequence	of	strings	is	to	format	them	so	that
each	string	is	separated	from	the	next	one	by	a	delimiter.	For	example,	given	the	following
sequence	of	strings:

“2014”
“January”
“11”

we	wish	to	format	them	so	that	individual	strings	are	separated	by	the	delimiter	“/”:
	“2014/January/11”

The	following	static	methods	in	the	String	class	can	be	used	for	this	purpose:

Click	here	to	view	code	image
static	String	join(CharSequence	delimiter,	CharSequence…	elements)
static	String	join(CharSequence	delimiter,
																			Iterable<?	extends	CharSequence>	elements)

Both	static	methods	return	a	new	String	composed	of	copies	of	the
CharSequence	elements	joined	together	with	a	copy	of	the	specified
CharSequence	delimiter.	Thus,	the	resulting	string	is	composed	of	textual
representations	of	the	elements	separated	by	the	textual	representation	of	the
specified	delimiter.

If	an	element	is	null,	the	string	"null"	is	added	as	its	textual	representation.	If
the	delimiter	is	null,	a	NullPointerException	is	thrown.

Note	that	both	the	individual	strings	and	the	delimiter	string	are	CharSequence	objects.
The	examples	in	this	section	use	String	and	StringBuilder	objects	that	implement
the	CharSequence	interface	(p.	360).

An	Iterable	provides	an	iterator	to	traverse	over	its	elements.	The	following	examples
use	an	ArrayList	(§10.1,	p.	423)	that	implements	the	Iterable	interface.	The
second	join()	method	is	then	able	to	traverse	the	Iterable	using	the	iterator.	This
method	will	accept	only	an	Iterable	whose	elements	are	either	of	type
CharSequence	or	subtypes	of	CharSequence.

The	first	example	shows	joining	of	String	objects.	The	first	join()	method	is	called
in	this	case.
Click	here	to	view	code	image

//	(1)	Joining	individual	String	objects:
String	dateStr	=	String.join(“/”,	“2014”,	“January”,	“11”);
System.out.println(dateStr);																		//	2014/January/11

The	second	example	shows	joining	of	elements	in	a	StringBuilder	array.	Again	the
first	join()	method	is	called,	with	the	array	being	passed	as	the	second	parameter.
Click	here	to	view	code	image

//	(2)	Joining	elements	in	a	StringBuilder	array:
StringBuilder	left	=	new	StringBuilder(“Left”);

StringBuilder	right	=	new	StringBuilder(“Right”);
StringBuilder[]	strBuilders	=	{	left,	right,	left	};
String	march	=	String.join(“—>”,	strBuilders);
System.out.println(march);																				//	Left—>Right—>Left

The	third	example	shows	joining	of	elements	in	an	ArrayList	of	StringBuilder.
The	second	join()	method	is	called,	with	the	ArrayList	being	passed	as	the	second
parameter.	Note	that	some	of	the	elements	of	the	ArrayList	are	null.
Click	here	to	view	code	image

//	(3)	Joining	elements	in	a	StringBuilder	list:
ArrayList<StringBuilder>	sbList	=	new	ArrayList<>();
sbList.add(right);	sbList.add(null);	sbList.add(left);	sbList.add(null);
String	resultStr	=	“[”	+	String.join(“,	“,	sbList)	+	“]”;
System.out.println(resultStr);																//	[Right,	null,	Left,	null]

The	last	example	shows	joining	of	elements	in	an	ArrayList	of	CharSequence.
Again	the	second	join()	method	is	called,	with	the	ArrayList	being	passed	as	the
second	parameter.	Note	that	elements	of	the	ArrayList	are	String	and
StringBuilder	objects	that	are	also	of	type	CharSequence.
Click	here	to	view	code	image

//	(4)	Joining	elements	in	a	CharSequence	list:
ArrayList<CharSequence>	charSeqList	=	new	ArrayList<>();
charSeqList.add(right);	charSeqList.add(left);					//	Add	StringBuilder
objects.
charSeqList.add(“Right”);	charSeqList.add(“Left”);	//	Add	String	objects.
String	resultStr2	=	“<”	+	String.join(“;	“,	charSeqList)	+	“>”;
System.out.println(resultStr2);															//	<Right;	Left;	Right;	Left>

Searching	for	Characters	and	Substrings
The	following	overloaded	methods	can	be	used	to	find	the	index	of	a	character	or	the	start
index	of	a	substring	in	a	string.	These	methods	search	forward	toward	the	end	of	the
string.	In	other	words,	the	index	of	the	first	occurrence	of	the	character	or	substring	is
found.	If	the	search	is	unsuccessful,	the	value	–1	is	returned.

Click	here	to	view	code	image
int	indexOf(int	ch)
int	indexOf(int	ch,	int	fromIndex)

The	first	method	finds	the	index	of	the	first	occurrence	of	the	argument	character	in
a	string.	The	second	method	finds	the	index	of	the	first	occurrence	of	the	argument
character	in	a	string,	starting	at	the	index	specified	in	the	second	argument.	If	the
index	argument	is	negative,	the	index	is	assumed	to	be	0.	If	the	index	argument	is
greater	than	the	length	of	the	string,	it	is	effectively	considered	to	be	equal	to	the
length	of	the	string,	resulting	in	the	value	-1	being	returned.

Click	here	to	view	code	image
int	indexOf(String	str)
int	indexOf(String	str,	int	fromIndex)

The	first	method	finds	the	start	index	of	the	first	occurrence	of	the	substring
argument	in	a	string.	The	second	method	finds	the	start	index	of	the	first	occurrence
of	the	substring	argument	in	a	string,	starting	at	the	index	specified	in	the	second
argument.

The	String	class	also	defines	a	set	of	methods	that	search	for	a	character	or	a	substring,
but	the	search	is	backward	toward	the	start	of	the	string.	In	other	words,	the	index	of	the
last	occurrence	of	the	character	or	substring	is	found.

Click	here	to	view	code	image
int	lastIndexOf(int	ch)
int	lastIndexOf(int	ch,	int	fromIndex)
int	lastIndexOf(String	str)
int	lastIndexOf(String	str,	int	fromIndex)

The	following	methods	can	be	used	to	create	a	string	in	which	all	occurrences	of	a
character	or	a	subsequence	in	a	string	have	been	replaced	with	another	character	or
subsequence:

Click	here	to	view	code	image
String	replace(char	oldChar,	char	newChar)
String	replace(CharSequence	target,	CharSequence	replacement)

The	first	method	returns	a	new	String	object	that	is	the	result	of	replacing	all
occurrences	of	the	oldChar	in	the	current	string	with	the	newChar.	The	current
string	is	returned	if	no	occurrences	of	the	oldChar	can	be	found.

The	second	method	returns	a	new	String	object	that	is	the	result	of	replacing	all
occurrences	of	the	character	sequence	target	in	the	current	string	with	the
character	sequence	replacement.	The	current	string	is	returned	if	no
occurrences	of	the	target	can	be	found.

The	following	methods	can	be	used	to	test	whether	a	string	satisfies	a	given	criterion:

Click	here	to	view	code	image
boolean	contains(CharSequence	cs)

This	method	returns	true	if	the	current	string	contains	the	specified	character
sequence,	and	false	otherwise.

Click	here	to	view	code	image
boolean	startsWith(String	prefix)

This	method	returns	true	if	the	current	string	starts	with	the	character	sequence
specified	by	parameter	prefix,	and	false	otherwise.

Click	here	to	view	code	image
boolean	startsWith(String	prefix,	int	index)

This	method	returns	true	if	the	substring	of	the	current	string	at	the	specified
index	starts	with	the	character	sequence	specified	by	parameter	prefix,	and
false	otherwise.

Click	here	to	view	code	image
boolean	endsWith(String	suffix)

This	method	returns	true	if	the	current	string	ends	with	the	character	sequence
specified	by	parameter	suffix,	and	false	otherwise.

Examples	of	search	and	replace	methods:
Click	here	to	view	code	image

String	funStr	=	“Java	Jives”;
//															0123456789

int	jInd1a	=	funStr.indexOf(‘J’);													//	0
int	jInd1b	=	funStr.indexOf(‘J’,	1);										//	5
int	jInd2a	=	funStr.lastIndexOf(‘J’);									//	5
int	jInd2b	=	funStr.lastIndexOf(‘J’,	4);						//	0

String	banner	=	“One	man,	One	vote”;
//															01234567890123456

int	subInd1a	=	banner.indexOf(“One”);									//	0
int	subInd1b	=	banner.indexOf(“One”,	3);						//	9
int	subInd2a	=	banner.lastIndexOf(“One”);					//	9
int	subInd2b	=	banner.lastIndexOf(“One”,	10);	//	9
int	subInd2c	=	banner.lastIndexOf(“One”,	8);		//	0
int	subInd2d	=	banner.lastIndexOf(“One”,	2);		//	0

String	newStr	=	funStr.replace(‘J’,	‘W’);									//	“Wava	Wives”
String	newBanner	=	banner.replace(“One”,	“No”);			//	“No	man,	No	vote”
boolean	found1	=	banner.contains(“One”);										//	true
boolean	found2	=	newBanner.contains(“One”);							//	false

String	song	=	“Start	me	up!”;
//													012345677890
boolean	found3				=	song.startsWith(“Start”);					//	true
boolean	notFound1	=	song.startsWith(“start”);					//	false
boolean	found4				=	song.startsWith(“me”,	6);					//	true
boolean	found5				=	song.endsWith(“up!”);									//	true

boolean	notFound2	=	song.endsWith(“up”);										//	false

Extracting	Substrings

String	trim()

This	method	can	be	used	to	create	a	string	where	whitespace	(in	fact,	all	characters
with	values	less	than	or	equal	to	the	space	character	'\u0020')	has	been	removed
from	the	front	(leading)	and	the	end	(trailing)	of	a	string.

Click	here	to	view	code	image
String	substring(int	startIndex)
String	substring(int	startIndex,	int	endIndex)

The	String	class	provides	these	overloaded	methods	to	extract	substrings	from	a
string.	A	new	String	object	containing	the	substring	is	created	and	returned.	The
first	method	extracts	the	string	that	starts	at	the	given	index	startIndex	and
extends	to	the	end	of	the	string.	The	end	of	the	substring	can	be	specified	by	using	a
second	argument	endIndex	that	is	the	index	of	the	first	character	after	the
substring—that	is,	the	last	character	in	the	substring	is	at	index	endIndex-1.	If
the	index	value	is	not	valid,	an	IndexOutOfBoundsException	is	thrown.

Examples	of	extracting	substrings:
Click	here	to	view	code	image

String	utopia	=	“\t\n		Java	Nation	\n\t		”;
utopia	=	utopia.trim();																										//	“Java	Nation”
utopia	=	utopia.substring(5);																				//	“Nation”
String	radioactive	=	utopia.substring(3,6);						//	“ion”

Converting	Primitive	Values	and	Objects	to	Strings
The	String	class	overrides	the	toString()	method	in	the	Object	class	and	returns
the	String	object	itself:

String	toString()

This	method	is	defined	in	the	CharSequence	interface,	which	the	String	class
implements	(p.	360).

The	String	class	also	defines	a	set	of	static	overloaded	valueOf()	methods	to	convert
objects	and	primitive	values	into	strings:

Click	here	to	view	code	image
static	String	valueOf(Object	obj)
static	String	valueOf(char[]	charArray)
static	String	valueOf(boolean	b)
static	String	valueOf(char	c)

All	of	these	methods	return	a	string	representing	the	given	parameter	value.	A	call
to	the	method	with	the	parameter	obj	is	equivalent	to	obj.toString()	when
obj	is	not	null;	otherwise,	the	"null"	string	is	returned.	The	boolean	values
true	and	false	are	converted	into	the	strings	"true"	and	"false".	The
char	parameter	is	converted	to	a	string	consisting	of	a	single	character.

Click	here	to	view	code	image
static	String	valueOf(int	i)
static	String	valueOf(long	l)
static	String	valueOf(float	f)
static	String	valueOf(double	d)

The	static	valueOf()	method,	which	accepts	a	primitive	value	as	an	argument,	is
equivalent	to	the	static	toString()	method	in	the	corresponding	wrapper	class
for	each	of	the	primitive	data	types	((6a)	and	(6b)	in	§8.3,	p.	347).	Note	that	there
are	no	valueOf()	methods	that	accept	a	byte	or	a	short.

Examples	of	string	conversions:
Click	here	to	view	code	image

String	anonStr			=	String.valueOf(“Make	me	a	string.”);						//	“Make	me	a
string.”
String	charStr			=	String.valueOf(new	char[]	{‘a’,	‘h’,	‘a’});//	“aha”
String	boolTrue		=	String.valueOf(true);																						//	“true”
String	doubleStr	=	String.valueOf(Math.PI);																	//
“3.141592653589793”

Formatted	Strings
We	have	used	the	System.out.printf()	method	to	format	values	and	print	them	to
the	terminal	window	(§1.9,	p.	15).	To	just	create	the	string	with	the	formatted	values,	but
not	print	the	formatted	result,	we	can	use	the	following	static	method	from	the	String
class.	It	accepts	the	same	arguments	as	the	printf()	method,	and	uses	the	same	format
specifications	(Table	1.2,	p.	20).

Click	here	to	view	code	image
static	String	format(String	format,	Object…	args)

The	method	returns	a	string	with	the	result	of	formatting	the	values	in	the	varargs
parameter	args	according	to	the	String	parameter	format.	The	format	string
contains	format	specifications	that	determine	how	each	subsequent	value	in	the
varargs	parameter	args	will	be	formatted.

Any	error	in	the	format	string	will	result	in	a	runtime	exception.

The	following	call	to	the	format()	method	creates	a	formatted	string	with	the	three

values	formatted	according	to	the	specified	format	string:
Click	here	to	view	code	image

String	formattedStr	=	String.format(“Formatted	values|%5d|%8.3f|%5s|”,
																																				2016,	Math.PI,	“Hi”);
System.out.println(formattedStr);	//	Formatted	values|	2016|		3.142|			Hi|
formattedStr	=	formattedStr.toUpperCase();
System.out.println(formattedStr);	//	FORMATTED	VALUES|	2016|		3.142|			HI|

Other	miscellaneous	methods	exist	in	the	String	class	for	pattern	matching
(matches()),	splitting	strings	(split()),	and	converting	a	string	to	an	array	of	bytes
(getBytes()).	The	method	hashCode()	can	be	used	to	compute	a	hash	value	based
on	the	characters	in	the	string.	Consult	the	Java	SE	platform	API	documentation	for	more
details.

	Review	Questions

8.11	Which	of	the	following	operators	cannot	have	an	operand	of	type	String?

Select	the	two	correct	answers.

(a)	+

(b)	-

(c)	+=

(d)	.

(e)	&

8.12	Which	expression	will	extract	the	substring	"kap",	given	the	following
declaration:
String	str	=	“kakapo”;

Select	the	one	correct	answer.

(a)	str.substring(2,	2)

(b)	str.substring(2,	3)

(c)	str.substring(2,	4)

(d)	str.substring(2,	5)

(e)	str.substring(3,	3)

8.13	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	code?
Click	here	to	view	code	image

class	MyClass	{
		public	static	void	main(String[]	args)	{
				String	str1	=	“str1”;
				String	str2	=	“str2”;
				String	str3	=	“str3”;

				str1.concat(str2);

				System.out.println(str3.concat(str1));
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile	because	the	expression	str3.concat(str1)
will	not	result	in	a	valid	argument	for	the	println()	method.

(b)	The	program	will	print	str3str1str2	at	runtime.

(c)	The	program	will	print	str3	at	runtime.

(d)	The	program	will	print	str3str1	at	runtime.

(e)	The	program	will	print	str3str2	at	runtime.

8.14	Which	statement	about	the	trim()	method	of	the	String	class	is	true?

Select	the	one	correct	answer.

(a)	It	returns	a	string	where	the	leading	whitespace	of	the	original	string	has	been
removed.

(b)	It	returns	a	string	where	the	trailing	whitespace	of	the	original	string	has	been
removed.

(c)	It	returns	a	string	where	both	the	leading	and	trailing	whitespace	of	the	original
string	has	been	removed.

(d)	It	returns	a	string	where	all	the	whitespace	of	the	original	string	has	been
removed.

(e)	None	of	the	above.

8.15	Which	of	the	following	statements	are	true?

Select	the	two	correct	answers.

(a)	String	objects	are	immutable.

(b)	Subclasses	of	the	String	class	can	be	mutable.

(c)	All	wrapper	classes	are	declared	as	final.

(d)	All	objects	have	a	public	method	named	clone.

(e)	The	expression	((new	char[]	{'o',	'k'})	instanceof
String)	is	always	true.

8.16	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	RefEq	{
		public	static	void	main(String[]	args)	{
				String	s	=	“ab”	+	“12”;
				String	t	=	“ab”	+	12;
				String	u	=	new	String(“ab12”);
				System.out.println((s==t)	+	”	”	+	(s==u));
		}

}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	print	false	false	at	runtime.

(c)	The	program	will	print	false	true	at	runtime.

(d)	The	program	will	print	true	false	at	runtime.

(e)	The	program	will	print	true	true	at	runtime.

8.17	Which	of	these	parameter	lists	can	be	found	in	a	constructor	of	the	String	class?

Select	the	five	correct	answers.

(a)	()

(b)	(int	capacity)

(c)	(char[]	data)

(d)	(String	str)

(e)	(CharSequence	cs)

(f)	(StringBuilder	sb)

(g)	(char	c)

(h)	(Object	o)

(i)	(String	str,	int	beginIndex,	int	endIndex)

(j)	(char[]	data,	int	offset,	int	count)

8.18	Which	of	the	following	methods	is	not	defined	in	the	String	class?

Select	the	one	correct	answer.

(a)	trim()

(b)	length()

(c)	concat(String)

(d)	hashCode()

(e)	reverse()

8.19	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	Uppity	{
		public	static	void	main(String[]	args)	{
				String	str1	=	“lower”,	str2	=	“LOWER”,	str3	=	“UPPER”;
				str1.toUpperCase();
				str1.replace(“LOWER”,“UPPER”);
				System.out.println((str1.equals(str2))	+	”	”	+	(str1.equals(str3)));

		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	false	true.

(b)	The	program	will	print	false	false.

(c)	The	program	will	print	true	false.

(d)	The	program	will	print	true	true.

(e)	The	program	will	fail	to	compile.

(f)	The	program	will	compile,	but	throw	an	exception	at	runtime.

8.20	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	FunCharSeq	{
		private	static	void	putO(String	s1)	{
				s1	=	s1.trim();
				s1	+=	“O”;
		}

		public	static	void	main(String[]	args)	{
				String	s1	=	”	W	“;
				putO(s1);
				s1.concat(“W”);
				System.out.println(“|”	+	s1	+	“|”);
		}
}

Select	the	one	correct	answer.

(a)	|WOW|

(b)	|	W	W|

(c)	|WO|

(d)	|	W	|

(e)	The	program	will	fail	to	compile.

(f)	The	program	will	compile,	but	throw	an	exception	at	runtime.

8.5	The	 	and	 	Classes

Thread-Safety
The	classes	StringBuilder	and	StringBuffer	implement	mutable	sequences	of
characters.	Both	classes	support	the	same	operations,	but	the	StringBuffer	class	is	the
thread-safe	analog	of	the	StringBuilder	class.	Certain	operations	on	a	string	buffer
are	synchronized,	so	that	when	used	by	multiple	threads,	these	operations	are	performed	in
an	orderly	manner.	Note	that	a	String	object	is	also	thread-safe—because	it	is
immutable,	a	thread	cannot	change	its	state.	String	builders	are	preferred	when	heavy
modification	of	character	sequences	is	involved	and	synchronization	of	operations	is	not
important.

Although	the	rest	of	this	section	focuses	on	string	builders,	it	is	equally	applicable	to
string	buffers.

Mutability
In	contrast	to	the	String	class,	which	implements	immutable	character	sequences,	the
StringBuilder	class	implements	mutable	character	sequences.	Not	only	can	the
character	sequences	in	a	string	builder	be	changed,	but	the	capacity	of	the	string	builder
can	also	change	dynamically.	The	capacity	of	a	string	builder	is	the	maximum	number	of
characters	that	a	string	builder	can	accommodate	before	its	size	is	automatically
augmented.

Although	there	is	a	close	relationship	between	objects	of	the	String	and
StringBuilder	classes,	these	are	two	independent	final	classes,	both	directly
extending	the	Object	class.	Hence,	String	references	cannot	be	stored	(or	cast)	to
StringBuilder	references,	and	vice	versa.	However,	both	classes	implement	the
CharSequence	interface	(p.	360).

The	StringBuilder	class	provides	various	facilities	for	manipulating	string	builders:

•	Constructing	string	builders

•	Changing,	deleting,	and	reading	characters	in	string	builders

•	Constructing	strings	from	string	builders

•	Appending,	inserting,	and	deleting	in	string	builders

•	Controlling	string	builder	capacity

Constructing	String	Builders
The	final	class	StringBuilder	provides	four	constructors	that	create	and	initialize
StringBuilder	objects	and	set	their	initial	capacity.

Click	here	to	view	code	image
StringBuilder(String	str)
StringBuilder(CharSequence	charSeq)

The	contents	of	the	new	StringBuilder	object	are	the	same	as	the	contents	of
the	String	object	or	the	character	sequence	passed	as	an	argument.	The	initial
capacity	of	the	string	builder	is	set	to	the	length	of	the	argument	sequence,	plus
room	for	16	more	characters.

Click	here	to	view	code	image
StringBuilder(int	initialCapacity)

The	new	StringBuilder	object	has	no	content.	The	initial	capacity	of	the	string
builder	is	set	to	the	value	of	the	argument,	which	cannot	be	less	than	0.
StringBuilder()

This	constructor	also	creates	a	new	StringBuilder	object	with	no	content.	The
initial	capacity	of	the	string	builder	is	set	to	16	characters.

Examples	of	StringBuilder	object	creation	and	initialization:
Click	here	to	view	code	image

StringBuilder	strBuilder1	=	new	StringBuilder(“Phew!”);		//	“Phew!”,	capacity
21
StringBuilder	strBuilder2	=	new	StringBuilder(10);							//	””,	capacity	10
StringBuilder	strBuilder3	=	new	StringBuilder();									//	””,	capacity	16

Reading	and	Changing	Characters	in	String	Builders

Returns	the	number	of	characters	in	the	string	builder.

These	methods	read	and	change	the	character	at	a	specified	index	in	the	string
builder,	respectively.	The	first	character	is	at	index	0,	and	the	last	one	is	at	index	1
less	than	the	number	of	characters	in	the	string	builder.	A	IndexOutOfBounds–
Exception	is	thrown	if	the	index	is	not	valid.

Click	here	to	view	code	image
CharSequence	subSequence(int	start,	int	end)

This	method	is	implemented	as	part	of	the	CharSequence	interface	(p.	360).

The	following	is	an	example	of	reading	and	changing	string	builder	contents:
Click	here	to	view	code	image

StringBuilder	strBuilder	=	new	StringBuilder(“Javv”);						//	“Javv”,
capacity	20
strBuilder.setCharAt(strBuilder.length()-1,	strBuilder.charAt(1));	//	“Java”

Constructing	Strings	from	String	Builders
The	StringBuilder	class	overrides	the	toString()	method	from	the	Object
class	(see	also	the	CharSequence	interface,	p.	360).	It	returns	the	contents	of	a	string
builder	in	a	String	object.
Click	here	to	view	code	image

String	fromBuilder	=	strBuilder.toString();																							//	“Java”

Differences	between	the	String	and	StringBuilder	Classes

Since	the	StringBuilder	class	does	not	override	the	equals()	method	from	the
Object	class,	nor	does	it	implement	the	Comparable	interface,	the	contents	of	string
builders	should	be	converted	to	String	objects	for	string	comparison.

The	StringBuilder	class	also	does	not	override	the	hashCode()	method	from	the
Object	class.	Again,	a	string	builder	can	be	converted	to	a	String	object	to	obtain	a
hash	value.

Appending,	Inserting,	and	Deleting	Characters	in	String	Builders
Appending,	inserting,	and	deleting	characters	automatically	results	in	adjustment	of	the
string	builder’s	structure	and	capacity,	if	necessary.	The	indices	passed	as	arguments	in	the
methods	must	be	equal	to	or	greater	than	0.	An	IndexOutOfBounds–Exception	is
thrown	if	an	index	is	not	valid.

Note	that	the	methods	in	this	subsection	return	the	reference	value	of	the	modified	string
builder,	making	it	convenient	to	chain	calls	to	these	methods.

Appending	Characters	to	a	String	Builder

The	overloaded	method	append()	can	be	used	to	append	characters	at	the	end	of	a
string	builder.

Click	here	to	view	code	image
StringBuilder	append(Object	obj)

The	obj	argument	is	converted	to	a	string	as	if	by	the	static	method	call
String.valueOf(obj),	and	this	string	is	appended	to	the	current	string
builder.

Click	here	to	view	code	image
StringBuilder	append(String	str)
StringBuilder	append(CharSequence	charSeq)
StringBuilder	append(CharSequence	charSeq,	int	start,	int	end)
StringBuilder	append(char[]	charArray)
StringBuilder	append(char[]	charArray,	int	offset,	int	length)
StringBuilder	append(char	c)

These	methods	allow	characters	from	various	sources	to	be	appended	to	the	end	of
the	current	string	builder.

Click	here	to	view	code	image
StringBuilder	append(boolean	b)
StringBuilder	append(int	i)
StringBuilder	append(long	l)
StringBuilder	append(float	f)
StringBuilder	append(double	d)

These	methods	convert	the	primitive	value	of	the	argument	to	a	string	by	applying
the	static	method	String.valueOf()	to	the	argument,	before	appending	the
result	to	the	string	builder.

Inserting	Characters	in	a	String	Builder

The	overloaded	method	insert()	can	be	used	to	insert	characters	at	a	given	position	in
a	string	builder.

Click	here	to	view	code	image
StringBuilder	insert(int	offset,	Object	obj)
StringBuilder	insert(int	dstOffset,	CharSequence	seq)
StringBuilder	insert(int	dstOffset,	CharSequence	seq,	int	start,	int	end)
StringBuilder	insert(int	offset,	String	str)
StringBuilder	insert(int	offset,	char[]	charArray)
StringBuilder	insert(int	offset,	char	c)
StringBuilder	insert(int	offset,	boolean	b)
StringBuilder	insert(int	offset,	int	i)
StringBuilder	insert(int	offset,	long	l)
StringBuilder	insert(int	offset,	float	f)
StringBuilder	insert(int	offset,	double	d)

The	argument	is	converted,	if	necessary,	by	applying	the	static	method
String.valueOf().	The	offset	argument	specifies	where	the	characters	are
to	be	inserted	in	the	string	builder,	and	must	be	greater	than	or	equal	to	0.

Deleting	Characters	in	a	String	Builder

The	following	methods	can	be	used	to	delete	characters	from	specific	positions	in	a	string
builder:

Click	here	to	view	code	image
StringBuilder	deleteCharAt(int	index)
StringBuilder	delete(int	start,	int	end)

The	first	method	deletes	a	character	at	a	specified	index	in	the	string	builder,
contracting	the	string	builder	by	one	character.	The	second	method	deletes	a
substring,	which	is	specified	by	the	start	index	(inclusive)	and	the	end	index
(exclusive),	contracting	the	string	builder	accordingly.

Among	other	miscellaneous	methods	included	in	the	class	StringBuilder	is	the
following	method,	which	reverses	the	contents	of	a	string	builder:

StringBuilder	reverse()

Examples	of	appending,	inserting,	and	deleting	in	string	builders:
Click	here	to	view	code	image

StringBuilder	builder	=	new	StringBuilder(“banana	split”);			//	“banana
split”
builder.delete(4,12);																																								//	“bana”
builder.append(42);																																										//	“bana42”
builder.insert(4,“na”);																																						//	“banana42”
builder.reverse();																																											//	“24ananab”
builder.deleteCharAt(builder.length()-1);																				//	“24anana”
builder.append(‘s’);																																									//	“24ananas”

All	of	the	previously	mentioned	methods	modify	the	contents	of	the	string	builder	and
return	a	reference	value	denoting	the	current	string	builder.	This	allows	chaining	of
method	calls.	The	method	calls	invoked	on	the	string	builder	denoted	by	the	reference
builder	can	be	chained	as	follows,	giving	the	same	result:
Click	here	to	view	code	image

builder.delete(4,12).append(42).insert(4,“na”).reverse().
							deleteCharAt(builder.length()-1).append(‘s’);									//	“24ananas”

The	method	calls	in	the	chain	are	evaluated	from	left	to	right,	so	that	the	previous	chain	of
calls	is	interpreted	as	follows:
Click	here	to	view	code	image

(((((builder.delete(4,12)).append(42)).insert(4,“na”)).reverse()).
					deleteCharAt(builder.length()-1)).append(‘s’);										//	“24ananas”

Each	method	call	returns	the	reference	value	of	the	modified	string	builder,	which	is	then
used	to	invoke	the	next	method.	The	string	builder	remains	denoted	by	the	reference
builder.

The	compiler	uses	string	builders	to	implement	string	concatenation	with	the	+	operator	in
String-valued	non-constant	expressions.	The	following	code	illustrates	this
optimization:

Click	here	to	view	code	image
String	theChosen	=	“U”;
String	str1	=	4	+	theChosen	+	“Only”;											//	(1)	Non-constant
expression.

The	assignment	statement	at	(1)	is	equivalent	to	the	following	code	using	one	string
builder:
Click	here	to	view	code	image

String	str2	=	new	StringBuilder().
																		append(4).append(theChosen).append(“Only”).toString();	//
(2)

The	code	at	(2)	does	not	create	any	temporary	String	objects	when	concatenating
several	strings,	since	a	single	StringBuilder	object	is	modified	and	finally	converted
to	a	String	object	having	the	string	content	"4UOnly".

Controlling	String	Builder	Capacity
The	following	methods	can	be	used	to	control	various	capacity-related	aspects	of	a	string
builder:

int	capacity()

Returns	the	current	capacity	of	the	string	builder,	meaning	the	number	of	characters
the	current	builder	can	accommodate	without	allocating	a	new,	larger	array	to	hold
characters.

Click	here	to	view	code	image
void	ensureCapacity(int	minCapacity)

Ensures	that	there	is	room	for	at	least	a	minCapacity	number	of	characters.	It
expands	the	string	builder,	depending	on	the	current	capacity	of	the	builder.
void	trimToSize()

Attempts	to	reduce	the	storage	used	for	the	character	sequence.	It	may	affect	the
capacity	of	the	string	builder.
void	setLength(int	newLength)

Ensures	that	the	actual	number	of	characters—that	is,	the	length	of	the	string
builder—is	exactly	equal	to	the	value	of	the	newLength	argument,	which	must	be
greater	than	or	equal	to	0.	This	operation	can	result	in	the	string	being	truncated	or
padded	with	null	characters	('\u0000').

This	method	affects	the	capacity	of	the	string	builder	only	if	the	value	of	the
parameter	newLength	is	greater	than	the	current	capacity.

One	use	of	this	method	is	to	clear	the	string	builder:
Click	here	to	view	code	image

builder.setLength(0);						//	Empty	the	builder.

	Review	Questions

8.21	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				String	s	=	“hello”;
				StringBuilder	sb	=	new	StringBuilder(s);
				sb.reverse();
				if	(s	==	sb)	System.out.println(“a”);
				if	(s.equals(sb))	System.out.println(“b”);
				if	(sb.equals(s))	System.out.println(“c”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	throw	an	exception	at	runtime.

(c)	The	program	will	compile,	but	will	not	print	anything.

(d)	The	program	will	compile,	and	will	print	abc.

(e)	The	program	will	compile,	and	will	print	bc.

(f)	The	program	will	compile,	and	will	print	a.

(g)	The	program	will	compile,	and	will	print	b.

(h)	The	program	will	compile,	and	will	print	c.

8.22	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				StringBuilder	sb	=	new	StringBuilder(“have	a	nice	day”);
				sb.setLength(6);
				System.out.println(sb);
		}
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile,	because	there	is	no	method	named	setLength
in	the	StringBuilder	class.

(b)	The	code	will	fail	to	compile,	because	the	StringBuilder	reference	sb	is
not	a	legal	argument	to	the	println()	method.

(c)	The	program	will	throw	a	StringIndexOutOfBoundsException	at
runtime.

(d)	The	program	will	print	have	a	nice	day	at	runtime.

(e)	The	program	will	print	have	a	at	runtime.

(f)	The	program	will	print	ce	day	at	runtime.

8.23	Which	of	these	parameter	lists	can	be	found	in	a	constructor	of	the
StringBuilder	class?

Select	the	four	correct	answers.

(a)	()

(b)	(int	capacity)

(c)	(char[]	data)

(d)	(String	str)

(e)	(CharSequence	cs)

(f)	(StringBuilder	sb)

(g)	(char	c)

(h)	(Object	o)

(i)	(String	str,	int	beginIndex,	int	endIndex)

(j)	(char[]	data,	int	offset,	int	count)

8.24	Which	of	the	following	methods	is	not	defined	in	the	StringBuilder	class?

Select	the	one	correct	answer.

(a)	trim()

(b)	length()

(c)	append(String)

(d)	reverse()

(e)	setLength(int)

8.25	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	PeskyCharSeq	{
		public	static	void	main	(String[]	args)	{
				StringBuilder	sb1	=	new	StringBuilder(“WOW”);
				StringBuilder	sb2	=	new	StringBuilder(sb1);
				System.out.println((sb1==sb2)	+	”	”	+	sb1.equals(sb2));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	false	true.

(b)	The	program	will	print	false	false.

(c)	The	program	will	print	true	false.

(d)	The	program	will	print	true	true.

(e)	The	program	will	fail	to	compile.

(f)	The	program	will	compile,	but	throws	an	exception	at	runtime.

8.26	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	MoreCharSeq	{
		public	static	void	main	(String[]	args)	{
				String	s1	=	“WOW”;
				StringBuilder	s2	=	new	StringBuilder(s1);
				String	s3	=	new	String(s2);
				System.out.println((s1.hashCode()	==	s2.hashCode())	+	”	”	+
																							(s1.hashCode()	==	s3.hashCode()));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	false	true.

(b)	The	program	will	print	false	false.

(c)	The	program	will	print	true	false.

(d)	The	program	will	print	true	true.

(e)	The	program	will	fail	to	compile.

(f)	The	program	will	compile,	but	throw	an	exception	at	runtime.

8.27	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	Appendage	{
		private	static	void	putO(StringBuilder	s1)	{
				s1.append(“O”);
		}

		public	static	void	main(String[]	args)	{
				StringBuilder	s1	=	new	StringBuilder(“W”);
				putO(s1);
				s1.append(“W!”);
				System.out.println(s1);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	WW!.

(b)	The	program	will	print	WOW!.

(c)	The	program	will	print	W.

(d)	The	program	will	print	WO.

(e)	The	program	will	fail	to	compile.

(f)	The	program	will	compile,	but	throw	an	exception	at	runtime.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	The	Object	class,	which	is	the	most	fundamental	class	in	Java

•	Wrapper	classes,	which	not	only	allow	primitive	values	to	be	treated	as	objects,	but
also	contain	useful	methods	for	converting	values

•	The	String	class,	including	how	immutable	strings	are	created	and	used

•	The	StringBuilder	class,	including	how	dynamic	strings	are	created	and
manipulated

•	Comparison	of	the	String,	StringBuilder,	and	StringBuffer	classes

	Programming	Exercises

8.1	Create	a	class	named	Pair,	which	aggregates	two	arbitrary	objects.	Implement	the
equals()	and	hashCode()	methods	in	such	a	way	that	a	Pair	object	is
identical	to	another	Pair	object	if,	and	only	if,	the	pair	of	constituent	objects	are
identical.	Make	the	toString()	implementation	return	the	textual	representation
of	both	the	constituent	objects	in	a	Pair	object.	Objects	of	the	Pair	class	should
be	immutable.

8.2	A	palindrome	is	a	text	phrase	that	is	spelled	the	same	way	backward	and	forward.
The	word	redivider	is	a	palindrome,	since	the	word	would	be	spelled	the	same	even
if	the	character	sequence	were	reversed.	Write	a	program	that	takes	a	string	as	an
argument	and	reports	whether	the	string	is	a	case-sensitive	palindrome.	For
example,	the	word	Redivider	would	not	be	a	palindrome	in	this	case,	since	we
distinguish	between	uppercase	and	lowercase	letters.

9.	Object	Lifetime

9.1	Garbage	Collection
Efficient	memory	management	is	essential	in	a	runtime	system.	Storage	for	objects	is
allocated	in	a	designated	part	of	the	memory	called	the	heap,	which	has	a	finite	size.
Garbage	collection	is	a	process	of	managing	the	heap	efficiently,	by	reclaiming	memory
occupied	by	objects	that	are	no	longer	needed	and	making	it	available	for	new	objects.
Java	provides	automatic	garbage	collection,	meaning	that	the	runtime	environment	can
take	care	of	memory	management	without	the	program	having	to	take	any	special	action.
Objects	allocated	on	the	heap	(through	the	new	operator)	are	administered	by	the
automatic	garbage	collector.	The	automatic	garbage	collection	scheme	guarantees	that	a
reference	to	an	object	is	always	valid	while	the	object	is	needed	by	the	program.
Specifically,	the	object	will	not	be	reclaimed,	leaving	the	reference	dangling.

Having	an	automatic	garbage	collector	frees	the	programmer	from	the	responsibility	of
writing	code	for	deleting	objects.	By	relying	on	the	automatic	garbage	collector,	a	Java
program	also	forfeits	any	significant	influence	on	the	garbage	collection	of	its	objects	(p.
393).	However,	this	price	is	insignificant	when	compared	to	the	cost	of	putting	the	code
for	object	management	in	place	and	plugging	all	the	memory	leaks.	Time-critical
applications	should	recognize	that	the	automatic	garbage	collector	runs	as	a	background
task	and	may	have	a	negative	impact	on	their	performance.

9.2	Reachable	Objects
An	automatic	garbage	collector	essentially	performs	two	tasks:

•	Decides	if	and	when	memory	needs	to	be	reclaimed

•	Finds	objects	that	are	no	longer	needed	by	the	program	and	reclaims	their	storage

A	program	has	no	guarantees	that	the	automatic	garbage	collector	will	be	run	during	its
execution.	Consequently,	a	program	should	not	rely	on	the	scheduling	of	the	automatic
garbage	collector	for	its	behavior	(p.	393).

To	understand	how	the	automatic	garbage	collector	finds	objects	whose	storage	should	be
reclaimed,	we	need	to	look	at	the	activity	happening	in	the	JVM.	Java	provides	thread-
based	multitasking,	meaning	that	several	threads	can	be	executing	concurrently	in	the
JVM,	each	doing	its	own	task.	A	thread	is	an	independent	path	of	execution	through	the
program	code.	A	thread	is	alive	if	it	has	not	completed	its	execution.	Each	live	thread	has
its	own	JVM	stack,	as	explained	in	§6.5,	p.	230.	The	JVM	stack	contains	activation	frames
of	methods	that	are	currently	active.	Local	references	declared	in	a	method	can	always	be
found	in	the	method’s	activation	frame,	stored	on	the	JVM	stack	associated	with	the	thread
in	which	the	method	is	called.	Objects,	in	contrast,	are	always	created	on	the	heap.	If	an
object	has	a	field	reference,	the	field	will	be	found	inside	the	object	in	the	heap,	and	the
object	denoted	by	the	field	reference	will	also	be	found	in	the	heap.

An	example	of	how	memory	is	organized	during	execution	is	depicted	in	Figure	9.1,
which	shows	two	live	threads	(t1	and	t2)	and	their	respective	JVM	stacks	with	the
activation	frames.	The	diagram	indicates	which	objects	in	the	heap	are	referenced	by	local
references	in	the	method	activation	frames.	It	also	identifies	field	references	in	objects,
which	refer	to	other	objects	in	the	heap.	Some	objects	have	several	aliases.

Figure	9.1	Memory	Organization	at	Runtime

An	object	in	the	heap	is	said	to	be	reachable	if	it	is	referenced	by	any	local	reference	in	a
JVM	stack.	Likewise,	any	object	that	is	denoted	by	a	reference	in	a	reachable	object	is
said	to	be	reachable.	Reachability	is	a	transitive	relationship.	Thus,	a	reachable	object	has
at	least	one	chain	of	reachable	references	from	the	JVM	stack.	Any	reference	that	makes
an	object	reachable	is	called	a	reachable	reference.	An	object	that	is	not	reachable	is	said
to	be	unreachable.

A	reachable	object	is	alive,	and	is	accessible	by	a	live	thread.	Note	that	an	object	can	be
accessible	by	more	than	one	thread.	Any	object	that	is	not	accessible	by	a	live	thread	is	a
candidate	for	garbage	collection.	When	an	object	becomes	unreachable	and	is	waiting	for
its	memory	to	be	reclaimed,	it	is	said	to	be	eligible	for	garbage	collection.	An	object	is
eligible	for	garbage	collection	if	all	references	denoting	it	are	in	eligible	objects.	Eligible
objects	do	not	affect	the	future	course	of	program	execution.	When	the	garbage	collector
runs,	it	finds	and	reclaims	the	storage	of	eligible	objects,	although	garbage	collection	does
not	necessarily	occur	as	soon	as	an	object	becomes	unreachable.

In	Figure	9.1,	the	objects	o4,	o5,	o11,	o12,	o14,	and	o15	all	have	reachable	references.
Objects	o13	and	o16	have	no	reachable	references	and,	therefore,	are	eligible	for	garbage
collection.

From	the	preceding	discussion	we	can	conclude	that	if	a	composite	object	becomes
unreachable,	its	constituent	objects	also	become	unreachable,	barring	any	reachable
references	to	the	constituent	objects.	Although	the	objects	o1,	o2,	and	o3	in	Figure	9.1
form	a	circular	list,	they	do	not	have	any	reachable	references.	Thus,	these	objects	are	all
eligible	for	garbage	collection.	Conversely,	the	objects	o5,	o6,	and	o7	form	a	linear	list,
but	they	are	all	reachable,	as	the	first	object	in	the	list,	o5,	is	reachable.	The	objects	o8,
o10,	o11,	and	o9	also	form	a	linear	list	(in	that	order),	but	not	all	objects	in	the	list	are
reachable.	Only	the	objects	o9	and	o11	are	reachable,	as	object	o11	has	a	reachable
reference.	The	objects	o8	and	o10	are	eligible	for	garbage	collection.

The	lifetime	of	an	object	is	the	time	from	its	creation	to	the	time	it	is	garbage	collected.
Under	normal	circumstances,	an	object	is	accessible	from	the	time	when	it	is	created	to	the
time	when	it	becomes	unreachable.	The	lifetime	of	an	object	can	also	include	a	period
when	it	is	eligible	for	garbage	collection,	waiting	for	its	storage	to	be	reclaimed.	The
finalization	mechanism	(p.	390)	in	Java	does	provide	a	means	for	resurrecting	an	object
after	it	is	eligible	for	garbage	collection,	but	the	finalization	mechanism	is	rarely	used	for
this	purpose.

9.3	Facilitating	Garbage	Collection
The	automatic	garbage	collector	determines	which	objects	are	not	reachable	and,
therefore,	eligible	for	garbage	collection.	It	will	certainly	go	to	work	if	there	is	an
imminent	memory	shortage.	Even	so,	automatic	garbage	collection	should	not	be
perceived	as	a	license	for	creating	a	plethora	of	objects	and	then	forgetting	about	them.
Nevertheless,	certain	programming	practices	can	help	in	minimizing	the	overhead
associated	with	garbage	collection	during	program	execution.

Certain	objects,	such	as	files	and	network	connections,	can	tie	up	resources	and	should	be
disposed	of	properly	when	they	are	no	longer	needed.	In	most	cases,	the	try-with-
resources	statement	(not	in	the	scope	of	this	book)	provides	a	convenient	facility	for	such
purposes,	as	it	will	always	ensure	proper	closing	of	the	Auto-Closeable	resources.

To	optimize	its	memory	footprint,	a	live	thread	should	retain	access	to	an	object	as	long
for	only	as	the	object	is	needed	for	its	execution.	The	program	can	allow	objects	to
become	eligible	for	garbage	collection	as	early	as	possible	by	removing	all	references	to
an	object	when	it	is	no	longer	needed.

Objects	that	are	created	and	accessed	by	local	references	in	a	method	are	eligible	for
garbage	collection	when	the	method	terminates,	unless	reference	values	to	these	objects
are	exported	out	of	the	method.	This	can	occur	if	a	reference	value	is	returned	from	the
method,	passed	as	argument	to	another	method	that	records	the	reference	value,	or	thrown
as	an	exception.	However,	a	method	need	not	always	leave	objects	to	be	garbage	collected
after	its	termination.	It	can	facilitate	garbage	collection	by	taking	suitable	action—for
example,	by	nulling	references.
Click	here	to	view	code	image

import	java.io.*;

class	WellBehavedClass	{
		//	…
		void	wellBehavedMethod()	{
				File	aFile;
				long[]	bigArray	=	new	long[20000];
				//	…	uses	local	variables	…
				//	Does	clean-up	(before	starting	something	extensive)
				aFile	=	null;																				//	(1)
				bigArray	=	null;																	//	(2)

				//	Start	some	other	extensive	activity
				//	…
		}
		//	…
}

In	this	code,	the	local	variables	are	set	to	null	after	use	at	(1)	and	(2),	before	starting
some	other	extensive	activity.	This	makes	the	objects	denoted	by	the	local	variables
eligible	for	garbage	collection	from	this	point	onward,	rather	than	after	the	method
terminates.	This	optimization	technique	of	nulling	references	should	be	used	only	as	a	last
resort	when	resources	are	scarce.

Here	are	some	other	techniques	to	facilitate	garbage	collection:

•	When	a	method	returns	a	reference	value	and	the	object	denoted	by	the	value	is	not
needed,	not	assigning	this	value	to	a	reference	facilitates	garbage	collection.

•	If	a	reference	is	assigned	a	new	value,	the	object	that	was	previously	denoted	by	the
reference	can	become	eligible	for	garbage	collection.

•	Removing	reachable	references	to	a	composite	object	can	make	the	constituent
objects	become	eligible	for	garbage	collection,	as	explained	earlier.

Example	9.1	illustrates	how	a	program	can	influence	garbage	collection	eligibility.	The
class	HeavyItem	represents	objects	with	a	large	memory	footprint,	for	which	we	want	to
monitor	garbage	collection.	Each	composite	HeavyItem	object	has	a	reference	to	a	large
array.	The	class	overrides	the	finalize()	method	from	the	Object	class	to	print	out
an	ID	when	the	object	is	finalized.	This	method	is	always	called	on	an	eligible	object
before	it	is	destroyed	(p.	390).	We	use	it	to	indicate	in	the	output	if	and	when	a
HeavyItem	is	reclaimed.	To	illustrate	the	effect	of	garbage	collection	on	object
hierarchies,	each	HeavyItem	object	may	also	have	a	reference	to	another	HeavyItem.

In	Example	9.1,	the	class	RecyclingBin	defines	a	method	createHeavyItem()	at

(4).	In	this	method,	the	HeavyItem	created	at	(5)	is	eligible	for	garbage	collection	after
the	reassignment	of	reference	itemA	at	(6),	as	this	object	will	then	have	no	references.
The	HeavyItem	created	at	(6)	is	accessible	on	return	from	the	method.	Its	fate	depends
on	the	code	that	calls	this	method.
In	Example	9.1,	the	class	RecyclingBin	also	defines	a	method	createList()	at
(8).	It	returns	the	reference	value	in	the	reference	item1,	which	denotes	the	first	item	in	a
list	of	three	HeavyItem	objects.	Because	of	the	list	structure,	none	of	the	HeavyItem
objects	in	the	list	is	eligible	for	garbage	collection	on	return	from	the	method.	Again,	the
fate	of	the	objects	in	the	list	is	decided	by	the	code	that	calls	this	method.	It	is	enough	for
the	first	item	in	the	list	to	become	unreachable,	so	that	all	objects	in	the	list	become
eligible	for	garbage	collection	(barring	any	reachable	references).

Example	9.1	Garbage	Collection	Eligibility
Click	here	to	view	code	image

//	File:	RecyclingBin.java
class	HeavyItem	{																																	//	(1)
		int[]					itemBody;
		String				itemID;
		HeavyItem	nextItem;

		HeavyItem(String	ID,	HeavyItem	itemRef)	{							//	(2)
				itemBody	=	new	int[1_000_000];
				itemID			=	ID;
				nextItem	=	itemRef;
		}

		@Override
		protected	void	finalize()	throws	Throwable	{				//	(3)
				System.out.println(itemID	+	“:	recycled.”);
				super.finalize();
		}
}
//__
public	class	RecyclingBin	{

		public	static	HeavyItem	createHeavyItem(String	itemID)	{									//	(4)
				HeavyItem	itemA	=	new	HeavyItem(itemID	+	“:	local	item”,	null);//	(5)
				itemA	=	new	HeavyItem(itemID,	null);																											//	(6)
				System.out.println(“Return	from	creating	HeavyItem	”	+	itemID);
				return	itemA;																																																		//	(7)
		}

		public	static	HeavyItem	createList(String	listID)	{														//	(8)
				HeavyItem	item3	=	new	HeavyItem(listID	+	“:	item3”,	null);					//	(9)
				HeavyItem	item2	=	new	HeavyItem(listID	+	“:	item2”,	item3);				//	(10)
				HeavyItem	item1	=	new	HeavyItem(listID	+	“:	item1”,	item2);				//	(11)
				System.out.println(“Return	from	creating	list	”	+	listID);
				return	item1;																																																		//	(12)
		}

		public	static	void	main(String[]	args)	{																									//	(13)
				HeavyItem	list	=	createList(“X”);																														//	(14)
				list	=	createList(“Y”);																																								//	(15)

				HeavyItem	itemOne	=	createHeavyItem(“One”);																				//	(16)

				HeavyItem	itemTwo	=	createHeavyItem(“Two”);																				//	(17)
				itemOne	=	null;																																																//	(18)
				createHeavyItem(“Three”);																																						//	(19)
				createHeavyItem(“Four”);																																							//	(20)
				System.out.println(“Return	from	main().”);
		}
}

Probable	output	from	the	program:
Click	here	to	view	code	image

Return	from	creating	list	X
Return	from	creating	list	Y
X:	item3:	recycled.
X:	item2:	recycled.
X:	item1:	recycled.
Return	from	creating	HeavyItem	One
Return	from	creating	HeavyItem	Two
Return	from	creating	HeavyItem	Three
Three:	local	item:	recycled.
Three:	recycled.
Two:	local	item:	recycled.
Return	from	creating	HeavyItem	Four
One:	local	item:	recycled.
One:	recycled.
Return	from	main().

In	Example	9.1,	the	main()	method	at	(13)	in	the	class	RecyclingBin	uses	the
methods	createHeavyItem()	and	createList().	It	creates	a	list	X	at	(14),	but	the
reference	to	its	first	item	is	reassigned	at	(15),	making	objects	in	list	X	eligible	for	garbage
collection	after	(15).	The	first	item	of	list	Y	is	stored	in	the	reference	list,	making	this
list	non-eligible	for	garbage	collection	during	the	execution	of	the	main()	method.

The	main()	method	creates	two	items	at	(16)	and	(17),	storing	their	reference	values	in
the	references	itemOne	and	itemTwo,	respectively.	The	reference	itemOne	is	nulled
at	(18),	making	the	HeavyItem	object	with	identity	One	eligible	for	garbage	collection.
The	two	calls	to	the	createHeavyItem()	method	at	(19)	and	(20)	return	reference
values	to	HeavyItem	objects,	which	are	not	stored,	making	each	object	eligible	for
garbage	collection	immediately	after	their	respective	method	calls	return.

The	output	from	the	program	bears	out	the	observations	made	earlier.	Objects	in	list	Y
(accessible	through	the	reference	list)	and	the	HeavyItem	object	with	identity	Two
(accessible	through	the	reference	itemTwo)	remain	non-eligible	while	the	main()
method	executes.	Although	the	output	shows	that	the	HeavyItem	object	with	identity
Four	was	never	garbage	collected,	it	is	not	accessible	once	it	becomes	eligible	for
garbage	collection	at	(20).	Any	objects	in	the	heap	after	the	program	terminates	are
reclaimed	by	the	operating	system.

9.4	Object	Finalization
Object	finalization	provides	an	object	with	a	last	resort	to	undertake	any	action	before	its
storage	is	reclaimed.	The	automatic	garbage	collector	calls	the	finalize()	method	in
an	object	that	is	eligible	for	garbage	collection	before	actually	destroying	the	object.	The
finalize()	method	is	defined	in	the	Object	class:

Click	here	to	view	code	image
protected	void	finalize()	throws	Throwable

An	implementation	of	the	finalize()	method	is	called	a	finalizer.	A	subclass	can
override	the	finalizer	from	the	Object	class	so	as	to	take	more	specific	and	appropriate
action	before	an	object	of	the	subclass	is	destroyed.	Note	that	the	overriding	method
cannot	narrow	the	visibility	of	the	overridden	method	and	must	be	declared	as	either
protected	or	public.

A	finalizer,	like	any	other	method,	can	catch	and	throw	exceptions	(§6.7,	p.	238).	When	a
finalizer	is	called	explicitly	by	the	program	code,	exception	handling	is	no	different	during
execution	of	a	finalizer	than	during	execution	of	any	other	method.	However,	any
exception	thrown	but	not	caught	by	a	finalizer	that	is	called	by	the	garbage	collector	is
ignored,	and	the	finalization	of	this	object	is	terminated.	The	finalizer	is	called	only	once
on	an	object,	regardless	of	whether	any	exception	is	thrown	during	its	execution.	In	case
of	finalization	failure,	the	object	remains	eligible	for	disposal	at	the	discretion	of	the
garbage	collector	(unless	it	has	been	resurrected,	as	explained	later	in	this	section).	Since
there	is	no	guarantee	that	the	garbage	collector	will	ever	run,	there	is	also	no	guarantee
that	the	finalizer	will	ever	be	called.

In	the	following	code,	the	finalizer	at	(1)	will	take	appropriate	action	if	and	when	called	on
objects	of	the	class	before	they	are	garbage	collected,	ensuring	that	the	resource	is	freed.
Since	it	is	not	guaranteed	that	the	finalizer	will	ever	be	called	at	all,	a	program	should	not
rely	on	the	finalization	to	do	any	critical	operations.
Click	here	to	view	code	image

public	class	AnotherWellBehavedClass	{
		SomeResource	objRef;
		//	…
		@Override
		protected	void	finalize()	throws	Throwable	{									//	(1)
				try	{																																														//	(2)
						if	(objRef	!=	null)	objRef.close();
				}	finally	{																																								//	(3)
						super.finalize();																																//	(4)
				}
		}
}

The	finalizer	in	a	subclass	should	explicitly	call	the	finalizer	in	its	superclass	as	its	last
action,	as	shown	at	(4).	The	call	to	the	finalizer	of	the	superclass	is	in	a	finally	block	at
(3),	which	is	guaranteed	to	execute	regardless	of	any	exceptions	thrown	by	the	code	in	the
try	block	at	(2).	(Another	example	of	finalizer	chaining	is	provided	in	Example	9.2	in	the
next	section.)

The	finalizer	of	an	object	can	make	the	object	non-eligible	again	(i.e.,	resurrect	it),	thereby
avoiding	garbage	collection	of	the	object.	One	simple	technique	is	to	assign	the	object’s
this	reference	to	a	static	field,	which	then	becomes	a	reachable	reference	for	the	object.
Since	a	finalizer	is	called	only	once	on	an	object	before	it	is	garbage	collected,	an	object
can	be	resurrected	only	once.	In	other	words,	if	the	object	again	becomes	eligible	for
garbage	collection	and	the	garbage	collector	runs,	the	finalizer	will	not	be	called.	Such
object	resurrections	are	not	recommended,	as	they	undermine	the	purpose	of	the
finalization	mechanism.

Note	that	an	enum	type	cannot	declare	a	finalizer.	Therefore,	an	enum	constant	may	never
be	finalized.

9.5	Finalizer	Chaining
Unlike	subclass	constructors,	overridden	finalizers	are	not	implicitly	chained	(§7.5,	p.
282).	Chaining	of	finalizers	requires	an	explicit	call	to	the	overridden	finalizer.	Example
9.2	illustrates	the	process	of	programmatically	chaining	finalizers.	It	creates	a	user-
specified	number	of	large	objects	of	a	user-specified	size;	the	number	and	size	are
provided	through	command-line	program	arguments.	The	loop	at	(7)	in	the	main()
method	creates	Blob	objects,	but	does	not	store	any	references	to	them.	Objects	created
are	instances	of	the	class	Blob	defined	at	(3).	The	Blob	constructor	at	(4)	initializes	the
field	size	by	constructing	a	large	array	of	integers.	The	Blob	class	extends	the
BasicBlob	class,	which	assigns	each	blob	a	unique	number	(blobId)	and	keeps	track
of	the	number	of	blobs	(population)	not	yet	garbage	collected.

Creation	of	each	Blob	object	by	the	constructor	at	(4)	prints	the	ID	number	of	the	object
and	the	message	"Hello".	The	finalize()	method	at	(5)	is	called	before	a	Blob
object	is	garbage	collected.	It	prints	the	inherited	field	blobId	of	the	Blob	object	and
the	message	"Bye",	before	calling	the	finalize()	method	in	the	superclass
BasicBlob	at	(2),	which	decrements	the	population	count.	The	program	output	shows
that	two	blobs	were	not	garbage	collected	at	the	time	the	print	statement	at	(8)	was
executed.	It	is	evident	from	the	number	of	"Bye"	messages	that	three	blobs	were	garbage
collected	before	all	five	blobs	were	created	in	the	loop	at	(7).

Example	9.2	Using	Finalizers
Click	here	to	view	code	image

//	File:	Finalizers.java
class	BasicBlob	{																																																				//	(1)
		private	static	int	idCounter;
		private	static	int	population;

		protected	int	blobId;

		BasicBlob()	{
				blobId	=	idCounter++;
				++population;
		}

		@Override
		protected	void	finalize()	throws	Throwable	{																							//	(2)

				—population;
				super.finalize();
		}

		public	static	int	getPopulation()	{
				return	population;
		}
}
//__
class	Blob	extends	BasicBlob	{																																							//	(3)
		private	int[]	size;

		Blob(int	bloatedness)	{																																												//	(4)
				size	=	new	int[bloatedness];
				System.out.println(blobId	+	“:	Hello”);
		}

		@Override
		protected	void	finalize()	throws	Throwable	{																							//	(5)
				System.out.println(blobId	+	“:	Bye”);
				super.finalize();
		}
}
//__
public	class	Finalizers	{
		public	static	void	main(String[]	args)	{																											//	(6)
				int	blobsRequired,	blobSize;
				try	{
						blobsRequired	=	Integer.parseInt(args[0]);
						blobSize						=	Integer.parseInt(args[1]);
				}	catch(IndexOutOfBoundsException	e)	{
						System.out.println(“Too	few	program	arguments.”);
						System.out.println(“Usage:	Finalizers	<number	of	blobs>	<blob	size>”);
						return;
				}	catch(NumberFormatException	e)	{
						System.out.println(“Illegal	program	argument.”);
						System.out.println(“Usage:	Finalizers	<number	of	blobs>	<blob	size>”);
						return;
				}
				for	(int	i	=	0;	i	<	blobsRequired;	++i)	{																								//	(7)
						new	Blob(blobSize);
				}
				System.out.println(BasicBlob.getPopulation()	+	”	blobs	alive”);		//	(8)
		}
}

Probable	output	from	running	the	program	with	the	following	command:
>java	Finalizers	5	500000
0:	Hello
1:	Hello
2:	Hello
0:	Bye
1:	Bye
2:	Bye
3:	Hello
4:	Hello
2	blobs	alive

9.6	Invoking	Garbage	Collection	Programmatically
Although	Java	provides	facilities	to	invoke	the	garbage	collection	explicitly,	there	are	no
guarantees	that	it	will	be	run.	The	program	can	request	that	garbage	collection	be
performed,	but	there	is	no	way	to	force	garbage	collection	to	be	activated.

The	System.gc()	method	can	be	used	to	request	garbage	collection,	and	the
System.runFinalization()	method	can	be	called	to	suggest	that	any	pending
finalizers	be	run	for	objects	eligible	for	garbage	collection.

static	void	gc()

Requests	that	garbage	collection	be	run.
static	void	runFinalization()

Requests	that	any	pending	finalizers	be	run	for	objects	eligible	for	garbage
collection.

Alternatively,	corresponding	methods	in	the	Runtime	class	can	be	used.	A	Java
application	has	a	unique	Runtime	object	that	can	be	used	by	the	application	to	interact
with	the	JVM.	An	application	can	obtain	this	object	by	calling	the	method
Runtime.getRuntime().	The	Runtime	class	provides	several	methods	related	to
memory	issues:

static	Runtime	getRuntime()

Returns	the	Runtime	object	associated	with	the	current	application.
void	gc()

Requests	that	garbage	collection	be	run.	However,	it	is	recommended	to	use	the
more	convenient	static	method	System.gc().
void	runFinalization()

Requests	that	any	pending	finalizers	be	run	for	objects	eligible	for	garbage
collection.	Again,	it	is	more	convenient	to	use	the	static	method
System.runFinalization().
long	freeMemory()

Returns	the	amount	of	free	memory	(bytes)	in	the	JVM	that	is	available	for	new
objects.
long	totalMemory()

Returns	the	total	amount	of	memory	(bytes)	available	in	the	JVM,	including	both
memory	occupied	by	current	objects	and	memory	available	for	new	objects.

Example	9.3	illustrates	the	process	of	invoking	garbage	collection.	The	class	Memory-
Check	is	an	adaptation	of	the	class	Finalizers	from	Example	9.2.	The	RunTime
object	for	the	application	is	obtained	at	(7).	This	object	is	used	to	get	information
regarding	total	memory	and	free	memory	in	the	JVM	at	(8)	and	(9),	respectively.	Blobs	are
created	in	the	loop	at	(10).	The	amount	of	free	memory	after	blob	creation	is	printed	at

(11).	From	the	program	output,	it	is	apparent	that	some	blobs	were	already	garbage
collected	before	the	execution	reached	(11).	A	request	for	garbage	collection	is	made	at
(12).	Checking	free	memory	after	this	request	shows	that	more	memory	has	become
available,	indicating	that	the	request	was	honored.	It	is	instructive	to	run	the	program
without	the	method	call	System.gc()	at	(12)	to	compare	the	results	with	and	without
this	call.

Example	9.3	Invoking	Garbage	Collection
Click	here	to	view	code	image

class	BasicBlob														{	/*	See	Example	9.2.	*/	}
class	Blob	extends	BasicBlob	{	/*	See	Example	9.2.	*/	}
//__
public	class	MemoryCheck	{
		public	static	void	main(String[]	args)	{																											//	(6)
				int	blobsRequired,	blobSize;
				try	{
						blobsRequired	=	Integer.parseInt(args[0]);
						blobSize						=	Integer.parseInt(args[1]);
				}	catch(IndexOutOfBoundsException	e)	{
						System.out.println(“Too	few	program	arguments.”);
						System.out.println(“Usage:	MemoryCheck	<number	of	blobs>	<blob	size>”);
						return;
				}	catch(NumberFormatException	e)	{
						System.out.println(“Illegal	program	argument.”);
						System.out.println(“Usage:	MemoryCheck	<number	of	blobs>	<blob	size>”);
						return;
				}
				Runtime	environment	=	Runtime.getRuntime();																						//	(7)
				System.out.println(“Total	memory:	”	+	environment.totalMemory());//	(8)
				System.out.println(“Free	memory	before	blob	creation:	”	+
																							environment.freeMemory());																				//	(9)
				for	(int	i	=	0;	i	<	blobsRequired;	++i)	{																								//	(10)
						new	Blob(blobSize);
				}
				System.out.println(“Free	memory	after	blob	creation:	”	+
																							environment.freeMemory());																				//	(11)
				System.gc();																																																					//	(12)
				System.out.println(“Free	memory	after	requesting	GC:	”	+
																							environment.freeMemory());																				//	(13)
				System.out.println(BasicBlob.getPopulation()	+	”	blobs	alive”);		//	(14)
		}
}

Probable	output	from	running	the	program	with	the	following	command:
Click	here	to	view	code	image

>java	MemoryCheck	5	100000
Total	memory:	2031616
Free	memory	before	blob	creation:	1773192
0:	Hello
1:	Hello
2:	Hello
1:	Bye
2:	Bye
3:	Hello
0:	Bye
3:	Bye
4:	Hello
Free	memory	after	blob	creation:	818760
4:	Bye
Free	memory	after	requesting	GC:	1619656
0	blobs	alive

The	following	points	regarding	automatic	garbage	collection	should	be	noted:

•	There	are	no	guarantees	that	the	finalizers	of	objects	eligible	for	garbage	collection

will	be	executed.	Garbage	collection	might	not	even	be	run	if	the	program	execution
does	not	warrant	it.	Thus,	any	memory	allocated	during	program	execution	might
remain	allocated	after	program	termination,	but	will	eventually	be	reclaimed	by	the
operating	system.

•	There	are	also	no	guarantees	about	the	order	in	which	the	objects	will	be	garbage
collected,	or	the	order	in	which	their	finalizers	will	be	executed.	Therefore,	the
program	should	not	make	any	assumptions	based	on	these	criteria.

•	Garbage	collection	does	not	guarantee	that	there	will	be	enough	memory	for	the
program	to	run.	A	program	can	rely	on	the	garbage	collector	to	run	when	memory
gets	very	low,	and	it	can	expect	an	OutOfMemoryException	to	be	thrown	if	its
memory	demands	cannot	be	met.

	Review	Questions

9.1	Which	of	the	following	statements	is	true?

Select	the	one	correct	answer.

(a)	Objects	can	be	explicitly	destroyed	using	the	keyword	delete.

(b)	An	object	will	be	garbage	collected	immediately	after	it	becomes	unreachable.

(c)	If	object	obj1	is	accessible	from	object	obj2,	and	object	obj2	is	accessible
from	obj1,	then	obj1	and	obj2	are	not	eligible	for	garbage	collection.

(d)	Once	an	object	has	become	eligible	for	garbage	collection,	it	will	remain
eligible	until	it	is	destroyed.

(e)	If	object	obj1	can	access	object	obj2	that	is	eligible	for	garbage	collection,
then	obj1	is	also	eligible	for	garbage	collection.

9.2	Identify	the	location	in	the	following	program	where	the	object,	initially	referenced
by	arg1,	is	eligible	for	garbage	collection.

Click	here	to	view	code	image
public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				String	msg;
				String	pre	=	“This	program	was	called	with	“;
				String	post	=	”	as	first	argument.”;
				String	arg1	=	new	String((args.length	>	0)	?	”’”	+	args[0]	+	”’”	:
																														”<no	argument>”);
				msg	=	arg1;
				arg1	=	null;													//	(1)
				msg	=	pre	+	msg	+	post;		//	(2)
				pre	=	null;														//	(3)
				System.out.println(msg);
				msg	=	null;														//	(4)
				post	=	null;													//	(5)
				args	=	null;													//	(6)
		}
}

Select	the	one	correct	answer.

(a)	After	the	line	labeled	(1)

(b)	After	the	line	labeled	(2)

(c)	After	the	line	labeled	(3)

(d)	After	the	line	labeled	(4)

(e)	After	the	line	labeled	(5)

(f)	After	the	line	labeled	(6)

9.3	How	many	objects	are	eligible	for	garbage	collection	when	control	reaches	(1)?
Click	here	to	view	code	image

public	class	Eligible	{
		public	static	void	main(String[]	args)	{
				for	(int	i	=	0;	i	<	5;	i++)	{
						Eligible	obj	=	new	Eligible();
						new	Eligible();
				}
				System.gc();					//	(1)
		}
}

Select	the	one	correct	answer.

(a)	0

(b)	5

(c)	10

(d)	Hard	to	say

9.4	How	many	objects	are	eligible	for	garbage	collection	when	control	reaches	(1)?
Click	here	to	view	code	image

public	class	Link	{
		private	Link	next;
		Link(Link	next)	{	this.next	=	next;	}
		public	void	finialize()	{	System.out.print(“X”);	}

		public	static	void	main(String[]	args)	{
				Link	p	=	null;
				for	(int	i	=	0;	i	<	5;	i++)	{
						p	=	new	Link(p);
				}
				System.gc();																										//	(1);
		}
}

Select	the	one	correct	answer.

(a)	0

(b)	5

(c)	10

(d)	Hard	to	say

9.5	Which	of	the	following	statements	is	true?

Select	the	one	correct	answer.

(a)	If	an	exception	is	thrown	during	execution	of	the	finalize()	method	of	an
eligible	object,	the	exception	is	ignored	and	the	object	is	destroyed.

(b)	All	objects	have	a	finalize()	method.

(c)	Objects	can	be	destroyed	by	explicitly	calling	the	finalize()	method.

(d)	The	finalize()	method	can	be	declared	with	any	accessibility.

(e)	The	compiler	will	fail	to	compile	code	that	defines	an	overriding
finalize()	method	that	does	not	explicitly	call	the	overridden
finalize()	method	from	the	superclass.

9.6	Which	of	the	following	statements	is	true?

Select	the	one	correct	answer.

(a)	The	compiler	will	fail	to	compile	code	that	explicitly	tries	to	call	the
finalize()	method.

(b)	The	finalize()	method	can	be	overridden,	but	it	must	be	declared	with
protected	accessibility.

(c)	An	overriding	finalize()	method	in	any	class	can	always	throw	checked
exceptions.

(d)	The	finalize()	method	can	be	overloaded.

(e)	The	body	of	the	finalize()	method	can	access	only	other	objects	that	are
eligible	for	garbage	collection.

9.7	Which	method	headers	will	result	in	a	correct	implementation	of	a	finalizer	for	the
following	class?

Click	here	to	view	code	image
public	class	Curtain	{
		//	(1)	INSERT	METHOD	HEADER	HERE	…
		{
				System.out.println(“Final	curtain”);
				super.finalize();
		}
}

Select	the	two	correct	answers.

(a)	void	finalize()	throws	Throwable

(b)	void	finalize()	throws	Exception

(c)	void	finalize()

(d)	protected	void	finalize()	throws	Throwable

(e)	protected	void	finalize()	throws	Exception

(f)	protected	void	finalize()

(g)	public	void	finalize()	throws	Throwable

(h)	public	void	finalize()	throws	Exception

(i)	public	void	finalize()

(j)	private	void	finalize()	throws	Throwable

(k)	private	void	finalize()	throws	Exception

(l)	private	void	finalize()

9.8	Which	scenario	can	definitely	not	be	the	result	of	compiling	and	running	the
following	program?

Click	here	to	view	code	image
public	class	Grade	{
		private	char	grade;
		Grade(char	grade)	{	this.grade	=	grade;	}

		public	void	finalize()	throws	Throwable	{
				System.out.print(grade);
				super.finalize();
		}
		public	static	void	main(String[]	args)	{
				new	Grade(‘A’);	new	Grade(‘F’);
				System.gc();
		}
}

Select	the	one	correct	answer.

(a)	The	program	may	print	AF.

(b)	The	program	may	print	FA.

(c)	The	program	may	print	A.

(d)	The	program	may	print	F.

(e)	The	program	may	print	AFA.

(f)	The	program	may	not	print	anything.

9.9	Which	scenarios	can	be	the	result	of	compiling	and	running	the	following
program?

Click	here	to	view	code	image
public	class	MyString	{
		private	String	str;
		MyString(String	str)	{	this.str	=	str;	}

		public	void	finalize()	throws	Throwable	{
				System.out.print(str);
				super.finalize();
		}

		public	void	concat(String	str2)	{
				this.str.concat(str2);
		}

		public	static	void	main(String[]	args)	{
				new	MyString(“A”).concat(“B”);
				System.gc();
		}
}

Select	the	two	correct	answers.

(a)	The	program	may	print	AB.

(b)	The	program	may	print	BA.

(c)	The	program	may	print	A.

(d)	The	program	may	print	B.

(e)	The	program	may	not	print	anything.

9.7	Initializers
Initializers	can	be	used	to	set	initial	values	for	fields	in	objects	and	classes.	There	are	three
kinds	of	initializers:

•	Field	initializer	expressions

•	Static	initializer	blocks

•	Instance	initializer	blocks

Subsequent	sections	in	this	chapter	provide	details	on	these	initializers,	concluding	with	a
discussion	of	the	procedure	involved	in	constructing	the	state	of	an	object	when	the	object
is	created	by	using	the	new	operator.

9.8	Field	Initializer	Expressions
Initialization	of	fields	can	be	specified	in	field	declaration	statements	using	initializer
expressions.	The	value	of	the	initializer	expression	must	be	assignment	compatible	with
the	declared	field	(see	§5.6,	p.	158	and	§7.9,	p.	312).	We	distinguish	between	static	and
non-static	field	initializers.
Click	here	to	view	code	image

class	ConstantInitializers	{
									int	minAge	=	12;													//	(1)	Non-static
		static	double	pensionPoints	=	10.5;	//	(2)	Static
		//	…
}

The	fields	of	an	object	are	initialized	with	the	values	of	initializer	expressions	when	the
object	is	created	by	using	the	new	operator.	In	the	previous	example,	the	declaration	at	(1)
will	result	in	the	field	minAge	being	initialized	to	12	in	every	object	of	the	class
ConstantInitializers	created	with	the	new	operator.	If	no	explicit	initializer
expressions	are	specified,	default	values	(§2.4,	p.	42)	are	assigned	to	the	fields.

When	a	class	is	loaded,	it	is	initialized,	meaning	its	static	fields	are	initialized	with	the
values	of	the	initializer	expressions.	The	declaration	at	(2)	will	result	in	the	static	field
pensionPoints	being	initialized	to	10.5	when	the	class	is	loaded	by	the	JVM.	Again,

if	no	explicit	initializers	are	specified,	default	values	are	assigned	to	the	static	fields.

An	initializer	expression	for	a	static	field	cannot	refer	to	non-static	members	by	their
simple	names.	The	keywords	this	and	super	cannot	occur	in	a	static	initializer
expression.

Since	a	class	is	always	initialized	before	it	can	be	instantiated,	an	instance	initializer
expression	can	always	refer	to	any	static	member	of	a	class,	regardless	of	the	member
declaration	order.	In	the	following	code,	the	instance	initializer	expression	at	(1)	refers	to
the	static	field	NO_OF_WEEKS	declared	and	initialized	at	(2).	Such	a	forward	reference	is
legal.	More	examples	of	forward	references	are	given	in	the	next	subsection.
Click	here	to	view	code	image

class	MoreInitializers	{
									int	noOfDays				=	7	*	NO_OF_WEEKS;				//	(1)	Non-static
		static	int	NO_OF_WEEKS	=	52;																	//	(2)	Static
		//	…
}

Initializer	expressions	can	also	be	used	to	define	constants	in	interfaces	(§7.6,	p.	302).
Such	initializer	expressions	are	implicitly	static,	as	they	define	values	of	static	final
fields.

Initializer	expressions	are	used	to	initialize	local	variables	as	well	(§2.3,	p.	40).	A	local
variable	is	initialized	with	the	value	of	the	initializer	expression	every	time	the	local
variable	declaration	is	executed.

Declaration	Order	of	Initializer	Expressions
When	an	object	is	created	using	the	new	operator,	instance	initializer	expressions	are
executed	in	the	order	in	which	the	instance	fields	are	declared	in	the	class.

Java	requires	that	the	declaration	of	a	field	must	occur	before	its	usage	in	any	initializer
expression	if	the	field	is	used	on	the	right-hand	side	of	an	assignment	in	the	initializer
expression.	This	essentially	means	that	the	declaration	of	a	field	must	occur	before	the
value	of	the	field	is	read	in	an	initializer	expression.	Using	the	field	on	the	left-hand	side
of	an	assignment	in	the	initializer	expression	does	not	violate	the	declaration-before-
reading	rule,	as	this	constitutes	a	write	operation.	This	rule	applies	when	the	usage	of	the
field	is	by	its	simple	name.

There	is	one	caveat	to	the	declaration-before-reading	rule:	It	does	not	apply	if	the
initializer	expression	defines	an	anonymous	class,	as	the	usage	then	occurs	in	a	different
class	that	has	its	own	accessibility	rules	in	the	enclosing	context.	The	restrictions	outlined
earlier	help	to	detect	initialization	anomalies	at	compile	time.

In	the	next	code	example,	the	initialization	at	(2)	generates	a	compile-time	error,	because
the	field	width	in	the	initializer	expression	violates	the	declaration-before-reading	rule.
Because	the	usage	of	the	field	width	in	the	initializer	expression	at	(2)	does	not	occur	on
the	left-hand	side	of	the	assignment,	this	is	an	illegal	forward	reference.	To	remedy	the
error,	the	declaration	of	the	field	width	at	(4)	can	be	moved	in	front	of	the	declaration	at
(2).	In	any	case,	we	can	use	the	keyword	this	as	shown	at	(3),	but	it	will	read	the	default
value	0	in	the	field	width.

Click	here	to	view	code	image
class	NonStaticInitializers	{
		int	length		=	10;																			//	(1)
//double	area	=	length	*	width;							//	(2)	Not	OK.	Illegal	forward
reference.
		double	area	=	length	*	this.width;		//	(3)	OK,	but	width	has	default	value
0.
		int	width			=	10;																			//	(4)

		int	sqSide	=	height	=	20;											//	(5)	OK.	Legal	forward	reference.
		int	height;																									//	(6)
}

The	forward	reference	at	(5)	is	legal.	The	usage	of	the	field	height	in	the	initializer
expression	at	(5)	occurs	on	the	left-hand	side	of	the	assignment.	The	initializer	expression
at	(5)	is	evaluated	as	(sqSide	=	(height	=	20)).	Every	object	of	the	class
NonStaticInitializers	will	have	the	fields	height	and	sqSide	set	to	the	value
20.

The	declaration-before-reading	rule	is	equally	applicable	to	static	initializer	expressions
when	static	fields	are	referenced	by	their	simple	names.

Example	9.4	shows	why	the	order	of	field	initializer	expressions	can	be	important.	The
initializer	expressions	in	this	example	are	calls	to	methods	defined	in	the	class,	and
methods	are	not	subject	to	the	same	access	rules	as	initializer	expressions.	The	call	at	(2)
to	the	method	initMaxGuests()	defined	at	(4)	is	expected	to	return	the	maximum
number	of	guests,	but	the	field	occupancyPerRoom	at	(3)	will	not	have	been	explicitly
initialized	at	this	point;	therefore,	its	default	value	0	will	be	used	in	the	method
initMaxGuests(),	which	will	return	an	incorrect	value.	The	program	output	shows
that	after	object	creation,	the	occupancy	per	room	is	correct,	but	the	maximum	number	of
guests	is	wrong.

Example	9.4	Initializer	Expression	Order	and	Method	Calls
Click	here	to	view	code	image

//	File:	TestOrder.java
class	Hotel	{
		private	int	noOfRooms								=	12;																																	//	(1)
		private	int	maxNoOfGuests				=	initMaxGuests();																				//	(2)
Bug
		private	int	occupancyPerRoom	=	2;																																		//	(3)

		public	int	initMaxGuests()	{																																							//	(4)
				System.out.println(“occupancyPerRoom:	”	+	occupancyPerRoom);
				System.out.println(“maxNoOfGuests:				”	+	noOfRooms	*	occupancyPerRoom);
				return	noOfRooms	*	occupancyPerRoom;
		}

		public	int	getMaxGuests()	{	return	maxNoOfGuests;	}																//	(5)

		public	int	getOccupancy()	{	return	occupancyPerRoom;	}													//	(6)
}
//__
public	class	TestOrder	{
		public	static	void	main(String[]	args)	{
				Hotel	hotel	=	new	Hotel();																																							//	(7)
				System.out.println(“After	object	creation:	“);
				System.out.println(“occupancyPerRoom:	”	+	hotel.getOccupancy());	//	(8)
				System.out.println(“maxNoOfGuests:				”	+	hotel.getMaxGuests());	//	(9)
		}
}

Output	from	the	program:
occupancyPerRoom:	0
maxNoOfGuests:				0
After	object	creation:
occupancyPerRoom:	2
maxNoOfGuests:				0

9.9	Static	Initializer	Blocks
Java	allows	static	initializer	blocks	to	be	defined	in	a	class.	Although	such	blocks	can
include	arbitrary	code,	they	are	primarily	used	for	initializing	static	fields.	The	code	in	a
static	initializer	block	is	executed	only	once,	when	the	class	is	loaded	and	initialized.

The	syntax	of	a	static	initializer	block	comprises	the	keyword	static	followed	by	a
local	block	that	can	contain	arbitrary	code,	as	shown	at	(3).
Click	here	to	view	code	image

class	StaticInitializers	{

		static	final	int	ROWS	=	12,	COLUMNS	=	10;										//	(1)
		static	long[][]	matrix	=	new	long[ROWS][COLUMNS];		//	(2)
		//	…
		static	{																																											//	(3)	Static
initializer
				for	(int	i	=	0;	i	<	matrix.length;	i++)
						for	(int	j	=	0;	j	<	matrix[i].length;	j++)
								matrix[i][j]	=	2*i	+	j;
		}

		//	…
}

When	the	class	StaticInitializers	is	first	loaded	in	the	previous	example,	the
static	final	fields	at	(1)	are	initialized.	Then	the	array	of	arrays	matrix	of
specified	size	is	created	at	(2),	followed	by	the	execution	of	the	static	block	at	(3).

If	a	class	relies	on	native	method	implementations,	a	static	initializer	can	be	used	to	load
any	external	libraries	that	the	class	needs	(§4.8,	p.	137).

Note	that	the	static	initializer	block	is	not	contained	in	any	method.	A	class	can	have	more
than	one	static	initializer	block.	Initializer	blocks	are	not	members	of	a	class,	and	they
cannot	have	a	return	statement	because	they	cannot	be	called	directly.

When	a	class	is	initialized,	the	initializer	expressions	in	static	field	declarations	and	static
initializer	blocks	are	executed	in	the	order	in	which	they	are	specified	in	the	class.	In	the
previous	example,	the	initializer	expressions	at	(1)	and	(2)	are	executed	before	the	static
initializer	block	at	(3).

Similar	restrictions	apply	to	static	initializer	blocks	as	for	static	initializer	expressions:
The	keywords	this	and	super	cannot	occur	in	a	static	initializer	block,	because	such	a
block	defines	a	static	context.

Declaration	Order	of	Static	Initializers
When	making	forward	references	using	simple	names,	code	in	a	static	initializer	block	is
also	subject	to	the	declaration-before-reading	rule	discussed	in	the	previous	subsection.
Example	9.5	illustrates	forward	references	and	the	order	of	execution	for	static	initializer
expressions	and	static	initializer	blocks.	An	illegal	forward	reference	occurs	at	(4),	where
an	attempt	is	made	to	read	the	value	of	the	field	sf1	before	its	declaration.	At	(11),	the
read	operation	occurs	after	the	declaration,	so	it	is	allowed.	Forward	reference	made	on
the	left-hand	side	of	the	assignment	is	always	allowed,	as	shown	at	(2),	(5),	and	(7).	The
initializers	are	executed	in	their	declaration	order.	A	static	field	has	the	value	that	it	was
last	assigned	in	an	initializer.	If	there	is	no	explicit	assignment,	the	field	has	the	default
value	of	its	type.

Example	9.5	Static	Initializers	and	Forward	References
Click	here	to	view	code	image

public	class	StaticForwardReferences	{

		static	{															//	(1)	Static	initializer	block.
				sf1	=	10;												//	(2)	OK.	Assignment	to	sf1	allowed.
				//		sf1	=	if1;							//	(3)	Not	OK.	Non-static	field	access	in	static
context.
				//		int	a	=	2	*	sf1;	//	(4)	Not	OK.	Read	operation	before	declaration.
				int	b	=	sf1	=	20;				//	(5)	OK.	Assignment	to	sf1	allowed.
				int	c	=	StaticForwardReferences.sf1;			//	(6)	OK.	Not	accessed	by	simple
name.
		}

		static	int	sf1	=	sf2	=	30;		//	(7)	Static	field.	Assignment	to	sf2	allowed.
		static	int	sf2;													//	(8)	Static	field.
		int	if1	=	5;																//	(9)	Non-static	field.

		static	{																				//	(10)	Static	initializer	block.
				int	d	=	2	*	sf1;										//	(11)	OK.	Read	operation	after	declaration.
				int	e	=	sf1	=	50;									//	(12)	OK.	Assignment	to	sf1	allowed.
		}

		public	static	void	main(String[]	args)	{
				System.out.println(“sf1:	”	+	StaticForwardReferences.sf1);
				System.out.println(“sf2:	”	+	StaticForwardReferences.sf2);
		}
}

Output	from	the	program:
sf1:	50
sf2:	30

9.10	Instance	Initializer	Blocks
Just	as	static	initializer	blocks	can	be	used	to	initialize	static	fields	in	a	named	class,	so
Java	provides	the	ability	to	initialize	fields	during	object	creation	using	instance	initializer
blocks.	In	this	respect,	such	blocks	serve	the	same	purpose	as	constructors	during	object
creation.	The	syntax	of	an	instance	initializer	block	is	the	same	as	that	of	a	local	block,	as
shown	at	(2)	in	the	following	code.	The	code	in	the	local	block	is	executed	every	time	an
instance	of	the	class	is	created.
Click	here	to	view	code	image

class	InstanceInitializers	{

		long[]	squares	=	new	long[10];				//	(1)
		//	…
		{																																	//	(2)	Instance	Initializer
				for	(int	i	=	0;	i	<	squares.length;	i++)
						squares[i]	=	i*i;
		}
		//	…
}

The	array	squares	of	specified	length	is	first	created	at	(1);	its	creation	is	followed	by
the	execution	of	the	instance	initializer	block	at	(2)	every	time	an	instance	of	the	class

InstanceInitializers	is	created.	Note	that	the	instance	initializer	block	is	not
contained	in	any	method.	A	class	can	have	more	than	one	instance	initializer	block,	and
these	(and	any	instance	initializer	expressions	in	instance	field	declarations)	are	executed
in	the	order	they	are	specified	in	the	class.

Declaration	Order	of	Instance	Initializers
Analogous	to	the	other	initializers	discussed	earlier,	an	instance	initializer	block	cannot
make	a	forward	reference	to	a	field	that	violates	the	declaration-before-reading	rule.	In
Example	9.6,	an	illegal	forward	reference	occurs	in	the	code	at	(4),	which	attempts	to	read
the	value	of	the	field	nsf1	before	it	is	declared.	The	read	operation	at	(11)	occurs	after
the	declaration	and,	therefore,	is	allowed.	Forward	reference	made	on	the	left-hand	side	of
the	assignment	is	always	allowed,	as	shown	at	(2),	(3),	(5),	and	(7).

As	in	an	instance	initializer	expression,	the	keywords	this	and	super	can	be	used	to
refer	to	the	current	object	in	an	instance	initializer	block.	As	in	a	static	initializer	block,
the	return	statement	is	not	allowed	in	instance	initializer	blocks.

An	instance	initializer	block	can	be	used	to	factor	out	common	initialization	code	that	will
be	executed	regardless	of	which	constructor	is	invoked.

Example	9.6	Instance	Initializers	and	Forward	References
Click	here	to	view	code	image

public	class	NonStaticForwardReferences	{

		{																								//	(1)	Instance	initializer	block.
				nsf1	=	10;													//	(2)	OK.	Assignment	to	nsf1	allowed.
				nsf1	=	sf1;												//	(3)	OK.	Static	field	access	in	non-static
context.
				//		int	a	=	2	*	nsf1;		//	(4)	Not	OK.	Read	operation	before	declaration.
				int	b	=	nsf1	=	20;					//	(5)	OK.	Assignment	to	nsf1	allowed.
				int	c	=	this.nsf1;					//	(6)	OK.	Not	accessed	by	simple	name.
		}

		int	nsf1	=	nsf2	=	30;				//	(7)	Non-static	field.	Assignment	to	nsf2
allowed.
		int	nsf2;																//	(8)	Non-static	field.
		static	int	sf1	=	5;						//	(9)	Static	field.

		{																								//	(10)	Instance	initializer	block.
				int	d	=	2	*	nsf1;						//	(11)	OK.	Read	operation	after	declaration.
				int	e	=	nsf1	=	50;					//	(12)	OK.	Assignment	to	nsf1	allowed.
		}

		public	static	void	main(String[]	args)	{
				NonStaticForwardReferences	objRef	=	new	NonStaticForwardReferences();
				System.out.println(“nsf1:	”	+	objRef.nsf1);
				System.out.println(“nsf2:	”	+	objRef.nsf2);
		}
}

Output	from	the	program:
nsf1:	50
nsf2:	30

9.11	Constructing	Initial	Object	State
Object	initialization	involves	constructing	the	initial	state	of	an	object	when	it	is	created
by	the	new	operator.	First	the	fields	are	initialized	to	their	default	values	(§2.4,	p.	42)—
whether	they	are	subsequently	given	non-default	initial	values	or	not—and	then	the
constructor	is	invoked.	This	can	lead	to	local	chaining	of	constructors.	The	invocation	of
the	constructor	at	the	end	of	the	local	chain	of	constructor	invocations	results	in	the
following	actions,	before	the	constructor’s	execution	resumes:

•	Implicit	or	explicit	invocation	of	the	superclass	constructor.	Constructor	chaining
ensures	that	the	inherited	state	of	the	object	is	constructed	first	(§7.5,	p.	282).

•	Initialization	of	the	instance	fields	by	executing	their	instance	initializer	expressions
and	any	instance	initializer	blocks,	in	the	order	they	are	specified	in	the	class
declaration.

Example	9.7	illustrates	object	initialization.	The	new	operator	is	used	at	(8)	to	create	an
object	of	SubclassB.	The	no-argument	constructor	SubclassB()	at	(2)	uses	the
this()	construct	to	locally	chain	to	the	non-zero	argument	constructor	at	(3).	This
constructor	then	leads	to	an	implicit	call	of	the	superclass	constructor.	As	can	be	seen	from
the	program	output,	the	execution	of	the	superclass’s	constructor	at	(1)	reaches	completion
first.	This	is	followed	by	the	execution	of	the	instance	initializer	block	at	(4)	and	the
instance	initializer	expression	at	(6).	Then	the	execution	of	the	body	of	the	non-zero
argument	constructor	at	(3)	resumes.	Finally,	the	no-argument	constructor	completes	its
execution,	thereby	completing	the	construction	of	the	object	state.

Note	that	the	instance	initializers	are	executed	in	the	order	they	are	specified	in	the	class
declaration.	The	forward	reference	to	the	field	value	at	(5)	is	legal,	because	the	usage	of
the	field	value	is	on	the	left-hand	side	of	the	assignment	(it	does	not	violate	the
declaration-before-reading	rule).	The	default	value	of	the	field	value	is	overwritten	by
the	instance	initializer	block	at	(5).	The	field	value	is	again	overwritten	by	the	instance
initializer	expression	at	(6),	and	finally	by	the	non-zero	argument	constructor	at	(3).

Example	9.7	Object	State	Construction
Click	here	to	view	code	image

//	File:	ObjectConstruction.java
class	SuperclassA	{
		public	SuperclassA()	{																					//	(1)
				System.out.println(“Constructor	in	SuperclassA”);
		}
}
//___
class	SubclassB	extends	SuperclassA	{

		SubclassB()	{																														//	(2)	No-argument	constructor
				this(3);
				System.out.println(“No-argument	constructor	in	SubclassB”);
		}

		SubclassB(int	i)	{																									//	(3)	Non-zero	argument
constructor
				System.out.println(“Non-zero	argument	constructor	in	SubclassB”);
				value	=	i;
		}

		{																																										//	(4)	Instance	initializer
block
				System.out.println(“Instance	initializer	block	in	SubclassB”);
				value	=	2;																															//	(5)
		}

		int	value	=	initializerExpression();							//	(6)

		private	int	initializerExpression()	{						//	(7)
				System.out.println(“Instance	initializer	expression	in	SubclassB”);
				return	1;
		}
}
//___
public	class	ObjectConstruction	{
		public	static	void	main(String[]	args)	{
				SubclassB	objRef	=	new	SubclassB();									//	(8)
				System.out.println(“value:	”	+	objRef.value);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Constructor	in	SuperclassA
Instance	initializer	block	in	SubclassB
Instance	initializer	expression	in	SubclassB
Non-zero	argument	constructor	in	SubclassB
No-argument	constructor	in	SubclassB
value:	3

Some	care	should	be	exercised	when	writing	constructors	for	non-final	classes,	since
the	object	that	is	constructed	might	be	a	subclass	instance.	Example	9.8	shows	a	situation
where	use	of	overridden	methods	in	superclass	initializers	and	constructors	can	give
unexpected	results.	The	example	intentionally	uses	the	this	reference	to	underline	that
the	instance	methods	and	constructors	are	invoked	on	the	current	object,	and	that	the

constructor	call	results	in	the	initialization	of	the	object	state,	as	expected.

The	program	output	from	Example	9.8	shows	that	the	field	superValue	at	(1)	in
SuperclassA	never	gets	initialized	explicitly	when	an	object	of	SubclassB	is	created
at	(8).	The	SuperclassA	constructor	at	(2)	does	have	a	call	to	a	method	that	has	the
name	doValue	at	(3).	A	method	with	such	a	name	is	defined	in	SuperclassA	at	(4),
but	is	also	overridden	in	SubclassB	at	(7).	The	program	output	indicates	that	the
method	doValue()	from	SubclassB	is	called	at	(3)	in	the	SuperclassA
constructor.	The	implementation	of	the	method	doValue()	at	(4)	never	gets	executed
when	an	object	of	SubclassB	is	created.	Method	invocation	always	determines	the
implementation	of	the	method	to	be	executed,	based	on	the	actual	type	of	the	object.
Keeping	in	mind	that	it	is	an	object	of	SubclassB	that	is	being	initialized,	the	call	to	the
method	named	doValue	at	(3)	results	in	the	method	from	SubclassB	being	executed.
This	can	lead	to	unintended	results.	The	overriding	method	doValue()	at	(7)	in
SubclassB	can	access	the	field	value	declared	at	(5)	before	its	initializer	expression
has	been	executed;	thus,	the	method	invoked	can	access	the	state	of	the	object	before	this
has	been	completely	initialized.	The	value	0	is	then	printed,	as	the	field	value	has	not
yet	been	initialized	with	the	value	800	when	the	superclass	constructor	is	executed.

Example	9.8	Initialization	Anomaly	under	Object	State	Construction
Click	here	to	view	code	image

//	File:	ObjectInitialization.java
class	SuperclassA	{
		protected	int	superValue;																														//	(1)
		SuperclassA()	{																																								//	(2)
				System.out.println(“Constructor	in	SuperclassA”);
				this.doValue();																																						//	(3)
		}
		void	doValue()	{																																							//	(4)
				this.superValue	=	911;
				System.out.println(“superValue:	”	+	this.superValue);
		}
}
//___
class	SubclassB	extends	SuperclassA	{
		private	int	value	=	800;																															//	(5)
		SubclassB()	{																																										//	(6)
				System.out.println(“Constructor	in	SubclassB”);
				this.doValue();
				System.out.println(“superValue:	”	+	this.superValue);
		}
		@Override
		void	doValue()	{																																							//	(7)
				System.out.println(“value:	”	+	this.value);
		}
}
//___
public	class	ObjectInitialization	{
		public	static	void	main(String[]	args)	{
				System.out.println(“Creating	an	object	of	SubclassB.”);
				new	SubclassB();																																					//	(8)
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Creating	an	object	of	SubclassB.
Constructor	in	SuperclassA
value:	0
Constructor	in	SubclassB
value:	800
superValue:	0

Class	initialization	takes	place	before	any	instance	of	the	class	can	be	created	or	a	static
method	of	the	class	can	be	invoked.	A	superclass	is	initialized	before	its	subclasses	are
initialized.	Initializing	a	class	involves	initialization	of	the	static	fields	by	executing	their
static	initializer	expressions	and	any	static	initializer	blocks.

Initialization	of	an	interface	involves	execution	of	any	static	initializer	expressions	for	the
static	fields	declared	in	the	interface.	An	interface	cannot	specify	instance	initializer
expressions,	because	it	has	no	instance	fields,	nor	can	it	specify	any	initializer	blocks,
because	it	cannot	be	instantiated.

	Review	Questions

9.10	Given	the	following	class,	which	of	these	static	initializer	blocks	can	be
independently	inserted	at	(1)?

Click	here	to	view	code	image
public	class	MyClass	{
		private	static	int	count	=	5;
		static	final	int	STEP	=	10;
		boolean	alive;

		//	(1)	INSERT	STATIC	INITIALIZER	BLOCK	HERE
}

Select	the	three	correct	answers.

(a)	static	{	alive	=	true;	count	=	0;	}

(b)	static	{	STEP	=	count;	}

(c)	static	{	count	+=	STEP;	}

(d)	static	;

(e)	static	{;}

(f)	static	{	count	=	1;	}

9.11	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				MyClass	obj	=	new	MyClass(n);
		}

		static	int	i	=	5;
		static	int	n;
		int	j	=	7;
		int	k;

		public	MyClass(int	m)	{
				System.out.println(i	+	“,	”	+	j	+	“,	”	+	k	+	“,	”	+	n	+	“,	”	+	m);
		}

		{	j	=	70;	n	=	20;	}	//	Instance	initializer	block

		static	{	i	=	50;	}		//	Static	initializer	block
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile,	because	of	the	instance	initializer	block.

(b)	The	code	will	fail	to	compile,	because	of	the	static	initializer	block.

(c)	The	code	will	compile,	and	print	50,	70,	0,	20,	0	at	runtime.

(d)	The	code	will	compile,	and	print	50,	70,	0,	20,	20	at	runtime.

(e)	The	code	will	compile,	and	print	5,	70,	0,	20,	0	at	runtime.

(f)	The	code	will	compile,	and	print	5,	70,	0,	20,	20	at	runtime.

(g)	The	code	will	compile,	and	print	5,	7,	0,	20,	0	at	runtime.

(h)	The	code	will	compile,	and	print	5,	7,	0,	20,	20	at	runtime.

9.12	Given	the	following	class,	which	instance	initializer	block	inserted	independently
at	(1)	will	allow	the	class	to	be	compiled?
public	class	FirstClass	{
		static	int	gap	=	10;
		double	length;
		final	boolean	active;

		//	(1)	INSERT	CODE	HERE
}

Select	the	one	correct	answer.

(a)	instance	{	active	=	true;	}

(b)	FirstClass	{	gap	+=	5;	}

(c)	{	gap	=	5;	length	=	(active	?	100	:	200)	+	gap;	}

(d)	{	;	}

(e)	{	length	=	4.2;	}

(f)	{	active	=	(gap	>	5);	length	=	5.5	+	gap;}

9.13	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Initialization	{
		private	static	String	msg(String	msg)	{
				System.out.println(msg);
				return	msg;
		}

		public	Initialization()	{	m	=	msg(“1”);	}

		{	m	=	msg(“2”);	}

		String	m	=	msg(“3”);

		public	static	void	main(String[]	args)	{
				Object	obj	=	new	Initialization();
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	and	print	1,	2,	and	3	at	runtime.

(c)	The	program	will	compile,	and	print	2,	3,	and	1	at	runtime.

(d)	The	program	will	compile,	and	print	3,	1,	and	2	at	runtime.

(e)	The	program	will	compile,	and	print	1,	3,	and	2	at	runtime.

9.14	Which	of	the	labeled	lines	in	the	following	code	can	be	independently
uncommented	by	removing	the	//	characters,	such	that	the	code	will	still	compile?

Click	here	to	view	code	image
class	GeomInit	{
//int	width	=	14;													/*	Line	A	*/
		{
//		area	=	width	*	height;				/*	Line	B	*/
		}
		int	width	=	37;
		{
//		height	=	11;														/*	Line	C	*/
		}
		int	height,	area;
//area	=	width	*	height;						/*	Line	D	*/
		{
//		int	width	=	15;											/*	Line	E	*/
				area	=	100;
		}
}

Select	the	two	correct	answers.

(a)	Line	A

(b)	Line	B

(c)	Line	C

(d)	Line	D

(e)	Line	E

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	Automatic	garbage	collection,	including	the	workings	of	the	garbage	collector	and
guidelines	for	facilitating	garbage	collection

•	Object	finalization	and	chaining	as	part	of	garbage	collection

•	Static	and	instance	initializers,	both	as	initializer	expressions	and	as	initializer
blocks

•	The	role	played	by	initializers	in	initializing	objects,	classes,	and	interfaces

10.	The	ArrayList<E>	Class	and	Lambda	Expressions

10.1	The	 	Class
A	program	manipulates	data,	so	organizing	and	using	data	efficiently	are	naturally
important	in	a	program.	Data	structures	are	ways	to	organize	data.	Java	uses	the	term
collection	to	mean	a	data	structure	that	can	maintain	a	group	of	objects	so	that	the	objects
can	be	manipulated	as	a	single	entity	or	unit.	Objects	can	be	stored,	retrieved,	and
manipulated	as	elements	of	a	collection.	The	term	container	is	also	used	in	the	literature
for	such	data	structures.	Arrays	are	an	example	of	one	kind	of	collection.	Other	examples
include	lists,	sets,	queues,	and	stacks,	among	many	others.

Lists
Once	an	array	is	created,	its	length	cannot	be	changed.	This	inflexibility	can	be	a
significant	drawback	when	the	amount	of	data	to	be	stored	in	an	array	is	not	known	a
priori.	In	Java,	the	structures	known	as	lists	alleviate	this	shortcoming.	Lists	are
collections	that	maintain	their	elements	in	order	and	can	contain	duplicates.	The	order	of
elements	in	a	list	is	positional	order,	and	individual	elements	can	be	accessed	according	to
their	position	in	the	list.	Each	element,	therefore,	has	a	position	in	the	list.	A	zero-based
index	can	be	used	to	access	the	element	at	the	position	designated	by	the	index	value,
analogous	to	accessing	elements	in	an	array.	However,	unlike	in	an	array,	the	position	of
an	element	in	a	list	can	change	as	elements	are	inserted	or	deleted	from	the	list—that	is,	as
the	list	is	changed	structurally.

Sorting	implies	ordering	the	elements	in	a	collection	according	to	some	ranking	criteria,
usually	based	on	the	values	of	the	elements.	However,	elements	is	an	ArrayList	are
maintained	in	the	order	they	are	inserted	in	the	list,	known	as	the	insertion	order.	The
elements	in	such	a	list	are	therefore	ordered,	but	they	are	not	sorted,	as	it	is	not	the	values
of	the	elements	that	determine	their	ranking	in	the	list.	Thus,	ordering	does	not	necessarily
imply	sorting.

The	Java	Collections	Framework

The	Collection	interface	in	the	java.util	package	(also	known	as	the	Java
Collections	Framework)	defines	the	general	operations	that	a	collection	should	provide.
Other	subinterfaces	in	the	Java	Collections	Framework	augment	this	interface	to	provide
specific	operations	for	particular	kinds	of	collections.	The	java.util.List	interface
extends	the	java.util.Collection	interface	with	the	necessary	operations	to
maintain	the	collection	as	a	list	(see	Figure	10.1).	In	addition	to	the	operations	inherited
from	the	java.util.Collection	interface,	the	java.util.List	interface
defines	operations	that	work	specifically	on	lists:	position-based	access	of	the	list
elements,	searching	in	a	list,	operations	on	parts	of	a	list	(called	open	range-view
operations),	and	creation	of	customized	iterators	to	traverse	a	list.

Figure	10.1	Partial	ArrayList	Inheritance	Hierarchy

The	concrete	class	java.util.ArrayList	implements	the	java.util.List
interface.	In	Figure	10.1,	the	type	parameter	E	in	angular	brackets	(<>)	after	a	reference
type	name	indicates	that	the	reference	type	is	a	generic	type.	The	type	parameter	E
represents	the	type	of	the	element	in	the	collection.	Use	of	a	generic	type	requires	a
concrete	reference	type	to	be	substituted	for	the	type	parameter	E.	Examples	in	this	section
will	make	amply	clear	how	to	use	a	generic	type,	and	in	particular,	the	class	ArrayList.

The	ArrayList	class	is	a	dynamically	resizable	implementation	of	the	List	interface
using	arrays	(also	known	as	dynamic	arrays),	providing	fast	random	access	(i.e.,	position-
based	access	in	constant	time)	and	fast	list	traversal—very	much	like	using	an	ordinary
array.	The	ArrayList	class	is	not	thread-safe;	that	is,	its	integrity	can	be	jeopardized	by
concurrent	access.	The	Java	Collections	Framework	provides	other	implementations	of	the
List	interface,	but	in	most	cases	the	ArrayList	implementation	is	the	overall	best
choice	for	implementing	lists.

This	section	covers	the	basics	of	using	an	ArrayList.	The	Java	Collections	Framework
is	an	extensive	topic,	far	beyond	the	scope	of	this	book.	However,	diving	deep	into	the
Java	Collections	Framework	is	a	beneficial	exercise	that	is	highly	recommended	for	all
Java	programmers.

Declaring	References	and	Constructing	 s
In	the	discussion	that	follows,	we	assume	that	any	class	or	interface	used	from	the
java.util	package	has	been	imported	with	an	appropriate	import	statement.

The	following	declaration	statement	shows	how	we	can	declare	a	reference	that	can	refer
to	an	ArrayList	of	a	specific	element	type.	It	also	illustrates	how	we	can	create	an
empty	ArrayList	of	a	specific	element	type,	and	assign	its	reference	value	to	a
reference:

Click	here	to	view	code	image
ArrayList<String>	palindromes	=	new	ArrayList<String>();	//	(1)

As	this	code	indicates,	the	element	type	is	specified	using	angular	brackets	(<>).	The
reference	palindromes	can	refer	to	any	ArrayList	whose	element	type	is	String.
The	type	parameter	E	of	the	class	ArrayList	in	Figure	10.1	is	replaced	by	the	concrete
class	String.	The	compiler	ensures	that	the	reference	palindromes	can	only	refer	to
an	ArrayList	whose	elements	are	of	type	String,	and	any	operations	on	this	list	via
this	reference	are	type-safe.

The	simplest	way	to	construct	an	ArrayList	is	to	use	the	default	constructor	to	create
an	empty	ArrayList,	as	shown	in	the	previous	declaration.	The	default	constructor
creates	an	empty	list	with	the	initial	capacity	of	10.	The	capacity	of	a	list	refers	to	how
many	elements	it	can	contain	at	any	given	time,	not	how	many	elements	are	actually	in	the
list	(called	the	size).	The	capacity	of	a	list	and	its	size	can	change	dynamically	as	the	list	is
manipulated.	The	ArrayList	created	in	(1)	can	contain	only	elements	of	type	String.

The	assignment	in	the	declaration	statement	(1)	is	valid	because	the	types	on	both	sides
are	assignment	compatible—an	ArrayList	of	String.	The	reference	palindromes
can	now	be	used	to	manipulate	the	ArrayList	that	was	created.

The	Diamond	Operator:	<>

The	element	type	within	the	angular	brackets	(<>)	can	be	omitted	in	the	ArrayList
creation	expression	on	the	right-hand	side	of	the	declaration	statement.	In	this	particular
context,	the	compiler	can	infer	the	element	type	of	the	ArrayList	from	the	declaration
of	the	reference	type	on	the	left-hand	side.
Click	here	to	view	code	image

ArrayList<String>	palindromes	=	new	ArrayList<>();	//	Using	the	diamond
operator

The	empty	angular	brackets,	<>,	are	commonly	referred	to	as	the	diamond	operator.	This
operator	must	be	used	with	the	new	operator	when	constructing	an	object	of	a	generic
type,	like	ArrayList,	where	the	type	information	for	its	usage	can	be	inferred	by	the
compiler	from	the	context,	as	in	the	preceding	declaration	statement.

However,	if	the	diamond	operator	is	omitted,	the	compiler	will	issue	an	unchecked
conversion	warning,	as	shown	at	(2)	in	the	next	code	snippet.	A	new	ArrayList	is
created	based	on	an	ArrayList	of	Integer	that	is	passed	as	an	argument	to	the
constructor.	The	ArrayList	of	Integer	is	created	at	(1).	The	reference	newList1	of
type	ArrayList<String>	refers	to	an	ArrayList	whose	element	type	is
Integer,	not	String.	The	code	at	(2)	compiles,	but	we	get	a
ClassCastException	at	runtime	at	(3)	when	we	retrieve	an	element	from	this	list.
The	get()	method	call	at	(3)	expects	a	String	in	the	ArrayList,	but	gets	an
Integer.	If	the	diamond	operator	is	used,	as	shown	at	(4),	the	compiler	reports	a
compile-time	error,	and	the	problem	described	at	(3)	cannot	occur	at	runtime.	By	issuing
an	unchecked	conversion	warning	at	(2),	the	compiler	alerts	us	to	the	fact	that	it	cannot
guarantee	type-safety	of	the	list	created	at	(2).

Click	here	to	view	code	image
ArrayList<Integer>	intList	=	new	ArrayList<>();								//	(1)	ArrayList	of
Integer
intList.add(10);	intList.add(100);	intList.add(1000);

ArrayList<String>	newList1	=	new	ArrayList(intList);			//	(2)	Unchecked
conversion
																																																							//					warning
System.out.println(newList1.get(0));																			//	(3)
ClassCastException!

ArrayList<String>	newList2	=	new	ArrayList<>(intList);	//	(4)	Compile-time
error!

Best	practices	advocate	programming	to	an	interface.	In	practical	terms,	this	means	using
references	of	an	interface	type	to	manipulate	objects	of	a	concrete	class	that	implement
this	interface.	Since	the	class	java.util.ArrayList	implements	the
java.util.List	interface,	the	declaration	(1)	can	be	written	as	shown	in	the	next
code	snippet.	This	declaration	is	valid,	since	the	reference	value	of	a	subtype	object
(ArrayList<String>)	can	be	assigned	to	a	reference	of	its	supertype
(List<String>).
Click	here	to	view	code	image

List<String>	palindromes	=	new	ArrayList<>();				//	(2)	List	reference

This	best	practice	provides	great	flexibility	in	substituting	other	objects	for	a	task	when
necessary.	The	current	concrete	class	can	easily	be	replaced	by	another	concrete	class	that
implements	the	same	interface.	Only	code	creating	objects	needs	to	be	changed.	As	it
happens,	the	Java	Collections	Framework	provides	another	implementation	of	lists:	the
java.util.LinkedList	class,	which	also	implements	the	List	interface.	If	this
class	is	found	to	be	more	conducive	for	maintaining	palindromes	in	a	list,	we	need	simply
change	the	name	of	the	class	in	declaration	(2),	and	continue	using	the	reference
palindromes	in	the	program:
Click	here	to	view	code	image

List<String>	palindromes	=	new	LinkedList<>();	//	Changing	implementation.

The	ArrayList	class	also	provides	a	constructor	that	allows	an	empty	ArrayList	to
be	created	with	a	specific	initial	capacity.
Click	here	to	view	code	image

List<String>	palindromes	=	new	ArrayList<>(20);	//	Initial	capacity	is	20.

The	ArrayList	class	provides	the	add(E)	method	to	append	an	element	to	the	list.
This	object	is	added	after	the	last	element	in	the	list,	thereby	increasing	the	list	size	by	1.
Click	here	to	view	code	image

palindromes.add(“level”);	palindromes.add(“Ada”);	palindromes.add(“kayak”);
System.out.println(palindromes);

The	print	statement	calls	the	toString()	method	in	the	ArrayList	class	to	print	the
elements	in	the	list.	This	toString()	method	applies	the	toString()	method	of	the
individual	elements	to	create	a	textual	representation	in	the	following	default	format:

[level,	Ada,	kayak]

A	third	constructor	allows	an	ArrayList	to	be	constructed	from	another	collection.	The
following	code	creates	a	list	of	words	from	a	list	of	palindromes.	The	order	of	the
elements	in	the	new	ArrayList	is	the	same	as	that	in	the	ArrayList	that	was	passed
as	an	argument	in	the	constructor.
Click	here	to	view	code	image

List<String>	wordList	=	new	ArrayList<>(palindromes);
System.out.println(wordList);	//	[level,	Ada,	kayak]
wordList.add(“Naan”);
System.out.println(wordList);	//	[level,	Ada,	kayak,	Naan]

The	next	examples	illustrate	the	creation	of	empty	lists	of	different	types	of	elements.	The
compiler	ensures	that	operations	on	the	ArrayList	are	type-safe	with	respect	to	the
element	type.	Declaration	(3)	shows	how	we	can	create	nested	list	structures	(i.e.,	list	of
lists),	analogous	to	an	array	of	arrays.	Note	that	the	diamond	operator	is	not	nested	in	(3).
Declaration	(4)	shows	that	the	element	type	cannot	be	a	primitive	type;	rather,	it	must	be	a
reference	type.
Click	here	to	view	code	image

List<StringBuilder>	synonyms			=	new	ArrayList<>();	//	List	of	StringBuilder
List<Integer>	attendance							=	new	ArrayList<>();	//	List	of	Integer
List<List<String>>	listOfLists	=	new	ArrayList<>();	//	(3)	List	of	List	of
String
List<int>	frequencies										=	new	ArrayList<>();	//	(4)	Compile-time
error!

When	comparing	arrays	and	ArrayLists,	there	is	one	other	significant	difference	that
concerns	the	subtype	relationship.
Click	here	to	view	code	image

Object[]	objArray	=	new	String[10];																	//	(5)	OK!

In	declaration	(5),	since	String	is	a	subtype	of	Object,	String[]	is	a	subtype	of
Object[].	Thus	we	can	manipulate	the	array	of	String	using	the	objArray
reference.
Click	here	to	view	code	image

objArray[2]	=	“Green”;																														//	(6)	OK!
objArray[1]	=	new	Integer(2016);																				//	ArrayStoreException!

The	preceding	assignment	requires	a	runtime	check	to	guarantee	that	the	assignment	is
type	compatible.	Otherwise,	an	ArrayStoreException	is	thrown	at	runtime.

For	the	ArrayList,	the	following	declarations	will	not	compile:
Click	here	to	view	code	image

ArrayList<Object>	objList1	=	new	ArrayList<String>();//	(7)	Compile-time
error!
List<Object>	objList2	=	new	ArrayList<String>();					//	(8)	Compile-time
error!

Although	String	is	a	subtype	of	Object,	it	is	not	the	case	that	an
ArrayList<String>	is	a	subtype	of	ArrayList<Object>.	If	this	was	the	case,
we	could	use	the	objList1	reference	to	add	other	types	of	objects	to	the	ArrayList
of	String,	thereby	jeopardizing	its	type-safety.	Since	there	is	no	information	about	the

element	type	E	available	at	runtime	to	carry	out	a	type	compatibility	check,	as	in	the	case
of	arrays,	the	subtype	relationship	is	not	allowed	in	(7).	For	the	same	reason,	(8)	will	not
compile:	ArrayList<String>	is	not	a	subtype	of	List<Object>.	In	general,	the
subtype	relationship	does	not	hold	for	generic	types.	The	Java	language	provides	ways	to
overcome	this	restriction,	but	we	will	not	pursue	this	matter	further.
The	ArrayList	constructors	are	summarized	here:

Click	here	to	view	code	image
ArrayList()
ArrayList(int	initialCapacity)
ArrayList(Collection<?	extends	E>	c)

The	default	constructor	creates	a	new,	empty	ArrayList	with	an	initial	capacity
of	10.

The	second	constructor	creates	a	new,	empty	ArrayList	with	the	specified	initial
capacity.

The	third	constructor	creates	a	new	ArrayList	containing	the	elements	in	the
specified	collection.	The	declaration	of	the	parameter	c	essentially	means	that
parameter	c	can	refer	to	any	collection	whose	element	type	is	E	or	whose	element
type	is	a	subtype	of	E.	The	new	ArrayList	will	retain	any	duplicates.	The
ordering	in	the	ArrayList	will	be	determined	by	the	traversal	order	of	the
iterator	for	the	collection	passed	as	an	argument.

Modifying	an	
A	summary	of	selected	methods	that	can	modify	the	contents	of	a	list	is	given	here:

Click	here	to	view	code	image
boolean	add(E	element)
void	add(int	index,	E	element)

The	first	method	will	append	the	specified	element	to	the	end	of	the	list.	It	returns
true	if	the	collection	was	modified	as	a	result	of	the	operation.

The	second	method	inserts	the	specified	element	at	the	specified	index.	If
necessary,	it	shifts	the	element	previously	at	this	index	and	any	subsequent	elements
one	position	toward	the	end	of	the	list.	The	method	will	throw	an
IndexOutOfBoundsException	if	the	index	is	out	of	range	(index	<	0	||
index	>	size()).

The	type	parameter	E	represents	the	element	type	of	the	list.
Click	here	to	view	code	image

boolean	addAll(Collection<?	extends	E>	c)
boolean	addAll(int	index,	Collection<?	extends	E>	c)

The	first	method	inserts	the	elements	from	the	specified	collection	at	the	end	of	the
list.	The	second	method	inserts	the	elements	from	the	specified	collection	at	the

specified	index;	that	is,	the	method	splices	the	elements	of	the	specified	collection
into	the	list	at	the	specified	index.	The	methods	return	true	if	any	elements	were
added.	Elements	are	inserted	using	an	iterator	of	the	specified	collection.	The
second	method	will	throw	an	IndexOutOfBoundsException	if	the	index	is
out	of	range	(index	<	0	||	index	>	size()).

The	declaration	of	the	parameter	c	essentially	means	that	parameter	c	can	refer	to
any	collection	whose	element	type	is	E	or	whose	element	type	is	a	subtype	of	E.
E	set(int	index,	E	element)

This	method	replaces	the	element	at	the	specified	index	with	the	specified	element.
It	returns	the	previous	element	at	the	specified	index.	The	method	throws	an
IndexOutOfBoundsException	if	the	index	is	out	of	range	(index	<	0	||
index	>=	size()).

Click	here	to	view	code	image
E	remove(int	index)
boolean	remove(Object	element)

The	first	method	deletes	and	returns	the	element	at	the	specified	index.	The	method
throws	an	IndexOutOfBoundsException	if	the	index	is	out	of	range	(index
<	0	||	index	>=	size()).

The	second	method	removes	the	first	occurrence	of	the	element	from	the	list,	using
object	value	equality.	The	method	returns	true	if	the	call	was	successful.

Both	methods	will	contract	the	list	accordingly	if	any	elements	are	removed.
Click	here	to	view	code	image

boolean	removeAll(Collection<?>	c)
boolean	removeIf(Predicate<?	super	E>	filter)

The	removeAll()	method	removes	from	this	list	all	elements	that	are	contained
in	the	specified	collection.

The	removeIf()	method	removes	from	this	list	all	elements	that	satisfy	the
filtering	criteria	defined	by	a	lambda	expression	that	implements	the
Predicate<T>	functional	interface	(p.	452).

Both	methods	return	true	if	the	call	was	successful.	The	list	is	contracted
accordingly	if	any	elements	are	removed.
void	trimToSize()

This	method	trims	the	capacity	of	this	list	to	its	current	size.
void	clear()

This	method	deletes	all	elements	from	the	list.	The	list	is	empty	after	the	call,	so	it
has	size	0.

All	the	code	snippets	is	this	section	can	be	found	in	Example	10.1,	p.	427.	The	method
printListWithIndex()	at	(16)	in	Example	10.1	prints	the	elements	prefixed	with
their	index	in	the	list,	making	it	easier	to	see	how	the	list	changes	structurally:

Click	here	to	view	code	image
[0:level,	1:Ada,	2:Java,	3:kayak,	4:Bob,	5:Rotator,	6:Bob]

We	have	seen	that	the	add(E)	method	appends	an	element	to	the	end	of	the	list.	The
following	code	adds	the	strings	from	an	array	of	String	to	an	ArrayList	of	String.
The	output	from	Example	10.1	at	(2)	shows	how	the	elements	are	added	at	the	end	of	the
list.
Click	here	to	view	code	image

System.out.println(“\n(2)	Add	elements	to	list:”);
for	(String	str	:	wordArray)	{
		strList.add(str);
		printListWithIndex(strList);
}

We	can	insert	a	new	element	at	a	specific	index	using	the	overloaded	method	add(int,
E).	The	output	from	the	following	code	shows	how	inserting	an	element	at	index	2	shifted
the	elements	structurally	in	the	list.
Click	here	to	view	code	image

//	[0:level,	1:Ada,	2:kayak,	3:Bob,	4:Rotator,	5:Bob]
strList.add(2,	“Java”);						//	Insert	an	element	at	index	2	in	the	list.
printListWithIndex(strList);	//	[0:level,	1:Ada,	2:Java,	3:kayak,	4:Bob,
																													//		5:Rotator,	6:Bob]

Note	that	an	index	value	equal	to	0	or	the	size	of	the	list	is	always	allowed	for	the	method
add(int,	E).
Click	here	to	view	code	image

List<String>	list1	=	new	ArrayList<>();			//	[]
list1.add(0,	“First”);																				//	[First]
list1.add(list1.size(),	“Last”);										//	[First,	Last]

We	can	replace	an	element	at	a	specified	index	using	the	set(int,	E)	method.	The
method	returns	the	element	that	was	replaced.
Click	here	to	view	code	image

System.out.println(“(3)	Replace	the	element	at	index	1:”);
String	oldElement	=	strList.set(1,	“Naan”);
System.out.println(“Element	that	was	replaced:	”	+	oldElement);			//	“Ada”
printListWithIndex(strList);	//	[0:level,	1:Naan,	2:Java,	3:kayak,	4:Bob,
																													//		5:Rotator,	6:Bob]

We	can	also	remove	elements	from	a	list,	with	the	list	being	contracted	accordingly.
Click	here	to	view	code	image

System.out.println(“(4)	Remove	the	element	at	index	0:”);
System.out.println(“Element	removed:	”	+	strList.remove(0));						//	“level”
printListWithIndex(strList);	//	[0:Naan,	1:Java,	2:kayak,	3:Bob,	4:Rotator,
5:Bob]

System.out.println(“(5)	Remove	the	first	occurrence	of	"Java":”);
System.out.println(“Element	removed:	”	+	strList.remove(“Java”));	//	true
printListWithIndex(strList);	//	[0:Naan,	1:kayak,	2:Bob,	3:Rotator,	4:Bob]

The	remove(int)	removes	the	element	at	the	specified	index.	The	method
remove(Object)	needs	to	search	the	list	and	compare	the	argument	object	with
elements	in	the	list	for	object	value	equality.	This	test	requires	that	the	argument	object

override	the	equals()	method	from	the	Object	class,	which	merely	determines
reference	value	equality.	The	String	class	provides	the	appropriate	equals()	method.
However,	the	following	code	will	not	give	the	expected	result,	because	the
StringBuilder	class	does	not	provide	its	own	equals()	method.
Click	here	to	view	code	image

List<StringBuilder>	sbList	=	new	ArrayList<>();
for	(String	str	:	wordArray)
		strList.add(str);
System.out.println(sbList);	//	[level,	Ada,	kayak,	Bob,	Rotator,	Bob]
StringBuilder	element	=	new	StringBuilder(“Ada”);
System.out.println(“Element	to	be	removed:	”	+	element);										//	Ada
System.out.println(“Element	removed:	”	+	sbList.remove(element));	//	false
System.out.println(sbList);	//	[level,	Ada,	kayak,	Bob,	Rotator,	Bob]

Primitive	Values	and	ArrayLists

Since	primitive	values	cannot	be	stored	in	an	ArrayList,	we	can	use	the	wrapper
classes	to	box	such	values	first.	In	the	following	code,	we	create	a	list	of	Integer	in
which	the	int	values	are	autoboxed	in	Integer	objects	and	then	added	to	the	list.	We
try	to	delete	the	element	with	value	1,	but	end	up	deleting	the	element	at	index	1	instead
(i.e,	the	value	20).
Click	here	to	view	code	image

List<Integer>	intList	=	new	ArrayList<>();
intList.add(10);	intList.add(20);	intList.add(1);
System.out.println(intList);																																		//	[10,	20,	1]
System.out.println(“Element	to	be	removed:	”	+	1);												//	1
System.out.println(“Element	removed:	”	+	intList.remove(1));		//	20
System.out.println(intList);																																		//	[10,	1]

The	method	call
intList.remove(1)

has	the	signature
intList.remove(int)

This	signature	matches	the	overloaded	method	that	removes	the	element	at	a	specified
index,	so	it	is	this	method	that	is	called	at	runtime.	We	say	that	this	method	is	the	most
specific	in	this	case.	For	the	code	to	work	as	intended,	the	primitive	value	must	be
explicitly	boxed.
Click	here	to	view	code	image

System.out.println(intList);																																		//	[10,	20,	1]
System.out.println(“Element	to	be	removed:	”	+	1);																								//
1
System.out.println(“Element	removed:	”	+	intList.remove(new	Integer(1)));	//
true
System.out.println(intList);																																		//	[10,	20]

The	method	call
Click	here	to	view	code	image

intList.remove(new	Integer(1))

has	the	signature

intList.remove(Integer)

This	call	matches	the	overloaded	remove(Object)	method,	since	an	Integer	object
can	be	passed	to	an	Object	parameter.	This	method	is	the	most	specific	in	this	case,	and
is	executed.

Querying	an	
A	summary	of	useful	methods	that	can	be	used	to	query	a	list	is	provided	here:

int	size()

Returns	the	number	of	elements	currently	in	the	list.	In	a	non-empty	list,	the	first
element	is	at	index	0	and	the	last	element	is	at	size()-1.
boolean	isEmpty()

Determines	whether	the	list	is	empty	(i.e.,	whether	its	size	is	0).
E	get(int	index)

Returns	the	element	at	the	specified	positional	index.	The	method	throws	an
IndexOutOfBoundsException	if	the	index	is	out	of	range	(index	<	0	||
index	>=	size()).
boolean	equals(Object	o)

Compares	the	specified	object	with	this	list	for	object	value	equality.	It	returns
true	if	and	only	if	the	specified	object	is	also	a	list,	both	lists	have	the	same	size,
and	all	corresponding	pairs	of	elements	in	the	two	lists	are	equal	according	to	object
value	equality.

Click	here	to	view	code	image
boolean	contains(Object	element)

Determines	whether	the	argument	object	is	contained	in	the	collection,	using	object
value	equality.	This	is	called	the	membership	test.
int	indexOf(Object	o)
int	lastIndexOf(Object	o)

Return	the	indexes	of	the	first	and	last	occurrences	of	the	element	that	are	equal
(using	object	value	equality)	to	the	specified	argument,	respectively,	if	such	an
element	exists	in	the	list;	otherwise,	the	value	–1	is	returned.	These	methods
provide	element	search	in	the	list.

The	method	get(int)	retrieves	the	element	at	the	specified	index.
Click	here	to	view	code	image

System.out.println(“First	element:	”	+	strList.get(0);																	//
Naan
System.out.println(“Last	element:	”	+	strList.get(strList.size()-1));		//	Bob

The	equals()	method	of	the	ArrayList	class	can	be	used	to	compare	two	lists	for
equality	with	regard	to	size	and	corresponding	elements	being	equal	in	each	list.
Click	here	to	view	code	image

List<String>	strList2	=	new	ArrayList<>(strList);
boolean	trueOrFalse	=	strList.equals(strList2);	//	true

The	membership	test	is	carried	out	by	the	contains(Object)	method.	We	can	find
the	index	of	a	specified	element	in	the	list	by	using	the	indexOf()	and
lastIndexOf()	methods.
Click	here	to	view	code	image

boolean	found	=	strList.contains(“Naan”);			//	true
int	pos	=	strList.indexOf(“Bob”);											//	2
pos	=	strList.indexOf(“BOB”);															//	-1	(Not	found)
pos	=	strList.lastIndexOf(“Bob”);											//	4	(Last	occurrence)

Again,	these	methods	require	that	the	element	type	provide	a	meaningful	equals()
method	for	object	value	equality	testing.

Traversing	an	
A	very	common	task	is	to	traverse	a	list	so	as	to	perform	some	operation	on	each	element
of	the	list.	We	can	use	positional	access	to	traverse	a	list	with	the	for(;;)	loop.	The
generic	method	printListWithIndex()	in	Example	10.1	uses	the	for(;;)	loop	to
create	a	new	ArrayList	of	String	that	contains	each	element	of	the	argument	list
prefixed	with	the	index	of	the	element.
Click	here	to	view	code	image

public	static	<E>	void	printListWithIndex(List<E>	list)	{
		List<String>	newList	=	new	ArrayList<>();
		for	(int	i	=	0;	i	<	list.size();	i++)	{
				newList.add(i	+	“:”	+	list.get(i));
		}
		System.out.println(newList);
}

Sample	output	from	the	method	call	printWithIndex(strList)	is	shown	here:
Click	here	to	view	code	image

[0:level,	1:Ada,	2:kayak,	3:Bob,	4:Rotator,	5:Bob]

The	method	printListWithIndex()	in	Example	10.1	can	print	any	list	in	this
format.	Its	header	declaration	says	that	it	accepts	a	list	of	element	type	E.	The	element
type	E	is	determined	from	the	method	call.	In	the	preceding	example,	E	is	determined	to
be	String,	as	a	List	of	String	is	passed	in	the	method	call.

Since	the	ArrayList	class	implements	the	Iterable	interface	(i.e.,	the	class	provides
an	iterator),	we	can	use	the	for(:)	loop	to	traverse	a	list.
Click	here	to	view	code	image

for	(String	str	:	strList)	{
		System.out.print(str	+	”	“);
}

The	ArrayList	also	provides	specialized	iterators	to	traverse	a	list,	and	the	diligent
reader	is	encouraged	to	make	their	acquaintance	at	his	or	her	own	leisure.

One	pertinent	question	to	ask	is	how	to	remove	elements	from	the	list	when	traversing	the

list.	The	for(:)	loop	does	not	allow	the	list	structure	to	be	modified:
Click	here	to	view	code	image

for	(String	str	:	strList)	{
		if	(str.length()	<=	3)	{
				strList.remove(str);															//	Throws
ConcurrentModificationException
		}
}

We	can	use	positional	access	in	a	loop	to	traverse	the	list,	but	must	be	careful	in	updating
the	loop	variable,	as	the	list	contracts	when	an	element	is	removed.	A	better	solution	is	to
use	the	ArrayList	method	removeIf(),	passing	the	criteria	for	selection	as	an
argument	(p.	452).	An	iterator	can	also	be	used	explicitly	for	this	purpose,	but	we	leave
that	as	an	exercise.

Converting	an	 	to	an	Array
The	two	following	methods	can	be	used	to	convert	an	ArrayList	to	an	array:

Object[]	toArray()
<T>	T[]	toArray(T[]	a)

The	first	method	returns	an	array	of	type	Object	filled	with	all	the	elements	of	a
collection.

The	second	method	is	a	generic	method	that	stores	the	elements	of	a	collection	in	an
array	of	type	T.	If	the	specified	array	is	big	enough,	the	elements	are	stored	in	this
array.	If	there	is	room	to	spare	in	the	array—that	is,	if	the	length	of	the	array	is
greater	than	the	number	of	elements	in	the	collection—the	element	found
immediately	after	storing	the	elements	of	the	collection	is	set	to	the	null	value
before	the	array	is	returned.	If	the	array	is	too	small,	a	new	array	of	type	T	and
appropriate	size	is	created.	If	T	is	not	a	supertype	of	the	runtime	type	of	every
element	in	the	collection,	an	ArrayStoreException	is	thrown.

The	actual	element	type	of	the	elements	in	the	Object	array	returned	by	the	first
toArray()	method	can	be	any	subtype	of	Object.	It	may	be	necessary	to	cast	the
Object	reference	of	an	element	to	the	appropriate	type,	as	in	the	following	code:
Click	here	to	view	code	image

System.out.println(“(14)	Convert	list	to	array:”);
Object[]	objArray	=	strList.toArray();																					//	Object[]
System.out.println(“Object[]	length:	”	+	objArray.length);	//	5
System.out.print(“Length	of	each	string	in	the	Object	array:	“);
for	(Object	obj	:	objArray)	{
		String	str	=	(String)	obj;																															//	Cast	required.
		System.out.print(str.length()	+	”	“);
}
System.out.println();

The	second	toArray()	method	returns	an	array	of	type	T,	when	it	is	passed	an	array	of
type	T	as	argument.	In	the	following	code,	the	array	of	String	returned	has	the	same
length	as	the	size	of	the	list	of	String,	even	though	a	String	array	of	length	0	was

passed	as	argument:
Click	here	to	view	code	image

String[]	strArray	=	strList.toArray(new	String[0]);									//	String[]
System.out.println(“String[]	length:	”	+	strArray.length);		//	5
System.out.print(“Length	of	each	string	in	the	String	array:	“);
for	(String	str	:	strArray)	{
		System.out.print(str.length()	+	”	“);
}
System.out.println();

Sorting	an	
The	following	static	method	of	the	java.util.Collections	class	can	be	used	to
sort	elements	of	a	list.	Note	the	name	of	the	class.	It	also	provides	many	useful	utility
methods	for	collections.

Click	here	to	view	code	image
static	<T	extends	Comparable<?	super	T>>	void	sort(List<T>	list)

This	generic	method	sorts	the	specified	list	into	ascending	order,	according	to	the
natural	ordering	of	its	elements.	The	declaration	essentially	says	that	elements	of
the	list	have	to	be	comparable;	in	other	words,	they	can	be	compared	with	the
compareTo()	method	of	the	Comparable	interface.

Here	is	an	example	of	sorting	a	list:
Click	here	to	view	code	image

System.out.println(“Unsorted	list:	”	+	strList);//[Naan,	kayak,	Bob,	Rotator,
Bob]
Collections.sort(strList);
System.out.println(“Sorted	list:	”	+	strList);		//[Bob,	Bob,	Naan,	Rotator,
kayak]

The	String	class	implements	the	Comparable	interface,	and	its	natural	ordering	is
lexicographical	ordering,	based	on	the	Unicode	values	of	the	characters	in	the	string.

Arrays	versus	
Table	10.1	summarizes	the	differences	between	arrays	and	ArrayLists.

Table	10.1	Summary	of	Arrays	versus	ArrayLists

Example	10.1	Using	an	ArrayList
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.Collections;
import	java.util.List;

public	class	UsingArrayList	{

		public	static	void	main(String[]	args)	{

				String[]	wordArray	=	{	“level”,	“Ada”,	“kayak”,	“Bob”,	“Rotator”,	“Bob”
};

				System.out.println(“(1)	Create	an	empty	list	of	strings:”);
				List<String>	strList	=	new	ArrayList<>();
				printListWithIndex(strList);

				System.out.println(“\n(2)	Add	elements	to	list:”);
				for	(String	str	:	wordArray)	{
						strList.add(str);
						printListWithIndex(strList);
				}
				System.out.println(“Insert	an	element	at	index	2	in	the	list:”);
				strList.add(2,	“Java”);
				printListWithIndex(strList);

				System.out.println(“\n(3)	Replace	the	element	at	index	1:”);
				String	oldElement	=	strList.set(1,	“Naan”);
				System.out.println(“Element	that	was	replaced:	”	+	oldElement);
				printListWithIndex(strList);

				System.out.println(“\n(4)	Remove	the	element	at	index	0:”);
				System.out.println(“Element	removed:	”	+	strList.remove(0));
				printListWithIndex(strList);

				System.out.println(“\n(5)	Remove	the	first	occurrence	of	"Java":”);
				System.out.println(“Element	removed:	”	+	strList.remove(“Java”));
				printListWithIndex(strList);

				System.out.println(“\n(6)	Determine	the	size	of	the	list:”);
				System.out.println(“The	size	of	the	list	is	”	+	strList.size());

				System.out.println(“\n(7)	Determine	if	the	list	is	empty:”);
				boolean	result	=	strList.isEmpty();
				System.out.println(“The	list	”	+	(result	?	“is”	:	“is	not”)	+	”	empty.”);

				System.out.println(“\n(8)	Get	the	element	at	specific	index:”);
				System.out.println(“First	element:	”	+	strList.get(0));
				System.out.println(“Last	element:	”	+	strList.get(strList.size()	-	1));

				System.out.println(“\n(9)	Compare	two	lists:”);
				List<String>	strList2	=	new	ArrayList<>(strList);
				boolean	trueOrFalse	=	strList.equals(strList2);
				System.out.println(“The	lists	strList	and	strList2	are”
								+	(trueOrFalse	?	””	:	”	not”)	+	”	equal.”);
				strList2.add(null);
				printListWithIndex(strList2);
				trueOrFalse	=	strList.equals(strList2);

				System.out.println(“The	lists	strList	and	strList2	are”
								+	(trueOrFalse	?	””	:	”	not”)	+	”	equal.”);

				System.out.println(“\n(10)	Membership	test:”);
				boolean	found	=	strList.contains(“Naan”);
				String	msg	=	found	?	“contains”	:	“does	not	contain”;
				System.out.println(“The	list	”	+	msg	+	”	the	string	"Naan".”);

				System.out.println(“\n(11)	Find	the	index	of	an	element:”);
				int	pos	=	strList.indexOf(“Bob”);
				System.out.println(“The	index	of	string	"Bob"	is:	”	+	pos);
				pos	=	strList.indexOf(“BOB”);
				System.out.println(“The	index	of	string	"BOB"	is:	”	+	pos);
				pos	=	strList.lastIndexOf(“Bob”);
				System.out.println(“The	last	index	of	string	"Bob"	is:	”	+	pos);
				printListWithIndex(strList);

				System.out.println(“\n(12)	Traversing	the	list	using	the	for(;;)	loop:”);
				for	(int	i	=	0;	i	<	strList.size();	i++)	{
						System.out.print(i	+	“:”	+	strList.get(i)	+	”	“);
				}
				System.out.println();

				System.out.println(“\n(13)	Traversing	the	list	using	the	for(:)	loop:”);
				for	(String	str	:	strList)	{
						System.out.print(str	+		”	“);
						//	strList.remove(str);								//	Throws
ConcurrentModificationException.
				}
				System.out.println();

				System.out.println(“\n(14)	Convert	list	to	array:”);
				Object[]	objArray	=	strList.toArray();
				System.out.println(“Object[]	length:	”	+	objArray.length);
				System.out.print(“Length	of	each	string	in	the	Object	array:	“);
				for	(Object	obj	:	objArray)	{
						String	str	=	(String)	obj;	//	Cast	required.
						System.out.print(str.length()	+	”	“);
				}
				System.out.println();
				String[]	strArray	=	strList.toArray(new	String[0]);
				System.out.println(“String[]	length:	”	+	strArray.length);
				System.out.print(“Length	of	each	string	in	the	String	array:	“);
				for	(String	str	:	strArray)	{
						System.out.print(str.length()	+	”	“);
				}
				System.out.println();

				System.out.println(“\n(15)	Sorting	a	list:”);
				List<StringBuilder>	sbList	=	new	ArrayList<>();
				for	(String	str	:	strArray)	{
						sbList.add(new	StringBuilder(str));
				}
				//	Collections.sort(sbList);																					//	Compile-time	error!
				System.out.println(“Unsorted	list:	”	+	strList);
				Collections.sort(strList);
				System.out.println(“Sorted	list:	”	+	strList);
		}

		/**
			*	Print	the	elements	of	a	list,	together	with	their	index:
			*	[0:value0,	1:value1,	…]

			*	@param	list			List	to	print	with	index
			*/
		public	static	<E>	void	printListWithIndex(List<E>	list)	{												//
(16)
				List<String>	newList	=	new	ArrayList<>();
				for	(int	i	=	0;	i	<	list.size();	i++)	{
						newList.add(i	+	“:”	+	list.get(i));
				}
				System.out.println(newList);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

(1)	Create	an	empty	list	of	strings:
[]

(2)	Add	elements	to	list:
[0:level]
[0:level,	1:Ada]
[0:level,	1:Ada,	2:kayak]
[0:level,	1:Ada,	2:kayak,	3:Bob]
[0:level,	1:Ada,	2:kayak,	3:Bob,	4:Rotator]
[0:level,	1:Ada,	2:kayak,	3:Bob,	4:Rotator,	5:Bob]
Insert	an	element	at	index	2	in	the	list:
[0:level,	1:Ada,	2:Java,	3:kayak,	4:Bob,	5:Rotator,	6:Bob]

(3)	Replace	the	element	at	index	1:
Element	that	was	replaced:	Ada
[0:level,	1:Naan,	2:Java,	3:kayak,	4:Bob,	5:Rotator,	6:Bob]

(4)	Remove	the	element	at	index	0:
Element	removed:	level
[0:Naan,	1:Java,	2:kayak,	3:Bob,	4:Rotator,	5:Bob]

(5)	Remove	the	first	occurrence	of	“Java”:
Element	removed:	true
[0:Naan,	1:kayak,	2:Bob,	3:Rotator,	4:Bob]

(6)	Determine	the	size	of	the	list:
The	size	of	the	list	is	5

(7)	Determine	if	the	list	is	empty:
The	list	is	not	empty.

(8)	Get	the	element	at	specific	index:
First	element:	Naan
Last	element:	Bob

(9)	Compare	two	lists:
The	lists	strList	and	strList2	are	equal.
[0:Naan,	1:kayak,	2:Bob,	3:Rotator,	4:Bob,	5:null]
The	lists	strList	and	strList2	are	not	equal.

(10)	Membership	test:
The	list	contains	the	string	“Naan”.

(11)	Find	the	index	of	an	element:
The	index	of	string	“Bob”	is:	2
The	index	of	string	“BOB”	is:	-1
The	last	index	of	string	“Bob”	is:	4

[0:Naan,	1:kayak,	2:Bob,	3:Rotator,	4:Bob]

(12)	Traversing	the	list	using	the	for(;;)	loop:
0:Naan	1:kayak	2:Bob	3:Rotator	4:Bob

(13)	Traversing	the	list	using	the	for(:)	loop:
Naan	kayak	Bob	Rotator	Bob

(14)	Convert	list	to	array:
Object[]	length:	5
Length	of	each	string	in	the	Object	array:	4	5	3	7	3
String[]	length:	5
Length	of	each	string	in	the	String	array:	4	5	3	7	3

(15)	Sorting	a	list:
Unsorted	list:	[Naan,	kayak,	Bob,	Rotator,	Bob]
Sorted	list:	[Bob,	Bob,	Naan,	Rotator,	kayak]

	Review	Questions

10.1	Which	statement	is	true	about	the	java.util.ArrayList	class?

Select	the	one	correct	answer.

(a)	The	method	delete()	can	be	used	to	delete	an	element	at	a	specific	index	in
an	ArrayList.

(b)	The	method	deleteAll()	can	be	used	to	delete	all	elements	in	an
ArrayList.

(c)	The	method	insert()	can	be	used	to	insert	an	element	at	a	specific	index	in
an	ArrayList.

(d)	The	method	append()	can	be	used	to	append	an	element	at	the	end	of	an
ArrayList.

(e)	The	method	replace()	can	be	used	to	replace	the	element	at	a	specific	index
with	another	element	in	an	ArrayList.

(f)	The	method	find()	can	be	used	to	determine	whether	an	element	is	in	an
ArrayList.

(g)	The	method	capacity()	can	be	used	to	determine	the	current	capacity	of	an
ArrayList.

(h)	None	of	the	above.

10.2	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	RQ12A10	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();

				strList.add(“Anna”);	strList.add(“Ada”);	strList.add(“Ada”);
				strList.add(“Bob”);	strList.add(“Bob”);	strList.add(“Adda”);
				for	(int	i	=	0;	i	<	strList.size();	/*	empty	*/)	{
						if	(strList.get(i).length()	<=	3)	{
								strList.remove(i);
						}	else	{
								++i;
						}
				}
				System.out.println(strList);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	an	IndexOutOfBoundsException	at	runtime.

(c)	The	program	will	throw	a	ConcurrentModificationException	at
runtime.

(d)	The	program	will	not	terminate	when	run.

(e)	The	program	will	print:	[Anna,	Adda].

(f)	The	program	will	print:	[Anna,	Ada,	Bob,	Adda].

10.3	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	RQ12A15	{
		public	static	void	main(String[]	args)	{
				doIt1();	doIt2();
		}

		public	static	void	doIt1()	{
				List<StringBuilder>	sbListOne	=	new	ArrayList<>();
				sbListOne.add(new	StringBuilder(“Anna”));
				sbListOne.add(new	StringBuilder(“Ada”));
				sbListOne.add(new	StringBuilder(“Bob”));
				List<StringBuilder>	sbListTwo	=	new	ArrayList<>(sbListOne);
				sbListOne.add(null);
				sbListTwo.get(1).reverse();
				System.out.println(sbListOne);																																		//
(1)
		}

		public	static	void	doIt2()	{
				List<String>	listOne	=	new	ArrayList<>();
				listOne.add(“Anna”);	listOne.add(“Ada”);	listOne.add(“Bob”);
				List<String>	listTwo	=	new	ArrayList<>(listOne);
				String	strTemp	=	listOne.get(0);
				listOne.set(0,	listOne.get(listOne.size()-1));
				listOne.set(listOne.size()-1,	strTemp);
				System.out.println(listTwo);																																				//
(2)
		}
}

Select	the	two	correct	answers.

(a)	(1)	will	print	[Anna,	Ada,	Bob,	null].

(b)	(1)	will	print	[Anna,	adA,	Bob,	null].

(c)	(2)	will	print	[Anna,	Ada,	Bob].

(d)	(2)	will	print	[Bob,	Ada,	Anna].

(e)	The	program	will	throw	an	IndexOutOfBoundsException	at	runtime.

10.4	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	RQ12A20	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();
				strList.add(“Anna”);	strList.add(“Ada”);	strList.add(null);
				strList.add(“Bob”);	strList.add(“Bob”);	strList.add(“Adda”);
				for	(int	i	=	0;	i	<	strList.size();	++i)	{
						if	(strList.get(i).equals(“Bob”))	{
								System.out.print(i);
						}
				}
				System.out.println();
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	an	IndexOutOfBoundsException	at	runtime.

(c)	The	program	will	throw	a	NullPointerException	at	runtime.

(d)	The	program	will	print:	34.

10.5	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	RQ12A30	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();
				strList.add(“Anna”);	strList.add(“Ada”);
				strList.add(“Bob”);	strList.add(“Bob”);
				for	(int	i	=	0;	i	<	strList.size();	++i)	{
						if	(strList.get(i).equals(“Bob”))	{
								strList.remove(i);
						}
				}
				System.out.println(strList);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	an	IndexOutOfBoundsException	at	runtime.

(c)	The	program	will	throw	a	NullPointerException	at	runtime.

(d)	The	program	will	throw	a	ConcurrentModificationException	at
runtime.

(e)	The	program	will	not	terminate	when	run.

(f)	The	program	will	print	[Anna,	Ada,	Bob].

(g)	The	program	will	print	[Anna,	Ada].

10.6	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	RQ12A40	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();
				strList.add(“Anna”);	strList.add(“Ada”);	strList.add(null);
				strList.add(“Bob”);	strList.add(“Bob”);	strList.add(“Adda”);
				while(strList.remove(“Bob”));
				System.out.println(strList);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	NullPointerException	at	runtime.

(c)	The	program	will	not	terminate	when	run.

(d)	The	program	will	print:	[Anna,	Ada,	Adda].

(e)	The	program	will	print:	[Anna,	Ada,	Bob,	Adda].

(f)	The	program	will	print:	[Anna,	Ada,	null,	Adda].

(g)	The	program	will	print:
[Anna,	Ada,	null,	Bob,	Adda]
[Anna,	Ada,	null,	Adda]

10.2	Lambda	Expressions
In	many	ways,	Java	8	represents	a	watershed	in	the	history	of	the	language.	Before	Java	8,
the	language	supported	only	object-oriented	programming.	Packing	state	and	behavior	into
objects	that	communicate	in	a	procedural	manner	was	the	order	of	the	day.	Java	8	brings
functional-style	programming	into	the	language,	where	code	representing	functionality	can
be	passed	as	values	to	tailor	the	behavior	of	methods.

This	section	gives	a	taste	of	what	functional-style	programming	brings	to	Java.	It	provides
an	introduction	to	two	language	features	(functional	interfaces	and	lambda	expressions)
that	are	the	basis	for	this	programming	style	in	Java.	That	suffices	for	the	purposes	of	this
book.	However,	functional-style	programming	is	a	powerful	paradigm	worth	exploring
further,	and	any	Java	programmer	who	ignores	it	does	so	at	his	or	her	own	peril.

Behavior	Parameterization
To	demonstrate	how	functional-style	programming	can	be	useful,	we	will	use	a	running
example	that	we	will	gradually	refine	to	implement	an	efficient	and	concise	solution	using
lambda	expressions	and	functional	interfaces.

A	common	operation	on	elements	in	a	collection	is	to	select	those	elements	that	satisfy	a
certain	criterion.	This	operation	is	called	filtering.	Example	10.2	creates	a	list	of	strings	at
(1).	We	would	like	to	filter	this	list	for	one-word	palindromes,	words	that	are	spelled	the
same	way	forward	and	backward.	For	example,	"anana"	is	a	palindrome,	but
"banana"	is	not.

Filtering	Using	Customized	Methods

A	straightforward	and	naive	solution	is	to	implement	a	customized	method	that	takes	a	list
of	words	and	returns	a	list	of	the	words	that	fulfill	the	criteria	for	being	a	palindrome.	The
method	filterPalindromes()	at	(4)	in	Example	10.2	does	exactly	that.	It	traverses
the	list	and	selects	elements	with	the	following	code:
Click	here	to	view	code	image

if	(word.equals(new	StringBuilder(word).reverse().toString()))	{			//	(5)
		result.add(word);
}

The	argument	to	the	equals()	method	creates	a	StringBuilder	based	on	the
current	word	in	the	list.	The	contents	of	the	StringBuilder	are	reversed	and	converted
back	to	a	String.	The	original	word	is	compared	for	object	value	equality	with	the
reversed	word	to	determine	whether	it	is	a	palindrome.	Because	the	equality	test	is	based
on	the	Unicode	values	of	the	characters,	this	criterion	takes	into	account	the	case	of	the
letters,	as	can	be	seen	from	the	output.

What	if	we	wanted	to	create	a	filter	that	was	case	insensitive?	We	need	to	implement	a
new	method,	as	shown	in	(6).	We	see	that	the	method	equalsIgnoreCase()	used	for
equality	comparison	at	(7)	ignores	the	case,	and	the	output	bears	this	out.
Click	here	to	view	code	image

if	(word.equalsIgnoreCase(
													new	StringBuilder(word).reverse().toString()))	{						//	(7)
		result.add(word);
}

Creating	a	new	method	every	time	we	want	to	filter	on	a	new	criterion	is	certainly	not
viable.	There	is	lot	of	code	duplication,	and	the	most	significant	change	occurs	only	in	the
condition	of	the	if	statement	at	(5)	and	(7).

Example	10.2	Implementing	Customized	Methods	for	Filtering	an	ArrayList
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	FunWithPalindromesV0	{

		public	static	void	main(String[]	args)	{
				//	Create	a	list	of
words:																																														(1)
				List<String>	words	=	new	ArrayList<>();
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);
				System.out.println(“List	of	words:																”	+	words);

				//	Call	a	method	to	filter	the	list	for	palindromes	(case
sensitive).			(2)
				List<String>	palindromes	=	filterPalindromes(words);
				System.out.println(“Case-sensitive	palindromes:			”	+	palindromes);

				//	Call	a	method	to	filter	the	list	for	palindromes	(case	insensitive).
(3)
				List<String>	palindromesIgnoreCase	=	filterPalindromesIgnorecase(words);
				System.out.println(“Case-insensitive	palindromes:	”	+
palindromesIgnoreCase);
		}

		/**																																																																							(4)
			*	Finds	palindromes	in	a	list	of	words.	Uses	case-sensitive	filtering.
			*	@param	words	List	of	strings
			*	@return						List	of	palindromes	found
			*/
		public	static	List<String>	filterPalindromes(List<String>	words)	{
				List<String>	result	=	new	ArrayList<>();
				for	(String	word	:	words)	{
						if	(word.equals(new	StringBuilder(word).reverse().toString()))	{			//
(5)
								result.add(word);
						}
				}
				return	result;
		}

		/**																																																																							(6)
			*	Finds	palindromes	in	a	list	of	words.	Uses	case-insensitive	filtering.
			*	@param	words	List	of	strings
			*	@return						List	of	palindromes	found
			*/
		public	static	List<String>	filterPalindromesIgnorecase(List<String>	words)
{
				List<String>	result	=	new	ArrayList<>();
				for	(String	word	:	words)	{
						if	(word.equalsIgnoreCase(
																			new	StringBuilder(word).reverse().toString()))	{						//
(7)
								result.add(word);
						}
				}
				return	result;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List	of	words:																[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
Case-sensitive	palindromes:			[ADA,	HannaH]
Case-insensitive	palindromes:	[Otto,	ADA,	Alyla,	Bob,	HannaH]

Filtering	Using	an	Interface

In	Example	10.3,	we	have	generalized	the	method	that	applies	the	criteria	and	selects	the
elements.	The	method	filterStrings()	at	(9)	takes	as	input	a	list	and	a	selection
criteria	object	that	implements	an	interface,	and	returns	a	list	with	elements	that	satisfy	the
selection	criteria.

The	best	practice	of	programming	to	an	interface	certainly	makes	sense	here.	That	way	the
filterStrings()	method	can	be	used	for	filtering	on	any	criteria.	An	appropriate
object	for	filtering	can	be	passed	to	the	method	as	long	as	it	implements	the	interface.	This
object	must	implement	the	StrPredicate	interface,	declared	at	(1),	supplying	the
boolean	method	test()	that	actually	determines	whether	an	element	is	selected.	The
test()	method	is	an	example	of	a	predicate,	a	function	that	takes	an	argument	and
returns	a	boolean	value.

Examples	10.3	shows	two	approaches	to	how	the	criteria	object	can	be	created.	We	can
define	concrete	classes	that	implement	the	StrPredicate	interface.	The	classes
PalindromeCaseSensitive	and	PalindromeCaseInsensitive	at	(2)	and	(3)
in	Example	10.3,	respectively,	implement	the	StrPredicate	interface	and	provide	an
implementation	of	the	test()	method.	Objects	of	these	classes	are	passed	as	arguments
to	the	filterStrings()	method	at	(5)	and	(6)	to	filter	the	list.	Again	note	that	any
new	selection	criterion	implemented	by	this	approach	requires	a	new	concrete	class,
resulting	in	proliferation	of	classes,	when	all	that	needs	changing	is	the	code	in	the	body	of
the	test()	method.

Instead	of	concrete	classes,	we	can	use	anonymous	classes	to	instantiate	the	criteria	object,
as	shown	at	(7)	and	(8)	in	Example	10.3.	We	will	not	go	into	details	of	explaining	the
syntax	of	an	anonymous	class.	The	basic	idea	is	that	we	can	declare	and	instantiate	the
class	at	the	same	time,	where	it	is	needed	in	the	code—in	our	case,	as	an	argument	in	the
call	to	the	filterStrings()	method.	The	new	operator	creates	an	object	of	the
anonymous	class	whose	body	resembles	that	of	a	concrete	class.	The	name	of	the	interface
in	the	declaration	ensures	that	this	class	will	implement	the	methods	of	the	interface.	In
our	case,	the	anonymous	classes	provide	implementation	of	the	test()	method.	By
using	anonymous	classes	we	avoid	creating	concrete	classes,	but	the	verbosity	of	declaring
anonymous	classes	to	encapsulate	a	single	method	is	inescapable.	Also,	we	still	have	to
declare	a	new	anonymous	class	for	each	selection	criterion,	duplicating	a	lot	of	boilerplate
code.

Example	10.3	Implementing	an	Interface	for	Filtering	an	ArrayList
Click	here	to	view	code	image

/**	Interface	to	test	two	strings	according	to	a	criterion.	*/
public	interface	StrPredicate	{																																										//
(1)
		boolean	test(String	str);
}

/**	Tests	whether	a	string	is	a	palindrome	(case	sensitive).	*/
public	class	PalindromeCaseSensitive	implements	StrPredicate	{											//
(2)
		@Override	public	boolean	test(String	str)	{
				return	str.equals(new	StringBuilder(str).reverse().toString());
		}
}

/**	Tests	whether	a	string	is	a	palindrome	(case	insensitive).	*/
public	class	PalindromeCaseInsensitive	implements	StrPredicate	{									//
(3)
		@Override	public	boolean	test(String	str)	{
				return	str.equalsIgnoreCase(new	StringBuilder(str).reverse().toString());
		}
}

import	java.util.ArrayList;
import	java.util.List;

public	class	FunWithPalindromesV1	{

		public	static	void	main(String[]	args)	{
				//	Create	a	list	of
words:																																													(4)
				List<String>	words	=	new	ArrayList<>();
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);
				System.out.println(“List	of	words:																”	+	words);

				//	Use	a	class	to	filter	for	palindromes	(case
sensitive).													(5)
				List<String>	palindromes1	=	filterStrings(words,
																																														new	PalindromeCaseSensitive());
				System.out.println(“Case-sensitive	palindromes:			”	+	palindromes1);

				//	Use	a	class	to	filter	for	palindromes	(case
insensitive).											(6)
				List<String>	palindromes2	=	filterStrings(words,
																																														new
PalindromeCaseInsensitive());
				System.out.println(“Case-insensitive	palindromes:	”	+	palindromes2);

				//	Use	an	anonymous	class	to	filter	for	palindromes	(case
sensitive).		(7)
				List<String>	palindromes3	=	filterStrings(words,
								new	StrPredicate()	{
										@Override
										public	boolean	test(String	str)	{
												return	str.equals(new	StringBuilder(str).reverse().toString());
										}
								}
);
				System.out.println(“Case-sensitive	palindromes:			”	+	palindromes3);

				//	Use	an	anonymous	class	to	filter	for	palindromes	(case	insensitive).
(8)

				List<String>	palindromes4	=	filterStrings(words,
								new	StrPredicate()	{
										@Override
										public	boolean	test(String	str)	{
												return	str.equalsIgnoreCase(
																											new	StringBuilder(str).reverse().toString());
										}
								}
);
				System.out.println(“Case-insensitive	palindromes:	”	+	palindromes4);
		}

		/**
			*	Filters	a	list	of	strings	according	to	the	criteria	of	the	predicate.
			*	@param	strList				List	of	strings	to	filter
			*	@param	predicate		Provides	the	criteria	for	filtering	the	strings
			*	@return											List	of	strings	that	match	the	criteria
			*/
		public	static	List<String>	filterStrings(List<String>	strList,									//
(9)
																																											StrPredicate	predicate)	{
				List<String>	result	=	new	ArrayList<>();
				for	(String	str	:	strList)	{
						if	(predicate.test(str))	{																																									//
(10)
								result.add(str);
						}
				}
				return	result;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List	of	words:																[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
Case-sensitive	palindromes:			[ADA,	HannaH]
Case-insensitive	palindromes:	[Otto,	ADA,	Alyla,	Bob,	HannaH]
Case-sensitive	palindromes:			[ADA,	HannaH]
Case-insensitive	palindromes:	[Otto,	ADA,	Alyla,	Bob,	HannaH]

Filtering	Using	Lambda	Expressions

Ideally	we	would	like	to	pass	the	code	for	the	selection	criteria	as	an	argument	to	the
filterStrings()	method	so	that	the	method	can	apply	the	criteria	to	the	elements	in
the	list;	that	is,	we	would	like	to	be	able	to	change	the	behavior	of	the
filterStrings()	method	depending	on	the	selection	criteria.	Example	10.4	is	a	step
in	that	direction.

The	StrPredicate	interface	and	the	filterStrings()	method	are	still	the	same
as	in	Example	10.3,	but	the	implementation	of	the	StrPredicate	interface	at	(2)	and
(4)	in	Example	10.4	is	specified	by	lambda	expressions.

The	StrPredicate	interface	is	an	example	of	a	functional	interface	(p.	442).	Such	an
interface	has	exactly	one	abstract	method.	In	the	case	of	the	StrPredicate	method,
this	method	is	the	test()	method,	which	takes	a	String	object	as	an	argument	and
returns	a	boolean	value.	Knowing	that	something	is	a	StrPredicate,	all	the

information	about	its	sole	abstract	method	can	be	inferred,	as	it	is	the	only	abstract	method
in	the	interface;	in	other	words,	we	know	its	name,	its	parameters,	any	value	it	returns,	and
whether	it	throws	any	exceptions.
Implementation	of	the	sole	abstract	method	of	a	functional	interface	can	be	provided	by	a
lambda	expression	(p.	444),	in	contrast	to	a	conventional	method	implementation	in
concrete	and	anonymous	classes,	as	seen	in	Example	10.3.	The	assignment	at	(2)	in
Example	10.4	uses	a	lambda	expression	to	provide	an	implementation	for	the
StrPredicate	functional	interface:
Click	here	to	view	code	image

StrPredicate	predicate1	=	(String	str)	->
				str.equals(new	StringBuilder(str).reverse().toString());										//	(2)

The	reference	predicate1	on	the	left-hand	side	is	of	type	StrPredicate,	and	it	is
assigned	the	value	of	the	lambda	expression	on	the	right-hand	side.	A	lambda	expression
has	three	parts:

•	A	parameter	list	that	is	analogous	to	the	parameter	list	of	a	method.	In	(2),	the
parameter	list	has	only	one	parameter:

(String	str)

•	The	->	operator	(the	arrow)	that	separates	the	parameter	list	from	the	lambda	body.

•	A	lambda	body	that	is	either	a	single	expression	or	a	statement	block.	In	(2),	the
lambda	body	is	a	single	expression,	whose	value	is	returned	when	the	lambda
expression	is	evaluated.	The	lambda	body	expression	evaluates	to	a	boolean
value,	since	the	call	to	the	equals()	method	returns	a	boolean	value.

Click	here	to	view	code	image
str.equals(new	StringBuilder(str).reverse().toString());	//	Lambda	body
expression

The	lambda	expression	at	(2)	defines	a	nameless	function	that	takes	a	String	as	the	only
parameter,	and	returns	a	boolean	value.	Recall	that	the	test()	method	of	the
StrPredicate	functional	interface	does	exactly	that.

Lambda	expressions	are	also	called	anonymous	functions,	as	they	do	not	have	names.
They	can	be	stored	as	values	in	references,	as	in	the	reference	predicate1	in	(2).	The
compiler	can	type	check	that	the	lambda	expression	is	assignable	to	the	reference	on	the
left-hand	side,	since	the	expression	represents	an	anonymous	function	that	is	compatible
with	the	sole	abstract	method	test()	of	the	StrPredicate	interface.

The	lambda	expression	at	(2)	is	passed	as	an	argument	to	the	filterStrings()
method	via	the	reference	predicate1	at	(3).	It	is	executed	only	when	the	test()
method	is	called	with	a	String	argument	in	the	filterStrings()	method	at	(7).

Now	we	just	need	to	pass	a	new	lambda	expression	to	the	filterStrings()	method
to	filter	a	list	of	strings	based	on	a	selection	criterion.	Example	10.4	is	more	precise,
concise,	and	readable	than	the	previous	versions,	especially	as	you	become	comfortable
with	lambda	expressions.

Example	10.4	User-Defined	Functional	Interface	for	Filtering	an	ArrayList
Click	here	to	view	code	image

/**	Interface	to	test	two	strings	according	to	a	criterion.	*/
public	interface	StrPredicate	{																																										//
(1)
		boolean	test(String	str);
}

import	java.util.ArrayList;
import	java.util.List;

public	class	FunWithPalindromesV2	{

		public	static	void	main(String[]	args)	{

				//	Create	a	list	of	words:
				List<String>	words	=	new	ArrayList<>();
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);
				System.out.println(“List	of	words:																”	+	words);

				StrPredicate	predicate1	=	(String	str)	->
								str.equals(new	StringBuilder(str).reverse().toString());										//
(2)
				List<String>	palindromes1	=	filterStrings(words,	predicate1);									//
(3)
				System.out.println(“Case-sensitive	palindromes:			”	+	palindromes1);

				StrPredicate	predicate2	=	(String	str)	->
								str.equalsIgnoreCase(new	StringBuilder(str).reverse().toString());//
(4)
				List<String>	palindromes2	=	filterStrings(words,	predicate2);									//
(5)
				System.out.println(“Case-insensitive	palindromes:	”	+	palindromes2);
		}

		/**																																																																					//
(6)
			*	Filters	a	list	of	strings	according	to	the	criteria	of	the	predicate.
			*	@param	strList				List	of	strings	to	filter
			*	@param	predicate		Provides	the	criteria	for	filtering	the	strings
			*	@return											List	of	strings	that	match	the	criteria
			*/
		public	static	List<String>	filterStrings(List<String>	strList,
																																											StrPredicate	predicate)	{
				List<String>	result	=	new	ArrayList<>();
				for	(String	str	:	strList)	{
						if	(predicate.test(str))	{																																										//
(7)
								result.add(str);
						}
				}
				return	result;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List	of	words:																[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
Case-sensitive	palindromes:			[ADA,	HannaH]

Case-insensitive	palindromes:	[Otto,	ADA,	Alyla,	Bob,	HannaH]

Filtering	Using	the	Predicate<T>	Functional	Interface

Example	10.4	used	a	user-defined	functional	interface	StrPredicate.	The	Java	SE
platform	API	provides	functional	interfaces	for	many	tasks	(such	as	testing	an	object	and
creating	objects).	For	implementing	predicates,	we	can	use	the	generic
java.util.function.Predicate<T>	functional	interface,	which	specifies	the
single-parameter	boolean	method	test(T	t).	It	is	a	more	generalized	version	of	the
StrPredicate	functional	interface	that	we	have	used	earlier.

Example	10.5	uses	the	generic	Predicate<T>	functional	interface,	where	the	type
parameter	T	represents	the	concrete	type	String.	In	Example	10.4,	we	simply	need	to
replace	the	name	StrPredicate	with	the	name	Predicate<String>	in	(2),	(4),
and	(6),	and	import	the	Predicate<T>	functional	interface	from	the
java.util.function	package	((1)	in	Example	10.5).	The	discussion	of	type
checking	and	evaluation	of	lambda	expressions	in	Example	10.4	also	applies	to	Example
10.5.

Functional	interfaces	and	lambda	expressions	together	allow	behavior	parameterization,	a
powerful	programming	paradigm	that	allows	code	representing	behavior	to	be	passed
around	as	values,	and	executed	when	the	abstract	method	of	the	functional	interface	is
invoked.	This	approach	is	scalable,	requiring	only	a	lambda	expression	to	represent	the
filtering	criteria.

Functional-style	programming	is	also	beneficial	in	developing	parallel	code.	In	the
multicore	world	in	which	we	live,	we	can	use	all	the	help	we	can	get	to	utilize	the
computing	power	that	new	hardware	architectures	are	putting	at	our	disposal.

The	rest	of	this	section	provides	more	insight	into	these	two	features	of	the	language:
functional	interfaces	and	lambda	expressions.

Example	10.5	Using	the	Predicate<T>	Functional	Interface	for	Filtering	an
ArrayList

Click	here	to	view	code	image
import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;																																						//
(1)

public	class	FunWithPalindromesV3	{

		public	static	void	main(String[]	args)	{

				List<String>	words	=	new	ArrayList<>();
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);
				System.out.println(“List	of	words:																”	+	words);

				Predicate<String>	predicate1	=	(String	str)	->
								str.equals(new	StringBuilder(str).reverse().toString());										//
(2)
				List<String>	palindromes1	=	filterStrings(words,	predicate1);									//
(3)
				System.out.println(“Case-sensitive	palindromes:			”	+	palindromes1);

				Predicate<String>	predicate2	=	(String	str)	->
								str.equalsIgnoreCase(new	StringBuilder(str).reverse().toString());//
(4)
				List<String>	palindromes2	=	filterStrings(words,	predicate2);									//
(5)
				System.out.println(“Case-insensitive	palindromes:	”	+	palindromes2);
		}

		/**																																																																					//
(6)
			*	Filters	a	list	of	strings	according	to	the	criteria	of	the	predicate.
			*	@param	strList				List	of	strings	to	filter
			*	@param	predicate		Provides	the	criteria	for	filtering	the	strings
			*	@return											List	of	strings	that	match	the	criteria
			*/
		public	static	List<String>	filterStrings(List<String>	strList,
																																											Predicate<String>	predicate)	{
				List<String>	result	=	new	ArrayList<>();
				for	(String	str	:	strList)	{
						if	(predicate.test(str))	{																																										//
(7)
								result.add(str);
						}
				}
				return	result;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List	of	words:																[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
Case-sensitive	palindromes:			[ADA,	HannaH]
Case-insensitive	palindromes:	[Otto,	ADA,	Alyla,	Bob,	HannaH]

Functional	Interfaces
A	functional	interface	can	have	only	one	abstract	method.	This	abstract	method	is	called
the	functional	method	for	that	interface.	Like	any	other	interface,	a	functional	interface	can
have	any	number	of	static	and	default	methods.	Such	an	interface	can	also	provide	explicit
public	abstract	method	declarations	for	non-final	public	instance	methods	in	the
Object	class,	but	these	are	excluded	from	the	definition	of	a	functional	interface.	Note
that	abstract	methods	declared	in	an	interface	are	implicitly	abstract	and	public.
Interfaces	are	discussed	in	§7.6,	p.	290.

We	defined	and	used	the	StrPredicate	interface	earlier.	It	has	exactly	one	abstract
method.
Click	here	to	view	code	image

@FunctionalInterface
interface	StrPredicate	{
		boolean	test(String	str);																						//	Sole	public	abstract
method.
}

The	annotation	@FunctionalInterface	is	useful	when	defining	functional
interfaces.	The	compiler	will	issue	an	error	if	the	declaration	violates	the	definition	of	a
functional	interface,	as	illustrated	by	the	following	XStrPredicate	interface.	Its
declaration	has	two	abstract	methods.
Click	here	to	view	code	image

@FunctionalInterface
interface	XStrPredicate	{																																	//	Compile-time
error!
		boolean	test(String	str);																															//	Abstract	method.
		String		reverse(String	str);																												//	Abstract	method.
}

The	next	functional	interface	NewStrPredicate	declares	only	one	abstract	method	at
(1).	In	addition,	it	provides	the	implementations	of	one	default	method	and	one	static
method	at	(2)	and	(3),	respectively.	The	abstract	method	declaration	at	(4)	is	that	of	a	non-
final	public	method	from	the	Object	class,	but	such	declarations	are	excluded
from	the	definition	of	a	functional	interface.
Click	here	to	view	code	image

@FunctionalInterface
interface	NewStrPredicate		{
		boolean	test(String	str);																																	//	(1)	Abstract
method
		default	void	msg(String	str)	{	System.out.println(str);	}	//	(2)	Default
method
		static	void	info()	{	System.out.println(“Testing!”);	}				//	(3)	Static
method
		@Override	boolean	equals(Object	obj);																			//	(4)	From	Object
class
}

The	interface	StrFormat	provides	the	abstract	method	declaration	of	the	non-final
public	method	toString()	from	the	Object	class,	but	such	declarations	are
excluded	from	the	definition	of	a	functional	interface.	Effectively,	there	is	no	abstract

method	declared	in	the	StrFormat	interface.	The	code	would	compile	as	an	interface
without	the	annotation	@FunctionalInterface,	but	it	is	not	a	functional	interface.
Click	here	to	view	code	image

@FunctionalInterface
interface	StrFormat	{																																							//	Compile-time
error!
		@Override	String	toString();																														//	From	Object
class
}

Earlier	in	this	section,	we	used	the	generic	functional	interface
java.util.function.Predicate<T>,	which	provides	the	abstract	method
test()	to	implement	predicates.	This	functional	interface	also	has	one	static	method
(isEqual())	and	three	default	methods	(and(),	or(),	negate()).	The	default
methods	implement	short-circuit	logical	operators	that	can	be	used	for	composing
predicates	on	Predicate	objects.

The	functional	subinterface	IStrPredicate	that	follows	is	customized	to	the	String
type	by	extending	the	java.util.function.Predicate<T>	functional	interface,
where	the	type	parameter	T	is	String.	It	can	readily	be	used	for	implementing	predicates
on	strings.
Click	here	to	view	code	image

@FunctionalInterface
interface	IStrPredicate	extends	Predicate<String>	{	}

Functional	Interfaces	in	Java	SE	Platform	API

The	Java	SE	platform	API	has	many	functional	and	nonfunctional	interfaces,	all	of	which
support	the	practice	of	programming	to	interfaces.	For	example,	the	java.lang	package
includes	five	functional	interfaces:	Runnable,	Comparable<T>,	AutoCloseable,
Iterable<T>,	and	Readable.	However,	the	main	support	for	functional	interfaces	is
found	in	the	java.util.function	package.	It	includes	general-purpose	functional
interfaces	that	implement	basic	concepts	in	functional-style	programming	(Table	10.2).	In
addition,	the	package	provides	a	wide	range	of	functional	interfaces	for	various	purposes,
so	that	implementing	new	extensions	should	hardly	be	necessary.

Table	10.2	Selected	Functional	Interfaces	from	the	java.util.function	Package

The	java.util.function	package	includes	functional	interfaces	that	are	specialized
for	primitive	values.	Their	use	enables	programmers	to	avoid	excessive	boxing	and
unboxing	of	primitive	values	when	such	values	are	used	as	objects.	The	functional
interfaces	IntPredicate,	LongPredicate,	and	DoublePredicate	provide	an
abstract	test()	method	to	evaluate	predicates	with	int,	long,	and	double
arguments,	respectively.
Click	here	to	view	code	image

Predicate<Integer>	integerPred	=	(Integer	i)	->	i%2	==	0;//	i	as	operand
unboxed.
System.out.println(integerPred.test(2015));														//	Argument	boxed.
false

IntPredicate	intPred	=	(int	i)	->	i%2	==	0;
System.out.println(intPred.test(2016));																		//	true

Defining	Lambda	Expressions
Lambda	expressions	implement	functional	interfaces	by	defining	anonymous	functions
that	facilitate	behavior	parameterization.	They	can	be	passed	and	used	as	values	in	a
program,	without	the	excess	baggage	of	first	being	packaged	into	objects	in	the	source
code.	The	compiler	takes	care	of	whatever	that	needs	to	be	done	internally	to	make	their
usage	feasible.

A	lambda	expression	has	the	following	syntax:
Click	here	to	view	code	image

formal_parameter_list	->	lambda_body

The	parameter	list	and	the	body	are	separated	by	the	->	operator.	The	lambda	expression
syntax	resembles	a	simplified	declaration	of	a	method,	without	many	of	the	bells	and
whistles	of	a	method	declaration.	That	streamlining	is	important,	as	it	avoids	verbosity	and
provides	a	simple	and	succinct	notation	with	which	to	write	lambda	expressions	on	the	fly.

In	the	rest	of	this	section,	we	take	a	closer	look	at	the	parameter	list,	the	lambda	body,	and

the	type	checking	and	evaluation	of	lambda	expressions.

Lambda	Parameters

The	parameter	list	of	a	lambda	expression	is	a	comma-separated	list	of	formal	parameters
that	is	enclosed	in	parentheses,	(),	analogous	to	the	parameter	list	in	a	method
declaration.	There	are	other	shorthand	forms	as	well,	as	we	shall	see	shortly.

If	the	types	of	the	parameters	are	specified,	they	are	known	as	declared-type	parameters.
If	the	types	of	the	parameters	are	not	specified,	they	are	known	as	inferred-type
parameters.	Types	of	the	inferred-type	parameters	are	derived	from	the	functional
interface	type	that	is	the	target	type	of	the	lambda	expression.

Parameters	are	either	all	declared-type	or	all	inferred-type.	Parentheses	are	mandatory
with	multiple	parameters,	whether	they	are	declared-type	or	inferred-type.	For	a	parameter
list	with	a	single	inferred-type	parameter,	the	parentheses	can	be	omitted.	Also,	only
declared-type	parameters	can	have	modifiers.
Click	here	to	view	code	image

()	->	..																																					//	Empty	parameter	list
(Integer	x,	Integer	y,	Integer	z)	->	..						//	Multiple	declared-type
parameters
(x,	y,	z)				->	..																											//	Multiple	inferred-type
parameters
(String	str)	->	..																											//	Single	declared-type
parameter
(str)								->	..																											//	Single	inferred-type
parameter
str										->	..																											//	Single	inferred-type
parameter
String	str			->	..																											//	Illegal:	Missing	parentheses
Integer	x,	Integer	y,	Integer	z	->	..								//	Illegal:	Missing	parentheses
i,	j,	k						->	..																											//	Illegal:	Missing	parentheses
(String	str,	j)						->	..		//	Illegal:	Cannot	mix	inferred	and	declared	type
(final	int	i,	int	j)	->	..		//	OK:	Modifier	with	declared-type	parameter
(final	i,	j)									->	..		//	Illegal:	No	modifier	with	inferred-type
parameter

Lambda	Body

A	lambda	body	is	either	a	single	expression	or	a	statement	block.	Execution	of	a	lambda
body	has	either	a	non-void	return	(i.e.,	returns	a	value)	or	a	void	return	(i.e.,	does	not
return	a	value),	or	its	evaluation	throws	an	exception.

A	single-expression	lambda	body	is	used	for	short	and	succinct	lambda	expressions.	A
single-expression	lambda	body	with	a	void	return	type	is	commonly	used	to	achieve	side
effects.	The	return	keyword	is	not	allowed	in	a	single-expression	lambda	body.

In	the	examples	that	follow,	the	body	of	the	lambda	expressions	is	an	expression	whose
execution	returns	a	value	(i.e.,	has	a	non-void	return):
Click	here	to	view	code	image

()	->	2015																																		//	Expression	body,	non-void
return
()	->	null																																		//	Expression	body,	non-void
return

(i,	j)	->	i	+	j																													//	Expression	body,	non-void
return
(i,	j)	->	i	<=	j	?	i	:	j																				//	Expression	body,	non-void
return
str	->	str.length()	>	3																					//	Expression	body,	non-void
return
str	->	str	!=	null																										//	Expression	body,	non-void
return
							&&		!str.equals(””)	&&		str.length()	>	3
							&&		str.equals(new	StringBuilder(str).reverse().toString())

In	the	next	set	of	examples,	the	lambda	body	is	an	expression	statement	that	can	have	a
void	or	a	non-void	return.	However,	if	the	abstract	method	of	the	functional	interface
returns	void,	the	non-void	return	of	a	lambda	expression	with	an	expression	statement
as	body	can	be	interpreted	as	a	void	return	(i.e.,	the	return	value	is	ignored).
Click	here	to	view	code	image

val	->	System.out.println(val)				//	Method	invocation	statement,	void	return
sb	->	sb.trimToSize()													//	Method	invocation	statement,	void	return
sb	->	sb.append(“!”)														//	Method	invocation	statement,	non-void
return
()	->	new	StringBuilder(“?”)						//	Object	creation	statement,	non-void
return
value	->	value++																		//	Increment	statement,	non-void	return
value	->	value	*=	2															//	Assignment	statement,	non-void	return

The	following	examples	are	not	legal	lambda	expressions:
Click	here	to	view	code	image

(int	i)	->	while	(i	<	10)	++i		//	Illegal:	not	an	expression	but	a	statement
(x,	y)	->	return	x	+	y									//	Illegal:	return	not	allowed	in	expression

The	statement	block	comprises	declarations	and	statements	enclosed	in	braces	({}).	The
return	statement	is	allowed	only	in	a	block	lambda	body.
Click	here	to	view	code	image

()	->	{}																																				//	Block	body,	void	return
()	->	{	return	2015;	}																						//	Block	body,	non-void	return
()	->	{	return	2015	}						//	Illegal:	statement	terminator	(;)	in	block
missing
()	->	{	new	StringBuilder(“Go	nuts.”);	}											//	Block	body,	void	return
()	->	{	return	new	StringBuilder(“Go	nuts!”);	}				//	Block	body,	non-void
return
(int	i)	->	{	while	(i	<	10)	++i;	}																	//	Block	body,	void	return
(i,	j)	->	{	if	(i	<=	j)	return	i;	else	return	j;	}	//	Block	body,	non-void
return
(done)	->	{																					//	Multiple	statements	in	block	body,	void
return
		if	(done)	{
				System.out.println(“You	deserve	a	break!”);
				return;
		}
		System.out.println(“Stay	right	here!”);
}

Accessing	Members	in	the	Enclosing	Class

Since	a	lambda	expression	is	not	associated	with	any	class,	there	is	no	notion	of	a	this
reference	associated	with	it.	If	it	is	used	in	a	lambda	expression,	the	this	reference	refers
to	the	enclosing	object,	and	can	be	used	to	access	members	of	this	object.	The	name	of	a
member	in	the	enclosing	object	has	the	same	meaning	when	used	in	a	lambda	expression.
In	other	words,	there	are	no	restrictions	on	accessing	members	in	the	enclosing	object.	In
the	case	of	shadowing	member	names,	the	keyword	this	can	be	explicitly	used,	and	the
keyword	super	can	be	used	to	access	any	members	inherited	by	the	enclosing	object.

In	Example	10.6,	the	getPredicate()	method	at	(7)	defines	a	lambda	expression	at
(8).	This	lambda	expression	accesses	the	static	field	strList	and	the	instance	field
banner	in	the	enclosing	class	at	(1)	and	(2),	respectively.

In	the	main()	method	in	Example	10.6,	an	ArrayList	is	assigned	to	the	static
field	strList	at	(3)	and	is	initialized.	The	ArrayList	referred	to	by	the	static	field
strList	has	the	following	content:
Click	here	to	view	code	image

[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]

A	MembersOnly	object	is	created	at	(4).	Its	StringBuilder	field	banner	is
initialized	with	the	string	"love	",	and	the	local	variable	obj	refers	to	this
MembersOnly	object.	At	(5),	a	Predicate	object	is	created	by	calling	the
getPredicate()	method	on	the	MembersOnly	object	referred	to	by	the	local
variable	obj.	This	predicate	is	first	evaluated	when	the	test()	method	is	called	at	(6)
on	the	Predicate	object,	with	the	argument	string	"never	dies!".	Calling	the
test()	method	results	in	the	lambda	expression	created	at	(5)	by	the
getPredicate()	method	being	evaluated	in	the	enclosing	MembersOnly	object
referred	to	by	the	local	variable	obj.

The	parameter	str	of	the	lambda	expression	is	initialized	with	the	string	"never
dies!",		the	argument	to	the	test()	method.	In	the	body	of	the	lambda	expression,	the
ArrayList	referred	to	by	the	static	field	strList	is	first	printed	at	(9):
Click	here	to	view	code	image

List:	[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]

At	(10),	the	parameter	str	(with	contents	"never	dies!")	is	appended	to	the
StringBuilder	(with	contents	"love	")	referred	to	by	the	instance	field	banner	in
the	enclosing	object,	resulting	in	the	following	contents	in	this	StringBuilder:

“love	never	dies!”

Since	the	length	of	the	string	"never	dies!",	referred	to	by	the	parameter	str,	is
greater	than	5,	the	lambda	expression	returns	true	at	(11).	This	is	the	value	returned	by
the	test()	method	call	in	(6).

In	the	call	to	the	println()	method	at	(6),	the	argument
Click	here	to	view	code	image

p.test(“never	dies!”)	+	”	”	+	obj.banner

now	evaluates	as
Click	here	to	view	code	image

true	+	”	”	+	“love	never	dies!”

Example	10.6	Accessing	Members	in	an	Enclosing	Object
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;

public	class	MembersOnly	{

		//	Instance	variable
		private	StringBuilder	banner;																																				//	(1)

		//	Static	variable
		private	static	List<String>	strList;																													//	(2)

		//	Constructor
		public	MembersOnly(String	str)	{
				banner	=	new	StringBuilder(str);
		}

		//	Static	method
		public	static	void	main(String[]	args)	{
				strList	=	new	ArrayList<>();																																			//	(3)
				strList.add(“Otto”);	strList.add(“ADA”);	strList.add(“Alyla”);
				strList.add(“Bob”);	strList.add(“HannaH”);	strList.add(“Java”);

				MembersOnly	obj	=	new	MembersOnly(“love	“);																				//	(4)
				Predicate<String>	p	=	obj.getPredicate();																						//	(5)
				System.out.println(p.test(“never	dies!”)	+	”	”	+	obj.banner);		//	(6)
		}

		//	Instance	method
		public	Predicate<String>	getPredicate()	{										//	(7)
				return	str	->	{																																		//	(8)		Lambda
expression
						System.out.println(“List:	”	+	strList);								//
(9)		MembersOnly.strList
						banner.append(str);																												//	(10)	this.banner
						return	str.length()	>	5;																							//	(11)	boolean	value
				};
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List:	[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
true	love	never	dies!

Accessing	Local	Variables	in	the	Enclosing	Context

As	mentioned	earlier,	a	lambda	expression	is	not	associated	with	a	class	or	any	of	its
members.	Apart	from	not	having	a	this	reference,	a	lambda	expression	also	does	not
create	its	own	scope.	Instead,	it	is	part	of	the	scope	of	the	enclosing	context—it	has	lexical
or	block	scope	(§4.4,	p.	117).	All	variable	declarations	in	a	lambda	expression	follow	the
rules	of	block	scoping.	They	are	not	accessible	outside	of	the	lambda	expression.	In
addition,	we	cannot	redeclare	local	variables	already	declared	in	the	enclosing	scope.	In
Example	10.7,	redeclaring	the	local	variables	banner	and	words	at	(6)	and	(7),
respectively,	results	in	a	compile-time	error.

Local	variables	declared	in	the	enclosing	method,	including	its	formal	parameters,	can	be
accessed	in	a	lambda	expression	provided	they	are	effectively	final.	This	means	that	once	a
local	variable	has	been	assigned	a	value,	its	value	does	not	change	in	the	method.	Using
the	final	modifier	in	the	declaration	of	a	local	variable	explicitly	instructs	the	compiler
to	ensure	that	this	is	the	case.	The	final	modifier	implies	effectively	final.	If	the	final
modifier	is	omitted	and	a	local	variable	is	used	in	a	lambda	expression,	the	compiler
effectively	performs	the	same	analysis	as	if	the	final	modifier	had	been	specified.	A
lambda	expression	might	be	executed	at	a	later	time,	after	the	method	has	finished
execution.	At	that	point,	the	local	variables	used	in	the	lambda	expression	are	no	longer
accessible.	To	ensure	their	availability,	copies	of	their	values	are	maintained	with	the
lambda	expression.	This	is	called	variable	capture,	although	in	essence	it	is	the	values	that
are	captured.	Note	that	it	is	not	the	object	that	is	copied	in	the	case	of	a	local	reference
variable,	but	rather	the	reference	value.	Objects	reside	on	the	heap	and	are	accessible	via	a
copy	of	the	reference	value.	Correct	execution	of	the	lambda	expression	is	guaranteed,
since	these	effectively	final	values	cannot	change.	Note	that	the	state	of	an	object	referred
to	by	a	final	or	an	effectively	final	reference	can	change,	but	not	the	reference	value	in
the	reference;	thus,	such	a	reference	will	continue	refer	to	the	same	object	once	it	is
initialized.

In	Example	10.7,	the	method	getPredicate()	at	(1)	has	one	formal	parameter
(banner),	and	a	local	variable	(words)	declared	at	(2).	Although	the	state	of	the
ArrayList	object,	referred	to	by	the	reference	words,	is	changed	in	the	method	(we
add	elements	to	it),	the	reference	value	in	the	reference	does	not	change;	that	is,	it
continues	to	refer	to	the	same	object	whose	reference	value	it	was	assigned	at	(2).	The
parameter	banner	is	assigned	the	reference	value	of	the	argument	object	when	the
method	is	invoked,	and	continues	to	refer	to	this	object	throughout	the	method.	Both	local
variables	are	effectively	final.	Their	values	are	captured	by	the	lambda	expression,	and
used	when	the	lambda	expression	is	executed	after	the	call	to	the	getPredicate()
method	in	the	main()	method.

If	we	uncomment	(3)	and	(4)	in	Example	10.7,	then	both	local	variables	are	not	effectively
final.	Their	reference	values	are	changed	at	(3)	and	(4),	respectively.	The	compiler	now
flags	errors	in	(8)	and	(9),	respectively,	because	these	non-final	local	variables	are	used	in
the	lambda	expression.

Example	10.7	Accessing	Local	Variables	in	an	Enclosing	Method
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;

public	class	LocalsOnly	{

		public	static	void	main(String[]	args)	{
				StringBuilder	banner	=	new	StringBuilder(“love	“);
				LocalsOnly	instance	=	new	LocalsOnly();
				Predicate<String>	p	=	instance.getPredicate(banner);
				System.out.println(p.test(“never	dies!”)	+	”	”	+	banner);
		}

		public	Predicate<String>	getPredicate(StringBuilder	banner)	{			//	(1)
				List<String>	words	=	new	ArrayList<>();																							//	(2)
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);

//		banner	=	new	StringBuilder();									//	(3)	Illegal:	Not	effectively
final
//		words	=	new	ArrayList<>();												//	(4)	Illegal:	Not	effectively
final

				return	str	->	{																																	//	(5)	Lambda	expression
//				String	banner	=	“Don’t	redeclare	me!”;								//	(6)	Illegal:
Redeclared
//				String[]	words	=	new	String[6];															//	(7)	Illegal:
Redeclared
						System.out.println(“List:	”	+	words);									//	(8)
						banner.append(str);																											//	(9)
						return	str.length()	>	5;
				};
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List:	[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
true	love	never	dies!

Type	Checking	and	Execution	of	Lambda	Expressions
The	use	of	lambda	expressions	is	tightly	coupled	with	functional	interfaces.	A	lambda
expression	can	be	defined	in	a	context	where	a	functional	interface	can	be	used—for
example,	in	an	assignment	context,	a	method	call	context,	or	a	cast	context.	The	compiler
determines	the	target	type	that	is	required	in	the	context	where	the	lambda	expression	is
defined.	This	target	type	is	always	a	functional	interface	type.	In	the	assignment	context
that	follows,	the	target	type	is	Predicate<Integer>,	as	it	is	the	target	of	the
assignment	statement.	Note	that	the	type	parameter	T	of	the	functional	interface	is
Integer.
Click	here	to	view	code	image

Predicate<Integer>	p1	=	i	->	i%2	==	0;		//	(1)	Target	type:

Predicate<Integer>

The	method	type	of	a	method	declaration	comprises	its	type	parameters,	formal	parameter
types,	return	type,	and	any	exceptions	the	method	throws.

The	function	type	of	a	functional	interface	is	the	method	type	of	its	single	abstract	method.
The	target	type	Predicate<Integer>	has	the	following	method,	where	type
parameter	T	is	Integer:
Click	here	to	view	code	image

	public	boolean	test(Integer	t);								//	Method	type:	Integer	->	boolean

The	function	type	of	the	target	type	Predicate<Integer>	is	the	method	type	of	the
this	test()	method:

	Integer	->	boolean

The	type	of	the	lambda	expression	defined	in	a	given	context	must	be	compatible	with	the
function	type	of	the	target	type.	If	the	lambda	expression	has	inferred-type	parameters,
their	type	is	inferred	from	the	function	type,	and	if	necessary	from	the	context.	From	the
function	type	of	the	target	type	Predicate<Integer>,	the	compiler	can	infer	that	the
parameter	i	in	the	lambda	expression	at	(1)	should	be	of	type	Integer.	The	lambda
body	returns	a	boolean	value.	The	type	of	the	lambda	expression	in	(1)	is

	Integer	->	boolean

The	type	of	the	lambda	expression	is	compatible	with	the	function	type	of	the	target	type
Predicate<Integer>.

In	the	following	assignment,	the	target	type	is
java.util.function.IntPredicate:
Click	here	to	view	code	image

IntPredicate	p2	=	i	->	i%2	==	0;								//	(2)	Target	type:	IntPredicate

The	IntPredicate	functional	interface	has	the	following	abstract	method:
Click	here	to	view	code	image

	public	boolean	test(int	i);												//	Method	type:	int	->	boolean

The	function	type	of	the	target	type	IntPredicate	is	the	method	type	of	its	abstract
method:

	int	->	boolean

The	compiler	infers	that	the	type	of	the	inferred-type	parameter	i	in	the	lambda
expression	at	(2)	should	be	int.	As	the	lambda	body	returns	a	boolean	value,	the	type
of	the	lambda	expression	in	(2)	is

	int	->	boolean

The	type	of	the	lambda	expression	is	compatible	with	the	function	type	of	the	target	type
IntPredicate.

Note	that	in	both	examples,	the	lambda	expression	is	the	same,	but	their	types	are	different
in	the	two	contexts:	They	represent	two	different	values.	The	type	of	a	lambda	expression
is	determined	by	the	context	in	which	it	is	defined.

Click	here	to	view	code	image
	System.out.println(p1	==	p2);																				//	false

The	process	of	type	checking	a	lambda	expression	in	a	given	context	is	called	target
typing.	The	presentation	here	is	simplified,	but	suffices	for	our	purposes	to	give	an	idea	of
what	is	involved.

The	compiler	does	the	type	checking	necessary	to	use	lambda	expressions,	and	the
runtime	environment	provides	the	rest	of	the	magic	to	make	it	all	work.	At	runtime,	the
lambda	expression	is	executed	when	the	sole	abstract	method	of	the	functional	interface	is
invoked.	As	mentioned	earlier,	this	is	an	example	of	deferred	execution.	Lambda
execution	is	similar	to	invoking	a	method	on	an	object.	We	define	a	lambda	expression	as
a	function	and	use	it	like	a	method,	letting	the	compiler	and	the	runtime	environment	put	it
all	together.
Click	here	to	view	code	image

boolean	result1	=	p1.test(2015);																		//	false
boolean	result2	=	p2.test(2016);																		//	true

Filtering	Revisited:	The	 	Functional	Interface
Example	10.8	includes	the	two	previous	examples	of	filtering	a	list	for	palindromes	at	(2)
and	(3).	In	addition,	it	presents	several	examples	of	filtering	a	list	using	different	criteria
defined	on	properties	of	a	string.	Determining	whether	a	string	is	a	case-sensitive	or	case-
insensitive	palindrome	is	now	done	by	the	two	static	methods
isCaseSensitivePalindrome()	and	isCaseInsensitivePalindrome(),
respectively.	Also	note	that	the	filterStrings()	method,	which	we	used	earlier,	is
now	a	generic	method	to	filter	any	list,	not	just	a	list	of	strings,	(14).

The	examples	in	Example	10.8	have	intentionally	been	written	to	illustrate	the	syntax	of
lambda	expressions.	We	draw	attention	to	the	predicate	at	(11)	that	takes	into	account
whether	the	string	element	has	a	null	value,	whether	it	is	an	empty	string,	and	whether
its	length	is	greater	than	3,	before	testing	it	for	a	palindrome:
Click	here	to	view	code	image

Predicate<String>	predicateE	=	str	->																																//	(11)
			str	!=	null	&&		!str.equals(””)	&&		str.length()	>	3
			&&		isCaseSensitivePalindrome(str);

This	lambda	expression	avoids	throwing	a	NullPointerException.	There	are	other,
more	sophisticated	ways	of	dealing	with	a	NullPointerException,	but	they	are
beyond	the	scope	of	this	book.	The	Predicate<T>	interface	also	provides	methods	to
compose	compound	predicates.

The	filtering	examples	in	this	chapter	make	heavy	use	of	traversal	over	a	list	using	a	loop.
Functional-style	programming	frees	us	from	the	tyranny	of	explicit	traversal	over
collections,	but	we	have	merely	scratched	the	surface	here.	Earlier	in	this	chapter	(p.	424),
we	discussed	the	removal	of	elements	from	a	list.	The	removeIf()	method	of	the
ArrayList	class	provides	a	safe	and	convenient	way	of	deleting	all	elements	that	satisfy
any	criteria	expressed	as	a	Predicate<T>.	Thus,	the	traversal	process	is	now	internal.
The	lambda	expression	in	(11)	tests	whether	the	string	contains	the	character	a.	All	strings

satisfying	this	criterion	are	removed	from	the	list,	as	confirmed	by	the	output	from	the
program.
Click	here	to	view	code	image

words.removeIf(str	->	str.indexOf(‘a’)	>	0);																					//	(12)

Another	example	of	the	use	of	this	method	is	given	in	(13),	where	it	is	used	to	remove	all
strings	with	length	greater	than	3:
Click	here	to	view	code	image

words.removeIf(str	->	str.length()	>	3);																									//	(13)

It	is	instructive	to	walk	through	the	code	in	Example	10.8,	and	compare	it	to	the	solution
we	initially	wrote	in	Example	10.2,	p.	434.

Example	10.8	Filtering	an	ArrayList
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;

public	class	FunWithPalindromesV4	{

		private	static	boolean	isCaseSensitivePalindrome(String	str)	{
				return	str.equals(new	StringBuilder(str).reverse().toString());
		}

		private	static	boolean	isCaseInsensitivePalindrome(String	str)	{
				return	str.equalsIgnoreCase(new	StringBuilder(str).reverse().toString());
		}

		public	static	void	main(String[]	args)	{

				//	Create	a	list	of	words:																																													//
(1)
				List<String>	words	=	new	ArrayList<>();
				words.add(“Otto”);	words.add(“ADA”);	words.add(“Alyla”);
				words.add(“Bob”);	words.add(“HannaH”);	words.add(“Java”);
				System.out.println(“List	of	words:																			”	+	words);

				List<String>	palindromes1	=	filterStrings(words,																							//
(2)
								str	->	isCaseSensitivePalindrome(str));
				System.out.println(“Case-sensitive	palindromes:						”	+	palindromes1);

				List<String>	palindromes2	=	filterStrings(words,	str	->																//
(3)
								isCaseInsensitivePalindrome(str));
				System.out.println(“Case-insensitive	palindromes:				”	+	palindromes2);

				Predicate<String>	predicate3	=	str	->	!isCaseSensitivePalindrome(str);	//
(4)
				List<String>	nonPalindromes	=	filterStrings(words,	predicate3);
				System.out.println(“Non-palindromes,	case	sensitive:	”	+	nonPalindromes);

				Predicate<String>	predicate4	=	str	->	str.length()	>	3;																//
(5)
				List<String>	strGT3	=	filterStrings(words,	predicate4);
				System.out.println(“Words	with	length	>	3:											”	+	strGT3);

				Predicate<String>	predicate5	=	str	->																																		//
(6)
								str.length()	>	3	&&	isCaseSensitivePalindrome(str);
				List<String>	palindromesGT3	=	filterStrings(words,	predicate5);
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																							+	palindromesGT3);

				Predicate<String>	predicateA	=	str	->	{																																//
(7)
						return	str.length()	>	3	&&	isCaseSensitivePalindrome(str);
				};
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																								+	filterStrings(words,	predicateA));

				Predicate<String>	predicateB	=	str	->	{																																//
(8)
						boolean	result1	=	str.length()	>	3;
						boolean	result2	=	isCaseSensitivePalindrome(str);
						return		result1	&&	result2;
				};
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																								+	filterStrings(words,	predicateB));

				Predicate<String>	predicateC	=	str	->	{																																//
(9)
						if	(str	==	null	||	str.equals(””)	||	str.length()	<=	3)	{
								return	false;
						}
						StringBuilder	sb	=	new	StringBuilder(str);
						boolean	result	=	str.equals(sb.reverse().toString());
						return	result;
				};
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																								+	filterStrings(words,	predicateC));

				Predicate<String>	predicateD	=	str	->																																		//
(10)
								(str	==	null	||	str.equals(””)	||	str.length()	<=	3)
								?	false:	isCaseSensitivePalindrome(str);
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																								+	filterStrings(words,	predicateD));

				Predicate<String>	predicateE	=	str	->																																		//
(11)
								str	!=	null	&&		!str.equals(””)	&&		str.length()	>	3
								&&		isCaseSensitivePalindrome(str);
				System.out.println(“Case-sensitive	palindromes,	length	>	3:	“
																						+	filterStrings(words,	predicateE));

				//	Removing	elements	from	a	list:
				words.removeIf(str	->	str.indexOf(‘a’)	>	0);																											//
(12)
				System.out.println(“List	of	words,	no	‘a’:						”	+	words);

				words.removeIf(str	->	str.length()	>	3);																															//
(13)
				System.out.println(“List	of	words,	length	<=	3:	”	+	words);
		}

		/**
			*	Filters	a	list	according	to	the	criteria	of	the	predicate.

			*	@param	list							List	to	filter
			*	@param	predicate		Provides	the	criteria	for	filtering	the	list
			*	@return											List	of	elements	that	match	the	criteria
			*/
		public	static	<E>	List<E>	filterStrings(List<E>	list,																				//
(14)
																																										Predicate<E>	predicate)	{
				List<E>	result	=	new	ArrayList<>();
				for	(E	element	:	list)
						if	(predicate.test(element))
								result.add(element);
				return	result;
		}
}

Output	from	the	program:
Click	here	to	view	code	image

List	of	words:																			[Otto,	ADA,	Alyla,	Bob,	HannaH,	Java]
Case-sensitive	palindromes:						[ADA,	HannaH]
Case-insensitive	palindromes:				[Otto,	ADA,	Alyla,	Bob,	HannaH]
Non-palindromes,	case	sensitive:	[Otto,	Alyla,	Bob,	Java]
Words	with	length	>	3:											[Otto,	Alyla,	HannaH,	Java]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
Case-sensitive	palindromes,	length	>	3:	[HannaH]
List	of	words,	no	‘a’:						[Otto,	ADA,	Bob]
List	of	words,	length	<=	3:	[ADA,	Bob]

	Review	Questions

10.7	Which	statement	is	true	about	functional	interfaces	and	lambda	expressions?

Select	the	one	correct	answer.

(a)	A	functional	interface	can	be	implemented	only	by	lambda	expressions.

(b)	A	functional	interface	declaration	can	have	only	one	method	declaration.

(c)	In	the	body	of	a	lambda	expression,	only	public	members	in	the	enclosing
class	can	be	accessed.

(d)	In	the	body	of	a	lambda	expression,	all	local	variables	in	the	enclosing	scope
can	be	accessed.

(e)	A	lambda	expression	in	a	program	can	implement	only	one	functional	interface.

(f)	None	of	the	above.

10.8	Which	statements	are	true	about	the	following	code?
Click	here	to	view	code	image

import	java.util.function.Predicate;

public	class	RQ12A98	{
		public	static	final	String	lock1	=	“Brinks”;
		private	static	String	lock2	=	“Yale”;

		public	static	void	main(String[]	args)	{
				Predicate<Object>	p;
				p	=	lock	->	{	boolean	p	=	lock.equals(“Master”);	return	p;
};								//	(1)
				p	=	lock	->	{	return	lock.toString().equals(“YALE”);
};														//	(2)
				p	=	lock	->	{	(args.length	>	0)	?	lock.equals(args[0])	:	false;
};			//	(3)
				p	=	lock	->	{	return	lock.equals(lock1);
};																										//	(4)
				p	=	lock	->	{	return	lock.equals(lock2);
};																										//	(5)
				p	=	lock2	->	{	return	lock2.equals(RQ12A98.lock2);
};																//	(6)
		}
}

Select	the	two	correct	answers.

(a)	(1)	will	not	compile.

(b)	(2)	will	not	compile.

(c)	(3)	will	not	compile.

(d)	(4)	will	not	compile.

(e)	(5)	will	not	compile.

(f)	(6)	will	not	compile.

10.9	Which	statements	are	true	about	the	following	code?
Click	here	to	view	code	image

interface	Funky1				{	void				absMethod1(String	s);	}
interface	Funky2				{	String		absMethod2(String	s);	}

public	class	RQ12A99	{
		public	static	void	main(String[]	args)	{

				Funky1	p1;
				p1	=	s	->	System.out.println(s);											//	(1)
				p1	=	s	->	s.length();																						//	(2)
				p1	=	s	->	s.toUpperCase();																	//	(3)
				p1	=	s	->	{	s.toUpperCase();	};												//	(4)
				p1	=	s	->	{	return	s.toUpperCase();	};					//	(5)

				Funky2	p2;
				p2	=	s	->	System.out.println(s);											//	(6)
				p2	=	s	->	s.length();																						//	(7)
				p2	=	s	->	s.toUpperCase();																	//	(8)
				p2	=	s	->	{	s.toUpperCase();	};												//	(9)
				p2	=	s	->	{	return	s.toUpperCase();	};					//	(10)
		}
}

Select	the	four	correct	answers.

(a)	(1)	will	not	compile.

(b)	(2)	will	not	compile.

(c)	(3)	will	not	compile.

(d)	(4)	will	not	compile.

(e)	(5)	will	not	compile.

(f)	(6)	will	not	compile.

(g)	(7)	will	not	compile.

(h)	(8)	will	not	compile.

(i)	(9)	will	not	compile.

(j)	(10)	will	not	compile.

10.10	Which	statement	is	true	about	the	following	program?
Click	here	to	view	code	image

import	java.util.Arrays;
import	java.util.function.IntPredicate;

public	class	RQ12A96	{

		public	static	void	main(String[]	args)	{
				int[]	intArray	=	{0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9};
				filterInt(intArray,	val	->	val	<	0	&&	val	%	2	==	0);
				System.out.println(Arrays.toString(intArray));
		}

		public	static	void	filterInt(int[]	intArr,
																															IntPredicate	predicate)	{
				for	(int	i	=	0;	i	<	intArr.length;	++i)	{
						if	(predicate.test(intArr[i]))	{
								intArr[i]	=	Math.abs(intArr[i]);
						}
				}
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	compile,	but	will	throw	an	exception	when	run.

(c)	The	program	will	compile	and	print	the	following	when	run:
[0,	1,	-2,	3,	-4,	5,	-6,	7,	-8,	9]

(d)	The	program	will	compile	and	print	the	following	when	run:
[0,	-1,	2,	-3,	4,	-5,	6,	-7,	8,	-9]

(e)	The	program	will	compile	and	print	the	following	when	run:
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

10.11	Which	statement	is	true	about	the	following	code?
Click	here	to	view	code	image

interface	InterfaceA	{	void	doIt();	}
interface	InterfaceB	extends	InterfaceA	{}
interface	InterfaceC	extends	InterfaceB	{

		void	doIt();
		boolean	equals(Object	obj);
}

class	Beta	implements	InterfaceB	{
		public	void	doIt()	{
				System.out.print(“Jazz|”);
		}
}

public	class	RQ12A999	{
		public	static	void	main(String[]	args)	{
				InterfaceA	a	=	()	->	System.out.print(“Java|”);								//	(1)
				InterfaceB	b	=	()	->	System.out.print(“Jive|”);								//	(2)
				InterfaceC	c	=	()	->	System.out.print(“Jingle|”);						//	(3)
				Object	o	=	a	=	c;																																						//	(4)
				b	=	new	Beta();																																								//	(5)
				a.doIt();																																														//	(6)
				b.doIt();																																														//	(7)
				c.doIt();																																														//	(8)
				((InterfaceA)	o).doIt();																															//	(9)
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	ClassCastException.

(c)	The	program	will	print:	Jingle|Jingle|Jazz|Jingle|

(d)	The	program	will	print:	Jingle|Jazz|Jingle|Jingle|

(e)	The	program	will	print:	Jingle|Jingle|Jingle|Jazz|

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	The	concept	of	a	list	as	a	collection

•	The	inheritance	relationship	between	the	ArrayList<E>	class,	the	List<E>
interface,	and	the	Collection<E>	interface	in	the	Java	Collections	Framework

•	Use	of	the	diamond	operator	(<>)	when	creating	objects	of	generic	classes

•	Declaring	and	using	references	of	the	ArrayList	type

•	Creating,	querying,	traversing,	converting,	and	sorting	ArrayLists

•	Comparison	of	arrays	and	ArrayLists

•	Behavior	parameterization	in	functional-style	programing

•	The	role	of	lambda	expressions	and	functional	interfaces	in	implementing	behavior
parameterization

•	Referencing	the	general-purpose	functional	interfaces	in	the

java.util.function	package

•	Implementing	the	Predicate<T>	functional	interface	using	lambda	expressions

•	Defining	selection	criteria	as	predicates	for	filtering	ArrayLists

•	Defining	and	type	checking	lambda	expressions	in	the	context	of	a	functional
interface

•	The	deferred	execution	of	a	lambda	expression

•	The	implications	of	using	class	members	from	the	enclosing	class,	and	of	using	local
variables	from	the	enclosing	method

•	Passing	and	assigning	lambda	values	using	functional	interface	references

	Programming	Exercise

10.1	Find	all	elements	in	a	list	that	satisfy	all	given	predicates.

Skeleton	code	for	this	problem	is	provided	in	this	exercise.	The	main()	method	at
(1)	creates	a	list	of	strings	from	an	array	of	strings.	It	also	creates	a	list	of
predicates.	The	following	predicates	should	be	included	in	this	list:

•	A	string	is	not	null.

•	A	string	contains	the	substring	"up"	by	first	converting	the	string	to	lowercase.

•	The	first	character	of	a	string	is	a	letter.

The	main()	method	calls	the	methods	at	(2),	(4),	and	(5).	The	output	from	the
program	is	shown	here.	The	textual	representation	of	the	lambda	expressions	might
vary.

Click	here	to	view	code	image
[Cheer	up!,	7Up	coming	up!,	null,	Bottoms	up!,	Get	down!,	What’s	up?]
[FilterFun$$Lambda$1/12251916@192e0f4,
FilterFun$$Lambda$2/18340259@a418fc,
FilterFun$$Lambda$3/19888781@105068a]
[Cheer	up!,	Bottoms	up!,	What’s	up?]
[Cheer	up!,	Bottoms	up!,	What’s	up?]
[Cheer	up!,	Bottoms	up!,	What’s	up?]

Complete	the	implementation	of	the	main()	method,	and	at	least	implement	the
methods	at	(2)	and	(3).

To	implement	the	methods	at	(4)	and(5),	see	the	methods	and()	and	negate()
provided	by	the	java.util.function.Predicate<T>	interface.

The	methods	at	(4)	and(5)	also	make	use	of	the	ArrayList.removeIf()
method.

The	method	at	(5)	is	a	straightforward	generic	version	of	the	method	at	(4),	so	that
any	list	can	be	filtered	this	way.

Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;

public	class	FilterFun	{

		public	static	void	main(String[]	args)	{																															//
(1)
				//	Create	a	list	of	strings:
				String[]	strings	=	{	“Cheer	up!”,	“7Up	coming	up!”,	null,
																									“Bottoms	up!”,“Get	down!”,	“What’s	up?”	};
				List<String>	strList	=	new	ArrayList<>();
				/*	WRITE	CODE	TO	POPULATE	THE	LIST	OF	STRINGS	HERE.	*/
				System.out.println(strList);

				//	Create	a	list	of	predicates.
				List<Predicate<String>>	predList	=	new	ArrayList<>();
				/*	WRITE	CODE	TO	POPULATE	THE	LIST	OF	PREDICATES	HERE.	*/
				System.out.println(predList);

				//	Apply	filtering.
				applyAllPredicates(strList,	predList);
				applyAllPredicatesAlt(strList,	predList);
				applyAllPredicatesGenAlt(strList,	predList);
		}

		/**
			*	Prints	all	the	strings	in	the	specified	list	that	satisfy	all	the
			*	predicates	in	the	list	of	predicates.
			*	It	uses	the	andPredicates()	method	at	(3).
			*	@param	list								List	of	strings	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	void	applyAllPredicates(List<String>	list,															//
(2)
																																								List<Predicate<String>>	predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
		}

		/**
			*	Determines	whether	a	string	satisfies	all	the	predicates.
			*	@param	str									String	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*	@return												true	only	if	the	string	satisfies	all	the	predicates
			*/
		public	static	boolean	andPredicates(String	str,																								//
(3)
																																						List<Predicate<String>>	predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
		}

		/**
			*	Removes	all	the	elements	in	the	specified	list	that	do	not	satisfy	all
the
			*	predicates	in	the	list	of	predicates,	and	prints	the	remaining	elements
			*	that	do.
			*	Uses	Predicate.and(),	Predicate.negate(),	and	List.removeIf()	methods.
			*	@param	list								List	of	strings	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	void	applyAllPredicatesAlt(List<String>	list,												//
(4)
																																											List<Predicate<String>>

predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
		}

		/**	Generic	version.
			*	Removes	all	the	elements	in	the	specified	list	that	do	not	satisfy	all
the
			*	predicates	in	the	list	of	predicates,	and	prints	the	remaining	elements
			*	that	do.
			*	Uses	Predicate.and(),	Predicate.negate(),	and	List.removeIf()	methods.
			*	@param	list								List	of	elements	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	<T>	void	applyAllPredicatesGenAlt(List<T>	list,										//
(5)
																																	List<Predicate<T>>	predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
		}
}

11.	Date	and	Time

11.1	Basic	Date	and	Time	Concepts
Java	8	introduced	a	new	comprehensive	API	for	handling	temporal	concepts.	In	this
chapter,	we	primarily	concentrate	on	classes	that	represent	the	date,	time,	and	period.	The
Java	8	API	also	provides	support	for	formatting	and	parsing	temporal	objects.	These
classes	are	all	based	on	the	ISO	calendar	system,	which	is	the	de	facto	world	calendar.	The
Date	and	Time	API	is	fairly	comprehensive,	and	includes	support	for	other	temporal
concepts	such	as	instants,	durations,	offsets,	time	zones,	and	different	calendars—topics
that	are	beyond	the	scope	of	this	book.

We	will	use	the	term	temporal	objects	to	mean	objects	of	classes	that	represent	temporal
concepts.	Two	packages	provide	the	main	support	for	handling,	formatting,	and	parsing
temporal	objects:

•	The	java.time	package	provides	the	classes	LocalDate,	LocalTime,
LocalDateTime,	and	Period	that	represent	a	date,	a	(clock)	time,	a	combined
date-time,	and	a	period,	respectively.

LocalDate:	This	class	represents	a	date	in	terms	of	date-based	values	(year,
month,	day).	Date	objects	have	no	time-based	values	or	a	time	zone.

LocalTime:	This	class	represents	time	in	a	24-hour	day	in	terms	of	time-based
values	(hours,	minutes,	seconds,	nanoseconds).	Time	objects	have	no	date-based

values	or	a	time	zone.

LocalDateTime:	This	class	represents	the	concept	of	date	and	time	combined,	in
terms	of	both	date-based	and	time-based	values.	Date-time	objects	have	no	time
zone.

Period:	This	class	represents	a	directed	amount	or	quantity	of	time	in	terms	of
number	of	days,	months,	and	years,	which	can	be	negative.	Period	objects	have	no
notion	of	a	clock	time,	a	date,	or	a	time	zone.

•	The	java.time.format	package	provides	the	class	DateTimeFormatter
for	formatting	and	parsing	temporal	objects.

DateTimeFormatter:	This	class	provides	implementation	of	formatters:
predefined	formatters	(e.g.,	DateTimeFormatter.ISO_LOCAL_TIME),	and
localized	formatters	that	use	predefined	format	styles	(e.g.,
FormatStyle.SHORT),	and	customized	formatters	that	use	letter	patterns	(e.g.,
"MM/dd/uuuu").	A	formatter	can	be	used	to	obtain	a	string	representation	of	a
temporal	object	(called	formatting),	and	conversely	to	obtain	a	temporal	object	from
a	string	(called	parsing).

This	chapter	provides	examples	demonstrating	how	to	create,	combine,	convert,	query,
compare,	format,	and	parse	temporal	objects,	including	the	use	of	temporal	arithmetic.

11.2	Working	with	Temporal	Classes
The	temporal	classes	implement	immutable	and	thread-safe	temporal	objects.	The	state	of
an	immutable	object	cannot	be	changed.	Any	method	that	is	supposed	to	modify	such	an
object	returns	a	modified	copy	of	the	temporal	object.	It	is	a	common	mistake	to	ignore
the	new	object,	thinking	that	the	current	object	has	been	modified,	which	can	lead	to
incorrect	results.	Thread-safety	guarantees	that	the	state	of	such	an	object	is	not	affected
by	concurrent	access.

Another	common	mistake	is	to	access,	format,	or	parse	a	temporal	object	that	does	not
have	the	required	temporal	values.	For	example,	a	LocalTime	object	has	only	time-
based	values,	so	trying	to	format	it	with	a	formatter	for	date-based	values	will	result	in	a
java.time.DateTimeException.	Many	methods	will	also	throw	an	exception	if	an
invalid	or	an	out-of-range	argument	is	passed	in	the	method	call.	It	is	important	to	keep	in
mind	which	temporal	values	constitute	the	state	of	a	temporal	object.

Here	we	ignore	the	implications	of	a	time	zone,	since	the	temporal	objects	discussed	in
this	chapter	are	time	zone	agnostic.	However,	the	coverage	here	will	facilitate	the
inquisitive	reader	to	further	explore	the	features	of	the	Date	and	Time	API.

Before	diving	into	the	Date	and	Time	API,	we	provide	an	overview	of	the	method	naming
conventions	used	in	the	temporal	classes	(Table	11.1).	This	method	naming	convention
makes	it	easy	to	use	the	API,	as	it	ensures	method	naming	is	standardized	across	all
temporal	classes.

Table	11.1	Selected	Common	Method	Prefix	of	the	Temporal	Classes

The	temporal	classes	LocalTime,	LocalDate,	and	LocalDateTime	are	all	found	in
the	java.time	package.	An	appropriate	import	statement	should	be	included	in	the
source	file	to	use	any	of	these	classes.

Creating	Temporal	Objects
The	temporal	classes	do	not	provide	any	public	constructors	to	create	temporal	objects.
Instead,	they	provide	overloaded	static	factory	methods	named	of	with	which	to	create
temporal	objects	from	constituent	temporal	values.	We	use	the	term	temporal	values	to
mean	both	time-based	and	date-based	values.	The	of()	methods	check	that	the	values	of
the	arguments	are	in	range.	Any	invalid	argument	results	in	a
java.time.DateTimeException.

All	code	snippets	in	this	subsection	can	be	found	in	Example	11.1,	p.	467,	ready	for
running	and	experimenting.

The	declaration	statements	that	follow	show	examples	of	creating	instances	of	the
LocalTime	class	to	represent	time	on	a	24-hour	clock	in	terms	of	hours,	minutes,
seconds,	and	nanoseconds.	The	ranges	of	values	for	the	hours	(0–23),	minutes	(0–
59),		seconds	(0–59),	and	nanoseconds	(0–999,999,999)	are	defined	by	the	ISO	standard.
The	toString()	method	of	the	class	will	format	the	time-based	values	according	to	the
ISO	standard	as	HH:mm:ss.SSSSSSSSS.	Omitting	the	seconds	(ss)	and	fractions	of

seconds	(SSSSSSSSS)	implies	that	their	value	is	zero.	(More	on	formatting	in	§11.4,	p.
495.)	In	the	second	declaration	statement,	the	seconds	and	the	nanoseconds	are	not
specified	in	the	method	call,	resulting	in	their	values	being	set	to	zero.	In	the	third
statement,	the	hour	value	(25)	is	out	of	range,	and	if	uncommented,	will	result	in	a
DateTimeException.
Click	here	to	view	code	image

LocalTime	time1	=	LocalTime.of(8,	15,	35,	900);			//	08:15:35.000000900
LocalTime	time2	=	LocalTime.of(16,	45);											//	16:45
//	LocalTime	time3	=	LocalTime.of(25,	13,	30);				//	DateTimeException

Creating	instances	of	the	LocalDate	class	is	analogous	to	creating	instances	of	the
LocalTime	class.	The	of()	method	of	the	LocalDate	class	is	passed	date-based
values:	the	year,	month	of	the	year,	and	day	of	the	month.	The	ranges	of	the	values	for	the
year,	the	month,	and	the	day	are	(–999,999,999	to	+999,999,999),	(1–12),	and	(1–31),
respectively.	The	month	can	also	be	specified	using	the	enum	constants	of	the
java.time.Month	class,	as	in	the	second	declaration	statement	in	the	next	set	of
examples.	A	DateTimeException	is	thrown	if	the	value	of	any	parameter	is	out	of
range,	or	if	the	day	is	invalid	for	the	specified	month	of	the	year.	In	the	third	declaration,
the	month	value	13	is	out	of	range.	In	the	last	declaration,	the	month	of	February	cannot
have	29	days,	since	the	year	2015	is	not	a	leap	year.
Click	here	to	view	code	image

LocalDate	date1	=	LocalDate.of(1969,	7,	20);												//	1969-07-20
LocalDate	date2	=	LocalDate.of(-3113,	Month.AUGUST,	11);//	-3113-08-11
//		LocalDate	date3	=	LocalDate.of(2015,	13,	11);							//	DateTimeException
//		LocalDate	date4	=	LocalDate.of(2015,	2,	29);								//	DateTimeException

The	year	is	represented	as	a	proleptic	year	in	the	ISO	standard,	which	can	be	negative.	A
year	in	CE	(Current	Era,	or	AD)	has	the	same	value	as	a	proleptic	year;	for	example,	2015
CE	is	same	as	the	proleptic	year	2015.	However,	for	a	year	in	BCE	(Before	Current	Era,	or
BC),	the	proleptic	year	0	corresponds	to	1	BCE,	the	proleptic	year	–1	corresponds	to	2
BCE,	and	so	on.	The	toString()	method	of	the	class	will	format	the	date-based	values
according	to	the	ISO	standard	as	uuuu-MM-dd	(see	also	§11.4,	p.	495).	In	the	second
declaration	in	the	preceding	set	of	examples,	the	date	-3113-08-11	corresponds	to	11
August	3114	BCE.

Click	here	to	view	code	image
//	LocalTime
static	LocalTime	of(int	hour,	int	minute)
static	LocalTime	of(int	hour,	int	minute,	int	second)
static	LocalTime	of(int	hour,	int	minute,	int	second,	int	nanoOfSecond)

This	overloaded	static	factory	method	in	the	LocalTime	class	returns	an	instance
of	LocalTime	from	the	specified	time-based	values.	The	second	and	nanosecond
values	are	set	to	zero,	if	not	specified.

Click	here	to	view	code	image
//	LocalDate
static	LocalDate	of(int	year,	int	month,	int	dayOfMonth)
static	LocalDate	of(int	year,	Month	month,	int	dayOfMonth)

This	overloaded	static	factory	method	in	the	LocalDate	class	returns	an	instance
of	LocalDate	from	the	specified	date-based	values.	The	java.time.Month
enum	type	allows	months	to	be	referred	by	name—for	example,	Month.MARCH.
Note	that	month	numbering	starts	with	1	(Month.JANUARY).

Click	here	to	view	code	image
//	LocalDateTime
static	LocalDateTime	of(int	year,	int	month,	int	dayOfMonth,
																								int	hour,	int	minute)
static	LocalDateTime	of(int	year,	int	month,	int	dayOfMonth,
																								int	hour,	int	minute,	int	second)
static	LocalDateTime	of(int	year,	int	month,	int	dayOfMonth,	int	hour,
																								int	minute,	int	second,	int	nanoOfSecond)
static	LocalDateTime	of(int	year,	Month	month,	int	dayOfMonth,
																								int	hour,	int	minute,	int	second)
static	LocalDateTime	of(int	year,	Month	month,	int	dayOfMonth,
																								int	hour,	int	minute)
static	LocalDateTime	of(int	year,	Month	month,	int	dayOfMonth,
																								int	hour,	int	minute,	int	second,	int	nanoOfSecond)
static	LocalDateTime	of(LocalDate	date,	LocalTime	time)

This	overloaded	static	factory	method	in	the	LocalDateTime	class	returns	an
instance	of	LocalDateTime	from	the	specified	time	and	date-based	values.	The
second	and	nanosecond	values	are	set	to	zero,	if	not	specified.	The
java.time.Month	enum	type	allows	months	to	be	referred	by	name—for
example,	Month.MARCH	(i.e.,	month	3	in	the	year).

The	class	LocalDateTime	allows	the	date	and	the	time	to	be	combined	into	one	entity,
which	is	useful	for	representing	such	concepts	as	appointments.	The	of()	methods	in	the
LocalDateTime	class	are	combinations	of	the	of()	methods	from	the	LocalTime
and	LocalDate	classes,	taking	both	time-based	and	date-based	values	as	arguments.	The
toString()	method	of	this	class	will	format	the	temporal	values	according	to	the	ISO
standard	as	uuuu-MM-dd'T'HH:mm:ss.SSSSSSSSS.	The	letter	T	separates	the	date-
based	values	from	the	time-based	values	(§11.4,	p.	495).
Click	here	to	view	code	image

//	2015-04-28T12:15
LocalDateTime	dt1	=	LocalDateTime.of(2015,	4,	28,	12,	15);

//	2015-08-19T14:00
LocalDateTime	dt2	=	LocalDateTime.of(2015,	Month.AUGUST,	19,	14,	0);

The	LocalDateTime	class	also	provides	an	of()	method	that	combines	a
LocalDate	object	and	a	LocalTime	object.	The	first	declaration	in	the	next	code
snippet	combines	a	date	and	a	time.	The	static	field	LocalTime.NOON	defines	the	time
at	noon.	In	addition,	the	LocalTime	class	provides	the	instance	method	atDate(),
which	takes	a	specified	date	as	an	argument	and	returns	a	LocalDateTime	object.	The
second	declaration	combines	the	time	at	noon	with	the	date	referred	to	by	the	reference
date1.	Conversely,	the	LocalDate	class	provides	the	overloaded	instance	method
atTime()	to	combine	a	date	with	a	specified	time.	In	the	last	two	declarations,	the
atTime()	method	is	passed	a	LocalTime	object	and	specific	time-based	values,
respectively.
Click	here	to	view	code	image

//	1969-07-20T12:00
LocalDateTime	dt3	=	LocalDateTime.of(date1,	LocalTime.NOON);
LocalDateTime	dt4	=	LocalTime.of(12,	0).atDate(date1);
LocalDateTime	dt5	=	date1.atTime(LocalTime.NOON);
LocalDateTime	dt6	=	date1.atTime(12,	0);

As	a	convenience,	each	temporal	class	provides	a	static	method	now()	that	reads	the
system	clock	and	returns	the	relevant	temporal	values	in	an	instance	of	the	target	class.
Click	here	to	view	code	image

LocalTime	currentTime	=	LocalTime.now();
LocalDate	currentDate	=	LocalDate.now();
LocalDateTime	currentDateTime	=	LocalDateTime.now();

Example	11.1	includes	the	different	ways	to	create	temporal	objects	that	we	have
discussed	so	far.

Click	here	to	view	code	image
//	LocalTime
LocalDateTime	atDate(LocalDate	date)

Returns	a	LocalDateTime	that	combines	this	time	with	the	specified	date.
Click	here	to	view	code	image

//	LocalDate
LocalDateTime	atTime(int	hour,	int	minute)
LocalDateTime	atTime(int	hour,	int	minute,	int	second)
LocalDateTime	atTime(int	hour,	int	minute,	int	second,	int	nanoOfSecond)
LocalDateTime	atTime(LocalTime	time)

Returns	a	LocalDateTime	that	combines	this	date	with	the	specified	time-based
values.	The	second	and	nanosecond	values	are	set	to	zero,	if	not	specified.

Click	here	to	view	code	image
//	LocalTime,	LocalDate,	LocalDateTime
static	TemporalType	now()

Each	temporal	class	has	this	static	factory	method,	which	returns	either	the	current
time,	date,	or	date-time	from	the	system	clock	in	the	default	time	zone,	where
TemporalType	is	either	LocalTime,	LocalDate,	or	LocalDateTime,
respectively.

Example	11.1	Creating	Temporal	Objects
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.Month;

public	class	CreatingTemporals	{

		public	static	void	main(String[]	args)	{

				//	Creating	a	specific	time	from	time-based	values:
				LocalTime	time1	=	LocalTime.of(8,	15,	35,	900);//	08:15:35.000000900
				LocalTime	time2	=	LocalTime.of(16,	45);								//	16:45
//		LocalTime	time3	=	LocalTime.of(25,	13,	30);				//	DateTimeException
				System.out.println(“Surveillance	start	time:	”	+	time1);
				System.out.println(“Closing	time:	”	+	time2);

				//	Creating	a	specific	date	from	date-based	values:
				LocalDate	date1	=	LocalDate.of(1969,	7,	20);												//	1969-07-20
				LocalDate	date2	=	LocalDate.of(-3113,	Month.AUGUST,	11);//	-3113-08-11
//		LocalDate	date3	=	LocalDate.of(2015,	13,	11);											//
DateTimeException
//		LocalDate	date4	=	LocalDate.of(2015,	2,	29);												//
DateTimeException
				System.out.println(“Date	of	lunar	landing:								”	+	date1);
				System.out.println(“Start	Date	of	Mayan	Calendar:	”	+	date2);

				//	Creating	a	specific	date-time	from	date-	and	time-based	values.
				//	2015-04-28T12:15
				LocalDateTime	dt1	=	LocalDateTime.of(2015,	4,	28,	12,	15);
				//	2015-08-17T14:00

				LocalDateTime	dt2	=	LocalDateTime.of(2015,	Month.AUGUST,	17,	14,	0);
				System.out.println(“Car	service	appointment:	”	+	dt1);
				System.out.println(“Hospital	appointment:				”	+	dt2);

				//	Combining	date	and	time	objects.
				//	1969-07-20T12:00
				LocalDateTime	dt3	=	LocalDateTime.of(date1,	LocalTime.NOON);
				LocalDateTime	dt4	=	LocalTime.of(12,	0).atDate(date1);
				LocalDateTime	dt5	=	date1.atTime(LocalTime.NOON);
				LocalDateTime	dt6	=	date1.atTime(12,	0);
				System.out.println(“Factory	date-time	combo:	”	+	dt3);
				System.out.println(“Time	with	date	combo:				”	+	dt4);
				System.out.println(“Date	with	time	combo:				”	+	dt5);
				System.out.println(“Date	with	explicit	time	combo:	”	+	dt6);

				//	Current	time:
				LocalTime	currentTime	=	LocalTime.now();
				System.out.println(“Current	time:						”	+	currentTime);

				//	Current	date:
				LocalDate	currentDate	=	LocalDate.now();
				System.out.println(“Current	date:						”	+	currentDate);

				//	Current	date	and	time:
				LocalDateTime	currentDateTime	=	LocalDateTime.now();
				System.out.println(“Current	date-time:	”	+	currentDateTime);
		}
}

Possible	output	from	the	program:
Click	here	to	view	code	image

Surveillance	start	time:	08:15:35.000000900
Closing	time:	16:45
Date	of	lunar	landing:								1969-07-20
Start	Date	of	Mayan	Calendar:	-3113-08-11
Car	service	appointment:	2015-04-28T12:15
Hospital	appointment:				2015-08-17T14:00
Factory	date-time	combo:	1969-07-20T12:00
Time	with	date	combo:				1969-07-20T12:00
Date	with	time	combo:				1969-07-20T12:00
Date	with	explicit	time	combo:	1969-07-20T12:00
Current	time:						10:32:03.069
Current	date:						2015-08-21
Current	date-time:	2015-08-21T10:32:03.083

Querying	Temporal	Objects
A	temporal	object	provides	get	methods	that	are	tailored	to	access	the	specific	temporal
values	that	constitute	its	state.	The	LocalTime	class	provides	get	methods	for	the	time-
based	values,	and	the	LocalDate	class	provides	get	methods	for	the	date-based	values.
Not	surprisingly,	the	LocalDateTime	class	provides	get	methods	for	both	time-	and
date-based	values.	Usage	of	the	get	methods	is	straightforward,	as	shown	in	Example	11.2.

//	LocalTime,	LocalDateTime
int	getHour()
int	getMinute()
int	getSecond()
int	getNano()

Gets	the	appropriate	time-based	value	from	the	current	LocalTime	or	Local-
DateTime	object.
//	LocalDate,	LocalDateTime
int							getDayOfMonth()
DayOfWeek	getDayOfWeek()
int							getDayOfYear()
Month					getMonth()
int							getMonthValue()
int							getYear()

Gets	the	appropriate	date-based	value	from	the	current	LocalDate	or
LocalDateTime	object.	The	enum	type	DayOfWeek	allows	days	of	the	week	to
be	referred	to	by	name—for	example,	DayOfWeek.MONDAY	is	day	1	of	the	week.
The	enum	type	Month	allows	months	of	the	year	to	be	referred	by	name—for
example,	Month.	JANUARY.	The	month	value	is	from	1	(Month.JANUARY)	to
12	(Month.DECEMBER).

The	temporal	class	LocalDateTime	also	provides	two	methods	to	obtain	the	date	and
the	time	as	temporal	objects,	in	contrast	to	accessing	individual	date-	and	time-based
values.
Click	here	to	view	code	image

LocalDateTime	doomsday	=	LocalDateTime.of(1945,	8,	6,	8,	15);
LocalDate	date	=	doomsday.toLocalDate();																			//	1945-08-06
LocalTime	time	=	doomsday.toLocalTime();																			//	08:15

//	LocalDateTime
LocalDate	toLocalDate()
LocalTime	toLocalTime()

These	methods	can	be	used	to	get	the	LocalDate	and	LocalTime	part	of	this
date-time,	respectively.

It	is	also	possible	to	check	whether	a	temporal	object	represents	a	point	in	time	before	or
after	another	temporal	object	of	the	same	type.	In	addition,	the	LocalDate	and
LocalDateTime	classes	provide	an	isEqual()	method	that	determines	whether	a
temporal	object	is	equal	to	another	temporal	object	of	the	same	type.	In	contrast,	the
equals()	method	allows	equality	comparison	with	an	arbitrary	object.
Click	here	to	view	code	image

LocalDate	d1	=	LocalDate.of(-1004,	3,	1);																				//	-1004-03-01
LocalDate	d2	=	LocalDate.of(1004,	3,	1);																					//	1004-03-01
boolean	result1	=	d1.isBefore(d2);																											//	true
boolean	result2	=	d2.isAfter(d1);																												//	true
boolean	result3	=	d1.isAfter(d1);																												//	false
boolean	result4	=	d1.isEqual(d2);																												//	false
boolean	result5	=	d1.isEqual(d1);																												//	true

boolean	result6	=	d2.isLeapYear();																											//	true

The	isLeapYear()	method	of	the	LocalDate	class	checks	whether	a	year	in	a	date	is
a	leap	year.

Click	here	to	view	code	image
//	LocalTime
boolean	isAfter(LocalTime	other)
boolean	isBefore(LocalTime	other)

These	methods	determine	whether	this	LocalTime	represents	a	point	on	the	local
time-line	after	or	before	the	other	time,	respectively.

Click	here	to	view	code	image
//	LocalDate
boolean	isAfter(ChronoLocalDate	other)
boolean	isBefore(ChronoLocalDate	other)
boolean	isEqual(ChronoLocalDate	other)
boolean	isLeapYear()

The	first	two	methods	determine	whether	this	LocalDate	represents	a	point	on
the	local	timeline	after	or	before	the	other	date,	respectively.	The	LocalDate
class	implements	the	ChronoLocalDate	interface.

The	third	method	determines	whether	this	date	is	equal	to	the	specified	date.

The	last	method	checks	for	a	leap	year	according	to	the	ISO	proleptic	calendar
system	rules.

Click	here	to	view	code	image
//	LocalDateTime
boolean	isAfter(ChronoLocalDateTime<?>	other)
boolean	isBefore(ChronoLocalDateTime<?>	other)
boolean	isEqual(ChronoLocalDateTime<?>	other)

The	first	two	methods	determine	whether	this	LocalDateTime	represents	a	point
on	the	local	timeline	after	or	before	the	specified	date-time,	respectively.	The
LocalDateTime	class	implements	the	ChronoLocalDateTime	interface.

The	third	method	determines	whether	this	date-time	represents	the	same	point	on
the	local	timeline	as	the	other	date-time.

Comparing	Temporal	Objects
The	temporal	classes	implement	the	Comparable	interface,	providing	the
compareTo()	method	so	that	temporal	objects	can	be	compared	in	a	meaningful	way.
The	temporal	classes	also	override	the	equals()	method	of	the	Object	class.	These
methods	make	it	possible	to	both	search	for	and	sort	temporal	objects.

Click	here	to	view	code	image
int	compareTo(LocalTime	other)																//	LocalTime
int	compareTo(ChronoLocalDate	other)										//	LocalDate
int	compareTo(ChronoLocalDateTime<?>	other)			//	LocalDateTime

These	methods	compare	this	temporal	object	to	another	temporal	object.	The	three
temporal	classes	implement	the	Comparable	functional	interface.	The
compareTo()	method	returns	0	if	the	two	temporal	objects	are	equal,	a	negative
value	if	this	temporal	object	is	less	than	the	other	temporal	object,	and	a	positive
value	if	this	temporal	object	is	greater	than	the	other	temporal	object.

Click	here	to	view	code	image
boolean	equals(Object	obj)								//	LocalTime,	LocalDate,	LocalDateTime

The	three	temporal	classes	override	the	equals()	method	of	the	Object	class.
The	method	checks	whether	this	temporal	object	is	equal	to	another	object.	The
specified	object	must	be	of	the	same	type	as	this	temporal	object;	otherwise,	the
result	is	false.

Creating	Modified	Copies	of	Temporal	Objects
An	immutable	object	does	not	provide	any	set	methods	that	can	change	its	state.	Instead,	it
usually	provides	what	are	known	as	with	methods	(or	“withers”)	that	return	a	copy	of	the
original	object	where	exactly	one	property	has	been	set	to	a	new	value.	The	LocalTime
and	LocalDate	classes	provide	with	methods	to	set	a	time-	or	date-based	value,
respectively.	Not	surprisingly,	the	LocalDateTime	class	provides	with	methods	to	set
both	time-	and	date-based	values	individually.	A	with	method	changes	a	specific
property	in	an	absolute	way,	which	is	reflected	in	the	state	of	the	new	temporal	object;	the
original	object,	however,	is	not	affected.	Such	with	methods	are	also	called	absolute
adjusters,	in	contrast	to	the	relative	adjusters	that	we	will	meet	later	(p.	474).
Click	here	to	view	code	image

LocalDate	date2	=	LocalDate.of(2015,	3,	1);																			//	2015-03-01
date2	=	date2.withYear(2016).withMonth(2).withDayOfMonth(28);	//	2016-02-28

The	preceding	code	lines	are	from	Example	11.2.	In	the	second	assignment	statement,	the
method	calls	are	chained.	Three	instances	of	the	LocalDate	class	are	created
consecutively,	as	each	with	method	is	called	to	set	a	specific	date-based	value.
Click	here	to	view	code	image

date2	=	date2.withYear(2016);																						//	2016-03-01
date2.withMonth(2).withDayOfMonth(28);													//	date2	is	still	2016-03-
01.

This	code	contains	a	logical	error,	such	that	the	last	two	LocalDate	instances	returned
by	the	with	methods	are	ignored,	and	the	reference	date2	never	gets	updated.

In	the	next	code	examples,	each	call	to	a	with	method	throws	a
DateTimeException.	The	minute	and	hour	values	are	out	of	range	for	a	LocalTime
object.	Certainly	the	month	value	13	is	out	of	range	for	a	LocalDate	object.	The	day	of

the	month	value	31	is	not	valid	for	the	April	month,	which	has	30	days.	The	day	of	the
year	value	366	is	out	of	range	as	well,	since	the	year	2015	is	not	a	leap	year.
Click	here	to	view	code	image

LocalTime	time	=	LocalTime.of(14,	45);							//	14:45
time	=	time.withMinute(100);							//	Out	of	range.	DateTimeException.
time	=	time.withHour(25);										//	Out	of	range.	DateTimeException.

LocalDate	date	=	LocalDate.of(2015,	4,	30);		//	2015-04-30
date	=	date.withMonth(13);									//	Out	of	range.	DateTimeException.
date	=	date.withDayOfMonth(31);				//	Out	of	range	for	month.
DateTimeException.
date	=	date.withDayOfYear(366);				//	Out	of	range	for	year.
DateTimeException.

The	next	code	snippet	illustrates	how	the	withYear()	and	the	withMonth()	methods
adjust	the	day	of	the	month,	if	necessary,	when	the	year	or	the	month	is	changed,
respectively.	The	year	in	the	date	2016-02-29	is	changed	to	2017,	resulting	in	the
following	date:	2017-02-29.	Since	the	year	2017	is	not	a	leap	year,	the	month	of	February
cannot	have	29	days.	The	withYear()	method	adjusts	the	day	of	the	month	to	the	last
valid	day	of	the	month,	28.	Similarly,	the	month	in	the	date	2015-03-31	is	changed	to	4
(i.e.,	April),	resulting	in	the	following	date:	2015-04-31.	Since	the	month	April	has	30
days,	the	withMonth()	method	adjusts	the	day	of	the	month	to	the	last	valid	day	of	the
month,	30.
Click	here	to	view	code	image

LocalDate	date3	=	LocalDate.of(2016,	2,	29);		//	Original:	2016-02-29
date3	=	date3.withYear(2017);																	//	Expected:	2017-02-29
System.out.println(“Date3:	”	+	date3);								//	Adjusted:	2017-02-28

LocalDate	date4	=	LocalDate.of(2015,	3,	31);		//	Original:	2015-03-31
date4	=	date4.withMonth(4);																			//	Expected:	2015-04-31
System.out.println(“Date4:	”	+	date4);								//	Adjusted:	2015-04-30

Click	here	to	view	code	image
//	LocalTime,	LocalDateTime
LocalTime/LocalDateTime	withHour(int	hour)
LocalTime/LocalDateTime	withMinute(int	minute)
LocalTime/LocalDateTime	withSecond(int	second)
LocalTime/LocalDateTime	withNano(int	nanoOfSecond)

Returns	a	copy	of	this	LocalTime	or	LocalDateTime	with	the	appropriate
time-based	value	changed	to	the	specified	value.	A	DateTimeException	is
thrown	if	the	argument	value	is	out	of	range.

Click	here	to	view	code	image
//	LocalDate,	LocalDateTime
LocalDate/LocalDateTime	withYear(int	year)
LocalDate/LocalDateTime	withMonth(int	month)
LocalDate/LocalDateTime	withDayOfMonth(int	dayOfMonth)
LocalDate/LocalDateTime	withDayOfYear(int	dayOfYear)

Returns	a	copy	of	this	LocalDate	or	LocalDateTime	with	the	appropriate
date-based	value	changed	to	the	specified	value.	A	DateTimeException	is
thrown,	if	the	specified	value	is	out	of	range	or	is	invalid	in	combination	with	other
time-	or	date-based	values	in	the	temporal	object.

The	first	and	second	methods	will	adjust	the	day	of	the	month	to	the	last	valid	day
of	the	month,	if	the	day	of	month	becomes	invalid	when	the	year	or	the	month	is
changed	(e.g.,	the	month	value	2	will	change	the	date	2016-03-31	to	2016-02-29).

In	contrast,	the	third	method	will	throw	a	DateTimeException	if	the	specified
day	of	the	month	is	invalid	for	the	month-year	combination	(e.g.,	the	day	of	month
29	is	invalid	for	February	2015),	as	will	the	last	method	if	the	day	of	the	year	is
invalid	for	the	year	(e.g.,	the	day	of	year	366	is	invalid	for	the	year	2015).

Example	11.2	Using	Temporal	Objects
Click	here	to	view	code	image

import	java.time.DayOfWeek;
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.Month;

public	class	UsingTemporals	{

		public	static	void	main(String[]	args)	{
				//	Date-Time:	1945-08-06T08:15
				LocalDateTime	doomsday	=	LocalDateTime.of(1945,	8,	6,	8,	15);
				LocalDate	date	=	doomsday.toLocalDate();																			//	1945-08-06
				LocalTime	time	=	doomsday.toLocalTime();																			//	08:15
				System.out.println(“Date-Time:	”	+	doomsday);

				//	Time:	08:15
				int	hour							=	time.getHour();																											//	8
				int	minute					=	time.getMinute();																									//	15
				int	second					=	time.getSecond();																									//	0
				System.out.println(“Time:	”	+	time);
				System.out.println(“Hour:	”	+	hour);

				System.out.println(“Min:		”	+	minute);
				System.out.println(“Sec:		”	+	second);

				//	Date:	1945-08-06
				int	year							=	date.getYear();																											//	1945
				int	monthValue	=	date.getMonthValue();																					//	8
				Month	month				=	date.getMonth();																										//	AUGUST
				DayOfWeek	dow		=	date.getDayOfWeek();																						//	MONDAY
				int	day								=	date.getDayOfMonth();																					//	6
				System.out.println(“Date:		”	+	date);
				System.out.println(“Year:		”	+	year);
				System.out.println(“Month	value:	”	+	monthValue);
				System.out.println(“Month:	”	+	month);
				System.out.println(“DoW:			”	+	dow);
				System.out.println(“DoM:			”	+	day);

				//	Ordering
				LocalDate	d1	=	LocalDate.of(-1004,	3,	1);																		//	-1004-03-01
				LocalDate	d2	=	LocalDate.of(1004,	3,	1);																			//	1004-03-01
				boolean	result1	=	d1.isBefore(d2);																									//	true
				boolean	result2	=	d2.isAfter(d1);																										//	true
				boolean	result3	=	d1.isAfter(d1);																										//	false
				boolean	result4	=	d1.isEqual(d2);																										//	false
				boolean	result5	=	d1.isEqual(d1);																										//	true
				boolean	result6	=	d2.isLeapYear();																									//	true

				System.out.println(d1	+	”	is	before	“			+	d2	+	“:	”	+	result1);
				System.out.println(d2	+	”	is	after	“				+	d1	+	“:	”	+	result2);
				System.out.println(d1	+	”	is	after	“				+	d1	+	“:	”	+	result3);
				System.out.println(d1	+	”	is	equal	to	”	+	d2	+	“:	”	+	result4);
				System.out.println(d1	+	”	is	equal	to	”	+	d1	+	“:	”	+	result5);
				System.out.println(d2.getYear()	+	”	is	a	leap	year:	”	+	result6);

				//	Absolute	adjusters:
				LocalDate	date2	=	LocalDate.of(2015,	3,	1);
				System.out.println(“Date	before	adjusting:	”	+	date2);					//	2015-03-01
				date2	=	date2.withYear(2016).withMonth(2).withDayOfMonth(28);
				System.out.println(“Date	after	adjusting:		”	+	date2);					//	2016-02-28
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Date-Time:	1945-08-06T08:15
Time:	08:15
Hour:	8
Min:		15
Sec:		0
Date:		1945-08-06
Year:		1945
Month	value:	8
Month:	AUGUST
DoW:			MONDAY
DoM:			6
-1004-03-01	is	before	1004-03-01:	true
1004-03-01	is	after	-1004-03-01:	true
-1004-03-01	is	after	-1004-03-01:	false
-1004-03-01	is	equal	to	1004-03-01:	false
-1004-03-01	is	equal	to	-1004-03-01:	true
1004	is	a	leap	year:	true
Date	before	adjusting:	2015-03-01

Date	after	adjusting:		2016-02-28

Temporal	Arithmetic
The	temporal	classes	provide	plus	and	minus	methods	that	return	a	copy	of	the	original
object	that	has	been	incremented	or	decremented	by	a	specific	amount	of	time—for
example,	by	number	of	hours	or	by	number	of	months.

The	LocalTime	and	LocalDate	classes	provide	plus/minus	methods	to
increment/decrement	a	time	or	a	date	by	a	specific	amount	in	terms	of	a	time	unit	(for
example,	hours,	minutes,	and	seconds)	or	a	date	unit	(for	example,	years,	months,	and
days),	respectively.	The	LocalDateTime	class	provides	plus/minus	methods	to
increment/decrement	a	date-time	by	an	amount	that	is	specified		in	terms	of	either	a	time
unit	or	a	date	unit.	For	example,	the	plusMonths()	method	in	the	LocalDate	class
returns	a	new	LocalDate	object	after	adding	the	specified	number	of	months	passed	as
an	argument	to	the	method.	Similarly,	the	minusMinutes()	method	in	the
LocalTime	class	returns	a	new	LocalTime	object	after	subtracting	the	specified
number	of	minutes	passed	as	an	argument	to	the	method.	The	change	is	relative,	and
reflected	in	the	new	temporal	object	that	is	returned.	Such	plus/minus	methods	are
also	called	relative	adjusters,	in	contrast	to	absolute	adjusters	(p.	470).

Example	11.3	demonstrates	what	we	can	call	temporal	arithmetic,	where	a	LocalDate
object	is	modified	by	adding	or	subtracting	an	amount	specified	as	days,	weeks,	or
months.	Note	how	the	date-based	values	are	adjusted	after	each	operation.	The	date
2015-10-23	is	created	at	(1),	and	10	months,	3	weeks,	and	40	days	are	successively
added	to	the	new	date	object	returned	by	each	plus	method	call	at	(2),	(3),	and	(4),
respectively,	resulting	in	the	date	2016-10-23.	We	then	subtract	2	days,	4	weeks,	and
11	months	successively	from	the	new	date	object	returned	by	each	minus	method	call	at
(5),	(6),	and	(7),	respectively,	resulting	in	the	date	2015-10-23.	In	Example	11.3,
several	assignment	statements	are	used	to	print	the	intermediate	dates,	but	the	code	can	be
made	more	compact	by	method	chaining.
Click	here	to	view	code	image

LocalDate	date	=	LocalDate.of(2015,	10,	23);													//	2015-10-23
date	=	date.plusMonths(10).plusWeeks(3).plusDays(40);				//	Method	chaining
System.out.println(date);																																//	2016-10-23
date	=	date.minusDays(2).minusWeeks(4).minusMonths(11);		//	Method	chaining
System.out.println(date);																																//	2015-10-23

The	following	code	snippet	illustrates	the	wrapping	of	time	around	midnight,	as	one
would	expect	on	a	24-hour	clock.	Each	method	call	returns	a	new	LocalTime	object.
Click	here	to	view	code	image

LocalTime	witchingHour	=	LocalTime.MIDNIGHT														//	00:00
				.plusHours(14)																																							//	14:00
				.plusMinutes(45)																																					//	14:45
				.plusMinutes(30)																																					//	15:15
				.minusHours(15)																																						//	00:15
				.minusMinutes(15);																																			//	00:00

The	next	code	snippet	illustrates	how	the	plusYears()	method	adjusts	the	day	of	the

month,	if	necessary,	when	the	year	value	is	changed.	The	year	in	the	date	2016-02-29	is
changed	to	2017	by	adding	1	year,	resulting	in	the	following	date:	2017-02-29.	The
plusYears()	method	adjusts	the	day	of	the	month	to	the	last	valid	day	of	the
month,		28;	as	the	year	2017	is	not	a	leap	year,	the	month	of	February	cannot	have	29
days.
Click	here	to	view	code	image

LocalDate	date5	=	LocalDate.of(2016,	2,	29);		//	Original:	2016-02-29
date5	=	date5.plusYears(1);																			//	Expected:	2017-02-29
System.out.println(“Date5:	”	+	date5);								//	Adjusted:	2017-02-28

Click	here	to	view	code	image
//	LocalTime,	LocalDateTime
LocalTime/LocalDateTime	minusHours/plusHours(long	hours)
LocalTime/LocalDateTime	minusMinutes/plusMinutes(long	minutes)
LocalTime/LocalDateTime	minusSeconds/plusSeconds(long	seconds)
LocalTime/LocalDateTime	minusNanos/plusNanos(long	nanos)

These	methods	return	a	copy	of	this	LocalTime	or	LocalDateTime	object
with	the	specified	amount	either	subtracted	or	added	to	a	specific	time-based	value.
The	calculation	always	wraps	around	midnight.

For	the	methods	of	the	LocalDateTime	class,	a	DateTimeException	is
thrown	if	the	result	exceeds	the	date	range.

Click	here	to	view	code	image
//	LocalDate,	LocalDateTime
LocalDate/LocalDateTime	minusYears/plusYears(long	years)
LocalDate/LocalDateTime	minusMonths/plusMonths(long	months)
LocalDate/LocalDateTime	minusWeeks/plusWeeks(long	weeks)
LocalDate/LocalDateTime	minusDays/plusDays(long	days)

These	methods	return	a	copy	of	this	LocalDate	or	LocalDateTime	with	the
specified	amount	either	subtracted	or	added	to	a	specific	date-based	value.

All	methods	throw	a	DateTimeException	if	the	result	exceeds	the	date	range.

The	first	and	second	methods	will	change	the	day	of	the	month	to	the	last	valid	day
of	the	month	if	necessary,	when	the	day	of	month	becomes	invalid	as	a	result	of	the
operation.

The	third	and	last	methods	will	adjust	the	month	and	year	fields	as	necessary	to
ensure	a	valid	result.

Example	11.3	Temporal	Arithmetic
Click	here	to	view	code	image

import	java.time.LocalDate;

public	class	TemporalArithmetic	{

		public	static	void	main(String[]	args)	{

				LocalDate	date	=	LocalDate.of(2015,	10,	23);											//	(1)
				System.out.println(“Date:													”	+	date);							//	2015-10-23
				date	=	date.plusMonths(10);																												//	(2)
				System.out.println(“10	months	after:		”	+	date);							//	2016-08-23
				date	=	date.plusWeeks(3);																														//	(3)
				System.out.println(“3	weeks	after:				”	+	date);							//	2016-09-13
				date	=	date.plusDays(40);																														//	(4)
				System.out.println(“40	days	after:				”	+	date);							//	2016-10-23

				date	=	date.minusDays(2);																														//	(5)
				System.out.println(“2	days	before:				”	+	date);							//	2016-10-21
				date	=	date.minusWeeks(4);																													//	(6)
				System.out.println(“4	weeks	before:			”	+	date);							//	2016-09-23
				date	=	date.minusMonths(11);																											//	(7)
				System.out.println(“11	months	before:	”	+	date);							//	2015-10-23
		}
}

Output	from	the	program:
Date:													2015-10-23
10	months	after:		2016-08-23
3	weeks	after:				2016-09-13
40	days	after:				2016-10-23
2	days	before:				2016-10-21
4	weeks	before:			2016-09-23
11	months	before:	2015-10-23

11.3	Working	with	Periods
For	representing	an	amount	of	time,	the	Date	and	Time	API	provides	the	two	classes
Period	and	Duration.	We	will	briefly	mention	the	Duration	class,	and	concentrate
on	the	Period	class.

The	Duration	class	models	an	amount	of	time	in	terms	of	seconds	and	nanoseconds,	but
a	Duration	object	can	also	be	accessed	in	terms	of	days,	hours,	and	minutes.	It
essentially	represents	a	time-based	amount	of	time,	whereas	the	Period	class	represents
a	date-based	amount	of	time	in	terms	of	years,	months,	and	days.	The	time-based
Duration	class	can	be	used	with	the	LocalTime	class,	and	not	surprisingly,	the	date-
based	Period	class	can	be	used	with	the	LocalDate	class.	Of	course,	the
LocalDateTime	class	can	use	both	classes.

The	Period	class	is	in	the	same	package	(java.time)	as	the	temporal	classes,	and	its
repertoire	of	methods	should	also	look	familiar,	as	it	shares	many	of	the	method	prefixes
with	the	temporal	classes	(Table	11.1,	p.	463).

The	mantra	of	immutable	and	thread-safe	objects	also	applies	to	the	Period	class.

Creating	Periods
Like	the	temporal	classes,	the	Period	class	does	not	provide	any	public	constructors,
but	rather	provides	an	overloaded	static	factory	method	of()	to	construct	periods	of
different	lengths,	based	on	a	date	unit.
Click	here	to	view	code	image

Period	p	=	Period.of(2,	4,	8);									//	(1)
System.out.println(p);																	//	(2)	P2Y4M8D	(2	Years,	4	Months,	8
Days)
Period	p1	=	Period.ofYears(10);								//	P10Y,	period	of	10	years.
Period	p2	=	Period.ofMonths(14);							//	P14M,	period	of	14	months.
Period	p3	=	Period.ofDays(40);									//	P40D,	period	of	40	days.
Period	p4	=	Period.ofWeeks(2);									//	P14D,	period	of	14	days	(2	weeks).

The	most	versatile	of()	method	requires	the	amount	of	time	for	all	date	units:	years,
months,	and	days,	as	in	(1).	The	toString()	method	of	the	Period	class	returns	a
textual	representation	of	a	Period	object	in	the	ISO	standard.	The	output	from	(2),
P2Y4M8D,	indicates	a	period	of	2	years,	4	months,	and	8	days.	Other	of()	methods
create	a	period	based	on	a	particular	date	unit,	as	shown	in	the	previous	examples.

The	next	code	snippet	does	not	create	a	period	of	3	years,	4	months,	and	5	days.	The	first
method	call	uses	the	class	name,	and	the	subsequent	method	calls	use	the	Period	object
returned	as	a	consequence	of	the	previous	call.	The	of()	method	creates	a	new	Period
object	based	on	its	argument.
Click	here	to	view	code	image

Period	period	=	Period.ofYears(3).ofMonths(4).ofDays(5);			//	P5D.	Logical
error.

As	we	would	expect,	we	can	create	a	period	that	represents	the	amount	of	time	between
two	dates	by	calling	the	static	method	between()	of	the	Period	class.
Click	here	to	view	code	image

LocalDate	d1	=	LocalDate.of(2015,	3,	1);		//	2015-03-01
LocalDate	d2	=	LocalDate.of(2016,	3,	1);		//	2016-03-01
Period	period12	=	Period.between(d1,	d2);	//	P1Y
Period	period21	=	Period.between(d2,	d1);	//	P-1Y

The	Period	class	also	provides	the	static	method	parse()	to	create	a	period	from	a
string	that	contains	a	textual	representation	of	a	period	in	the	ISO	standard.	If	the	format	is
not	correct,	a	java.time.format.DateTimeParseException	is	thrown.
Click	here	to	view	code	image

Period	period2	=	Period.parse(“P1Y15M20D”);	//	1	year,	15	months,	20	days
Period	period3	=	Period.parse(“P20D”);						//	20	days
Period	period4	=	Period.parse(“P5W”);							//	35	days	(5	weeks)
//		Period	pX	=	Period.parse(“P24H”);	//
java.time.format.DateTimeParseException

Click	here	to	view	code	image
static	Period	of(int	years,	int	months,	int	days)
static	Period	ofYears(int	years)
static	Period	ofMonths(int	months)
static	Period	ofWeeks(int	weeks)
static	Period	ofDays(int	days)

These	static	factory	methods	return	a	Period	representing	an	amount	of	time
equal	to	the	specified	value	of	a	date	unit.	Date-based	values	implicitly	implied	are
set	to	zero.	A	week	is	equal	to	7	days.	The	argument	value	can	be	negative.

Click	here	to	view	code	image
static	Period	between(LocalDate	startDateInclusive,
																						LocalDate	endDateExclusive)

This	static	method	returns	a	Period	consisting	of	the	number	of	years,	months,
and	days	between	two	dates.	The	calculation	excludes	the	end	date.

Click	here	to	view	code	image
static	Period	parse(CharSequence	text)

This	static	method	returns	a	Period	parsed	from	a	character	sequence—for
example,		"P3Y10M2D"	(3	years,	10	months,	2	days).	A
java.time.format.DateTimeParseException	is	thrown	if	the	text
cannot	be	parsed	to	a	period.

Querying	Periods
The	Period	class	provides	the	obvious	get	methods	to	read	the	date-based	parts	of	a
Period	object.	The	class	also	has	methods	to	check	if	any	date-based	part	of	a	period	is
negative	or	if	all	date-based	parts	of	a	period	are	zero.
Click	here	to	view	code	image

Period	period5	=	Period.of(2,	4,	-10);
System.out.println(“Period:	”	+	period5);													//	Period:	P2Y4M-10D
System.out.println(“Years:		”	+	period5.getYears());		//	Years:		2
System.out.println(“Months:	”	+	period5.getMonths());	//	Months:	4
System.out.println(“Days:			”	+	period5.getDays());			//	Days:			-10
System.out.println(“Total	months:	”	+	period5.toTotalMonths());	//	28	months
System.out.println(period5.isNegative());													//	true
System.out.println(period5.isZero());																	//	false

The	class	Period	provides	the	method	toTotalMonths()	to	derive	the	total	number
of	months	in	a	period.	However,	this	calculation	is	solely	based	on	the	number	of	years
and	months	in	the	period;	the	number	of	days	is	not	considered.	A	Period	just	represents
an	amount	of	time,	so	it	has	no	notion	of	a	date.	Conversion	between	months	and	years	is
not	a	problem,	as	1	year	is	12	months.	However,	conversion	between	the	numbers	of	days
and	the	other	date	units	is	problematic.	The	number	of	days	in	a	year	and	in	a	month	are
very	much	dependent	on	whether	the	year	is	a	leap	year	and	on	a	particular	month	in	the
year,	respectively.	A	Period	is	oblivious	about	both	the	year	and	the	month	in	the	year.

The	Period	class	overrides	the	equals()	method	of	the	Object	class.	Each	date-
based	part	is	compared	individually,	and	must	have	the	same	value	to	be	considered	equal.

A	period	of	1	year	and	14	months	is	not	equal	to	a	period	of	2	years	and	2	months,	or	to	a
period	of	26	months.
Click	here	to	view	code	image

Period	px	=	Period.of(1,	14,	0);
Period	py	=	Period.of(2,	2,	0);
Period	pz	=	Period.ofMonths(26);
System.out.println(px.equals(py));											//	false
System.out.println(px.equals(pz));											//	false
System.out.println(px.equals(Period.ZERO));		//	false

int	getYears()
int	getMonths()
int	getDays()

Returns	the	value	of	a	specific	date	unit	of	this	period.
boolean	isNegative()

Determines	whether	any	of	the	date-based	values	of	this	period	are	negative.
boolean	isZero()

Determines	whether	all	date-based	values	of	this	period	are	zero.
long	toTotalMonths()

Returns	the	total	number	of	months	in	this	period,	based	on	the	years	and	the
months	value.	The	days	value	is	not	considered.
boolean	equals(Object	obj)

Determines	whether	this	period	is	equal	to	another	period,	meaning	that	each	date
unit	has	the	same	value.

Creating	Modified	Copies	of	Periods
The	Period	class	provides	with	methods	to	set	a	new	value	for	each	date	unit
individually,	while	the	values	of	the	other	date	units	remain	unchanged.	Note	that	each
method	call	returns	a	new	Period	object,	and	chaining	method	calls	works	as	expected.
Click	here	to	view	code	image

Period	p5	=	Period.of(2,	1,	30)	//	P2Y1M30D
				.withYears(3)															//	P3Y1M30D,	sets	the	number	of	years
				.withMonths(16)													//	P3Y16M30D,	sets	the	number	of	months
				.withDays(1);															//	P3Y16M1D,	sets	the	number	of	days

Period	withYears(int	years)
Period	withMonths(int	months)
Period	withDays(int	days)

Returns	a	copy	of	this	period	where	a	specific	date	unit	is	set	to	the	value	of	the
argument.	The	values	of	the	other	date	units	are	not	affected.

More	Temporal	Arithmetic
The	Period	class	provides	plus	and	minus	methods	that	return	a	copy	of	the	original
object	that	has	been	incremented	or	decremented	by	a	specific	amount	specified	in	terms
of	a	date	unit—for	example,	as	a	number	of	years,	months,	or	days.	As	the	next	code
snippet	shows,	only	the	value	of	a	specific	date	unit	is	changed;	the	other	date-based
values	are	unaffected.	There	is	no	implicit	normalization	performed,	unless	the
normalized()	method	is	called.	This	method	normalizes	only	the	months,	adjusting
the	values	of	the	months	and	years	as	necessary.
Click	here	to	view	code	image

Period	p6	=	Period.of(2,	10,	30)		//	P2Y10M30D
				.plusDays(10)																	//	P2Y10M40D
				.plusMonths(8)																//	P2Y18M40D
				.plusYears(1)																	//	P3Y18M40D
				.normalized();																//	P4Y6M40D

We	can	do	simple	arithmetic	with	periods.	The	next	code	examples	use	the	plus()	and
minus()	methods	of	the	Period	class	that	take	a	TemporalAmount	as	an	argument.
Both	the	Period	and	the	Duration	classes	implement	the	TemporalAmount
interface.	In	the	last	assignment	statement,	we	have	shown	the	state	of	both	new	Period
objects	that	are	created.
Click	here	to	view	code	image

Period	p7	=	Period.of(1,	1,	1);															//	P1Y1M1D
Period	p8	=	Period.of(2,	12,	30);													//	P2Y12M30D
Period	p9	=	p8.minus(p7);																					//	P1Y11M29D
p8	=	p8.plus(p7).plus(p8);																				//	P3Y13M31D,	P5Y25M61D

Click	here	to	view	code	image
Period	minusYears/plusYears(long	years)
Period	minusMonths/plusMonths(long	months)
Period	minusDays/plusDays(long	days)

Returns	a	copy	of	this	period,	with	the	specified	date-based	value	subtracted	or
added.	The	other	date-based	values	are	unaffected.

Click	here	to	view	code	image
Period	minus/plus(TemporalAmount	amount)

Returns	a	copy	of	this	period,	with	the	specified	amount	subtracted	or	added.	The
amount	is	of	the	interface	type	TemporalAmount	that	is	implemented	by	the
classes	Period	and	Duration.	There	is	no	normalization	performed.	A
DateTimeException	is	thrown	if	the	operation	cannot	be	performed.
Period	normalized()

Returns	a	copy	of	this	period	where	the	years	and	months	are	normalized.	The
number	of	days	is	not	affected.
Period	negated()

Returns	a	new	instance	of	Period	where	each	date-based	value	in	this	period	is
individually	negated.

Click	here	to	view	code	image
Period	multipliedBy(int	scalar)

Returns	a	new	instance	where	each	date-based	value	in	this	period	is	individually
multiplied	by	the	specified	scalar.

We	can	also	do	simple	arithmetic	with	dates	and	periods.	The	following	code	uses	the
plus()	and	minus()	methods	of	the	LocalDate	class	that	take	a
TemporalAmount	as	an	argument:
Click	here	to	view	code	image

Period	p10	=	Period.of(1,	1,	1);															//	P1Y1M1D
LocalDate	date1	=	LocalDate.of(2015,	4,	1);				//	2015-04-01
LocalDate	date2	=	date1.plus(p10);													//	2016-05-02
date1	=	date1.minus(p10);																						//	2014-02-28

We	can	add	and	subtract	periods	from	LocalDate	and	LocalDateTime	objects,	but
not	from	LocalTime	objects,	as	a	LocalTime	object	has	only	time-based	values.
Click	here	to	view	code	image

LocalTime	time	=	LocalTime.NOON;
time	=	time.plus(p10);					//
java.time.temporal.UnsupportedTemporalTypeException

Click	here	to	view	code	image
//	LocalTime,	LocalDate,	LocalDateTime
TemporalType	minus(TemporalAmount	amount)
TemporalType	plus(TemporalAmount	amount)

Each	temporal	class	provides	these	two	methods,	which	return	a	copy	of	this
temporal	object	with	the	specified	amount	either	subtracted	or	added,	where
TemporalType	is	either	LocalTime,	LocalDate,	or	LocalDateTime.

The	amount	is	of	the	interface	type	TemporalAmount,	which	is	implemented	by
the	classes	Period	and	Duration.

Both	methods	throw	a	DateTimeException	if	the	operation	cannot	be
performed.

Click	here	to	view	code	image
//	LocalDate
Period	until(ChronoLocalDate	endDateExclusive)

This	method	calculates	the	amount	of	time	between	this	date	and	another	date	as	a
Period.	The	calculation	excludes	the	end	date.

Example	11.4	is	a	simple	example	to	illustrate	implementing	period-based	loops.	The
method	reserveDates()	at	(1)	is	a	stub	for	reserving	certain	dates,	depending	on	the
period	passed	as	an	argument.	The	for(;;)	loop	at	(2)	uses	the
LocalDate.isBefore()	method	to	terminate	the	loop,	and	the
LocalDate.plus()	method	to	increment	the	current	date	with	the	specified	period.

Example	11.4	Period-Based	Loop
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.Period;

public	class	PeriodBasedLoop	{
		public	static	void	main(String[]	args)	{
				reserveDates(Period.ofDays(7),
																	LocalDate.of(2015,	10,	20),	LocalDate.of(2015,	11,	20));
				System.out.println();
				reserveDates(Period.ofMonths(1),
																	LocalDate.of(2015,	10,	20),	LocalDate.of(2016,	1,	20));
				System.out.println();
				reserveDates(Period.of(0,	1,	7),
																	LocalDate.of(2015,	10,	20),	LocalDate.of(2016,	1,	21));
		}

		public	static	void	reserveDates(Period	period,																	//	(1)
																																		LocalDate	fromDate,
																																		LocalDate	toDateExclusive)	{
				System.out.println(“Start	date:	”	+	fromDate);
				for	(LocalDate	date	=	fromDate.plus(period);																	//	(2)
									date.isBefore(toDateExclusive);
									date	=	date.plus(period))	{
						System.out.println(“Reserved	(”	+	period	+	“):	”	+	date);
				}
				System.out.println(“End	date:	”	+	toDateExclusive);
		}
}

Output	from	the	program:
Start	date:	2015-10-20
Reserved	(P7D):	2015-10-27
Reserved	(P7D):	2015-11-03
Reserved	(P7D):	2015-11-10
Reserved	(P7D):	2015-11-17
End	date:	2015-11-20

Start	date:	2015-10-20
Reserved	(P1M):	2015-11-20
Reserved	(P1M):	2015-12-20
End	date:	2016-01-20

Start	date:	2015-10-20
Reserved	(P1M7D):	2015-11-27
Reserved	(P1M7D):	2016-01-03
End	date:	2016-01-21

We	conclude	this	section	with	Example	11.5,	which	brings	together	some	of	the	methods
of	the	Date	and	Time	API.	Given	a	date	of	birth,	the	method	birthdayInfo()	at	(1)
calculates	the	age	and	the	time	to	next	birthday.	The	age	is	calculated	at	(2)	using	the
Period.between()	method,	which	computes	the	period	between	two	dates.	The	date
for	next	birthday	is	set	at	(3)	as	the	birth	date	with	the	current	year.	The	if	statement	at
(4)	adjusts	the	next	birthday	date	by	1	year	at	(5),	if	the	birthday	has	already	passed.	The
statement	at	(6)	calculates	the	time	until	next	birthday	by	calling	the
LocalDate.until()	method.	We	could	also	have	used	the	Period.between()

method	at	(6).	The	choice	between	these	methods	really	depends	on	which	method	makes
the	code	more	readable	in	a	given	context.

Example	11.5	More	Temporal	Arithmetic
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.Month;
import	java.time.Period;

public	class	ActYourAge	{

		public	static	void	main(String[]	args)	{
				birthdayInfo(LocalDate.of(1981,	Month.AUGUST,	19));
				birthdayInfo(LocalDate.of(1935,	Month.JANUARY,	8));
		}

		public	static	void	birthdayInfo(LocalDate	dateOfBirth)	{											//	(1)
				LocalDate	today	=	LocalDate.now();
				System.out.println(“Today:									”	+	today);

				System.out.println(“Date	of	Birth:	”	+	dateOfBirth);
				Period	p1	=	Period.between(dateOfBirth,	today);																		//	(2)
				System.out.println(“Age:											”	+
																																	p1.getYears()		+	”	years,	”	+
																																	p1.getMonths()	+	”	months,	and	”	+
																																	p1.getDays()			+	”	days”);

				LocalDate	nextBirthday	=		dateOfBirth.withYear(today.getYear());	//	(3)
				if	(nextBirthday.isBefore(today)	||																														//	(4)
								nextBirthday.isEqual(today))	{
						nextBirthday	=	nextBirthday.plusYears(1);																						//	(5)
				}
				Period	p2	=	today.until(nextBirthday);																											//	(6)
				System.out.println(“Birthday	in	”	+	p2.getMonths()	+	”	months	and	”	+
																																								p2.getDays()			+	”	days”);
		}
}

Possible	output	from	the	program:
Click	here	to	view	code	image

Today:									2015-11-20
Date	of	Birth:	1981-08-19
Age:											34	years,	3	months,	and	1	days
Birthday	in	8	months	and	30	days
Today:									2015-11-20
Date	of	Birth:	1935-01-08
Age:											80	years,	10	months,	and	12	days
Birthday	in	1	months	and	19	days

	Review	Questions

11.1	Which	statement	is	true	about	the	Date	and	Time	API?

Select	the	one	correct	answer.

(a)	The	classes	LocalDate	and	LocalDateTime	provide	the

isLeapYear()	method	to	check	for	a	leap	year.

(b)	The	classes	LocalTime,	LocalDate,	and	LocalDateTime	provide	the
isEqual()	method	to	test	whether	two	temporal	objects	of	the	same	type	are
equal.

(c)	The	class	Period	provides	the	withWeeks()	method,	which	returns	a	copy
of	this	period,	where	the	number	of	days	is	set	according	to	the	number	of	weeks
specified.

(d)	The	classes	LocalTime,	LocalDate,	and	Period	provide	the
plusWeeks()	method,	which	returns	a	new	object,	where	the	number	of	days
corresponding	to	the	specified	number	of	weeks	has	been	added.

(e)	None	of	the	above.

11.2	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.LocalDate;

public	class	RQ11A05	{
		public	static	void	main(String[]	args)	{
				LocalDate	date	=	LocalDate.of(2016,	3,	1);
				date.withMonth(4);
				System.out.println(date.getYear()	+	“|”	+
																							date.getMonth()	+	“|”	+	date.getDayOfMonth());
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception	when	run.

(c)	The	program	will	print	2016|APRIL|1.

(d)	The	program	will	print	2016|4|1.

(e)	The	program	will	print	2016|MARCH|1.

(f)	The	program	will	print	2016|3|1.

(g)	The	program	will	print	2016|JULY|1.

(h)	The	program	will	print	2016|7|1.

11.3	Which	declarations	will	correctly	create	the	date	13	August	2009?

Select	the	four	correct	answers.

(a)	LocalDate	date0	=	LocalDate.of(2009,	7,	13);

(b)	LocalDate	date1	=	LocalDate.of(2009,	8,	13);

(c)	LocalDate	date2	=	LocalDate.of(2009,	Month.AUGUST,
13);

(d)	LocalDate	date3	=	LocalDate.of(0,	0,
0).withYear(2009).withMonth(8).	withDayOfMonth(13);

(e)	LocalDate	date4	=	LocalDate.of(2008,	7,
12).plusYears(1).plusMonths(1).	plusDays(1);

(f)	LocalDate	date5	=	new	LocalDate(2009,	8,	13);

(g)	LocalDate	date6	=	LocalDate.of(1,	1,
1).plus(Period.of(2008,	7,	12));

11.4	Which	declarations	will	correctly	assign	an	instance	of	the	LocalTime	class	to
the	declared	reference?

Select	the	three	correct	answers.

(a)	LocalTime	time1	=	LocalTime.of(12,	60);

(b)	LocalTime	time2	=	new	LocalTime(12,	60);

(c)	LocalTime	time3	=	LocalTime.NOON.plusHours(-3);

(d)	LocalTime	time4	=	LocalTime.NOON.minusHours(12);

(e)	LocalTime	time5	=	LocalTime.MIDNIGHT.withHours(12);

(f)	LocalTime	time6	=
LocalTime.of(12,00).plusMinutes(-15);

11.5	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.LocalTime;

public	class	RQ11A20	{
		public	static	void	main(String[]	args)	{
				LocalTime	time	=	LocalTime.NOON;
				time	=	time.plusHours(10).plusMinutes(120);
				System.out.println(time);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception	when	run.

(c)	The	program	will	print	00:00.

(d)	The	program	will	print	24:00.

(e)	None	of	the	above.

11.6	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.Period;

public	class	RQ11A55	{

		public	static	void	main(String[]	args)	{
				Period	p1	=	Period.of(1,	1,	1);
				Period	p2	=	Period.of(2,	12,	30);
				p1	=	p1.plus(p2).plus(p1);
				System.out.println(p1);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception	when	run.

(c)	The	program	will	print	P6Y26M62D.

(d)	The	program	will	print	P4Y14M32D.

(e)	None	of	the	above.

11.7	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.LocalDate;

public	class	RQ11A30	{
		public	static	void	main(String[]	args)	{
				LocalDate	date	=	LocalDate.of(2015,	1,	1);
				date	=	date.withYear(5).plusMonths(14);
				System.out.println(date);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception	when	run.

(c)	The	program	will	print	0006-03-01.

(d)	The	program	will	print	2021-03-01.

(e)	The	program	will	print	0005-15-01.

(f)	None	of	the	above.

11.8	Which	expressions,	when	inserted	at	(1),	will	result	in	the	following	output:
date2	is	after	date1?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.Period;

public	class	RQ11A45	{
		public	static	void	main(String[]	args)	{
				LocalDate	date1	=	LocalDate.of(2015,	8,	19);
				LocalDate	date2	=	LocalDate.of(2015,	10,	23);
				if	(/*(1)	INSERT	CODE	HERE	*/)	{
						System.out.println(“date2	is	after	date1”);
				}
		}

}

Select	the	five	correct	answers.

(a)	date2.isAfter(date1)

(b)	date1.isAfter(date2)

(c)	date2.isBefore(date1)

(d)	date1.isBefore(date2)

(e)	Period.between(date2,	date1).isNegative()

(f)	Period.between(date1,	date2).isNegative()

(g)	date2.until(date1).isNegative()

(h)	date1.until(date2).isNegative()

(i)	date1.compareTo(date2)	<	0

(j)	date2.compareTo(date1)	<	0

11.4	Formatting	and	Parsing
A	formatter	has	two	primary	functions.	The	first	is	to	create	a	human-readable	textual
representation	of	an	object,	a	process	called	formatting	an	object.	The	second	is	to	create
an	object	from	a	string	containing	a	textual	representation	of	an	object,	which	is	the
inverse	of	formatting.	This	process	is	called	parsing	a	string.

In	this	section	we	take	a	closer	look	at	formatting	and	parsing	of	temporal	objects.	In
particular,	we	consider	the	following	formatters,	which	provide	increasing	flexibility	in
customizing	formatting	and	parsing	of	temporal	objects:

•	Default	formatters	are	implicitly	used	by	such	methods	as	the	toString()
method	of	the	temporal	classes.

•	Predefined	formatters	are	ready-made	formatters	provided	as	constants	by	the
java.time.format.DateTimeFormatter	class,	such	as	those	that	adhere
to	the	ISO	standard	(Table	11.2,	p.	489).

Table	11.2	Selected	ISO-Based	Predefined	Formatters	for	Date	and	Time

•	Localized	formatters	are	locale-sensitive	formatters	that	use	the	format	styles
defined	by	the	constants	of	the	java.time.format.FormatStyle	enum	type
(Table	11.3,	p.	490).	These	formatters	are	created	by	the	static	factory	methods
ofLocalizedType()	of	the	DateTimeFormatter	class,	where	Type	is
either	Time,	Date,		or	DateTime	(Table	11.4,	p.	491).

Table	11.3	Format	Styles	for	Date	and	Time

•	Customized	formatters	use	customized	format	styles	defined	by	pattern	letters
(Table	11.5,	p.	496).	These	formatters	are	created	by	the	static	factory	method
ofPattern()	of	the	DateTimeFormatter	class.

The	idiom	for	using	a	formatter	is	to	obtain	a	formatter	first,	and	then	pass	it	to	the
methods	responsible	for	formatting	and	parsing.	The	DateTimeFormatter	class
provides	factory	methods	for	obtaining	a	formatter.	Each	of	the	temporal	classes
LocalTime,	LocalDate,	and	LocalDateTime	provides	the	following	methods:	an
instance	method	format()	and	a	static	method	parse().	These	two	methods	do	the
formatting	and	the	parsing	according	to	the	rules	of	the	formatter	that	is	passed	as
argument,	respectively.	Analogous	methods	for	formatting	and	parsing	are	also	provided
by	the	DateTimeFormatter	class,	but	are	not	considered	here.

It	is	again	time	to	chant	the	mantra	of	immutability	and	thread-safety.	Formatters	supplied

by	the	DateTimeFormatter	class	also	subscribe	to	this	creed.	From	the	method
headers	of	the	format()	and	the	parse()	methods	of	the	temporal	classes,	we	can	see
that	these	methods	will	readily	compile	with	any	DateTimeFormatter.	The	validity	of
the	formatter	for	a	given	temporal	object	is	resolved	at	runtime,	resulting	in	a	resounding
exception	if	it	is	not	valid.

Click	here	to	view	code	image
//	LocalTime,	LocalDate,	LocalDateTime
String	format(DateTimeFormatter	formatter)

This	method	formats	the	temporal	object	using	the	specified	formatter,	and	returns
the	resulting	string.	Each	temporal	class	provides	this	method.	The	temporal	object
is	formatted	according	to	the	rules	of	the	formatter.	The	method	throws	a
java.time.DateTimeException	if	formatting	is	unsuccessful.

Click	here	to	view	code	image
//	LocalTime,	LocalDate,	LocalDateTime
static	TemporalType	parse(CharSequence	text)
static	TemporalType	parse(CharSequence	text,	DateTimeFormatter	formatter)

Each	temporal	class	provides	these	two	static	methods,	where	TemporalType
can	be	any	of	the	temporal	classes	LocalTime,	LocalDate,	or
LocalDateTime.

The	first	method	returns	an	instance	of	the	TemporalType	from	a	character
sequence,	using	the	default	parsing	rules	for	the	TemporalType.

The	second	method	obtains	an	instance	of	the	TemporalType	from	a	character
sequence,	using	the	specified	formatter.

Both	methods	return	an	object	of	a	specific	temporal	class,	and	both	throw	a
java.time.format.DateTimeParseException	if	parsing	is
unsuccessful.

Default	Formatters
So	far	in	this	chapter	we	have	relied	on	the	toString()	method	of	the	individual
temporal	classes	for	creating	a	textual	representation	of	a	temporal	object.	The	default
formatter	used	by	the	toString()	method	applies	the	formatting	rules	defined	by	the
ISO	standard.	In	the	following	code,	the	result	of	formatting	a	LocalTime	object	is
shown	at	(1):
Click	here	to	view	code	image

LocalTime	time	=	LocalTime.of(12,	30,	15,	99);
String	strTime	=	time.toString();																	//	(1)	12:30:15.000000099
LocalTime	parsedTime	=	LocalTime.parse(strTime);		//	(2)
System.out.println(time.toString().equals(parsedTime.toString()));	//	true

Each	temporal	class	provides	a	static	method	parse(CharSequence	text)	that
parses	a	character	sequence	using	a	default	formatter	that	complies	with	the	ISO	standard.
In	the	preceding	code,	the	textual	representation	created	in	(1)	is	parsed	in	(2)	to	obtain	a

new	LocalTime	object.	Not	surprisingly,	the	textual	representations	of	the	two
LocalTime	objects	referred	to	by	the	references	time	and	parsedTime	are	equal.

The	next	line	of	code	shows	that	the	argument	string	passed	to	the	parse()	method	is
not	in	accordance	with	the	ISO	standard,	resulting	in	a	runtime	exception:
Click	here	to	view	code	image

LocalTime	badTime	=	LocalTime.parse(“12.30.15”);		//	DateTimeParseException

Example	11.6	shows	examples	of	formatting	and	parsing	objects	of	the	three	temporal
classes	LocalTime,	LocalDate,	and	LocalDateTime.	It	is	worth	studying	the
output	from	this	example	to	familiarize	yourself	with	the	ISO	standard	for	formatting
temporal	objects.	To	summarize,	this	standard	is	employed	by	the	toString()
and		parse(CharSequence	text)	methods	when	formatting	and	parsing	temporal
objects,	respectively.

Example	11.6	Using	Default	Date	and	Time	Formatters
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;

public	class	DefaultFormattingParsing	{
		public	static	void	main(String[]	args)	{

				System.out.printf(“%70s%n”,	“Default	formatting|Default	parsing”);
				//	LocalTime
				LocalTime	time	=	LocalTime.of(12,	30,	15,	99);
				String	strTime	=	time.toString();																	//	(1)
12:30:15.000000099
				LocalTime	parsedTime	=	LocalTime.parse(strTime);		//	(2)
				System.out.printf(“LocalTime:	%33s|%s%n”,	strTime,	parsedTime);

				//	LocalDate
				LocalDate	date	=	LocalDate.of(2015,	4,	28);
				String	strDate	=	date.toString();																	//	2015-04-28
				LocalDate	parsedDate	=	LocalDate.parse(strDate);
				System.out.printf(“LocalDate:	%33s|%s%n”,	strDate,	parsedDate);

				//	LocalDateTime
				LocalDateTime	dateTime	=	LocalDateTime.of(date,	time);
				String	strDateTime	=	dateTime.toString();			//	2015-04-
28T12:30:15.000000099
				LocalDateTime	parsedDateTime	=	LocalDateTime.parse(strDateTime);
				System.out.printf(“LocalDateTime:	%23s|%s%n”,	strDateTime,
parsedDateTime);
		}
}

Output	from	the	program:
Click	here	to	view	code	image

Default	formatting|Default	parsing
LocalTime:																12:30:15.000000099|12:30:15.000000099
LocalDate:																								2015-04-28|2015-04-28
LocalDateTime:	2015-04-28T12:30:15.000000099|2015-04-28T12:30:15.000000099

Predefined	Formatters
The	DateTimeFormatter	class	provides	a	myriad	of	predefined	formatters	for
temporal	objects,	the	majority	of	which	comply	with	the	ISO	standard.	Table	11.2	shows
four	ISO-based	predefined	formatters	from	this	class.	We	have	also	indicated	which
temporal	classes	they	can	be	used	with	for	formatting	and	parsing;	with	certain	classes,
however,	they	can	be	used	only	for	either	formatting	or	parsing.

An	example	of	using	an	ISO-based	predefined	formatter	is	given	next.	Note	that	the
formatter	obtained	at	(1)	is	a	formatter	for	date-based	values.	It	can	be	used	only	with
temporal	objects	that	have	date-based	values—in	other	words,	the	LocalDate	and
LocalDateTime	classes.	This	formatter	is	passed	at	(2)	to	the	format()	method,	to
create	a	textual	representation	of	a	date.	The	resulting	string	is	parsed	at	(3)	by	the
parse()	method	that	uses	the	same	formatter.	The	resulting	date	is	also	formatted	using
the	same	formatter	at	(4).	It	is	hardly	surprising	that	the	textual	representations	of	both
dates	are	equal.
Click	here	to	view	code	image

DateTimeFormatter	df	=	DateTimeFormatter.ISO_LOCAL_DATE;					//	(1)
LocalDate	date	=	LocalDate.of(1935,	1,	8);
String	strDate	=	date.format(df);																												//	(2)	1935-01-
08
LocalDate	parsedDate	=	LocalDate.parse(strDate,	df);									//	(3)
System.out.println(strDate	+	“|”	+
																			parsedDate.format(df));										//	(4)	1935-01-08|1935-
01-08

As	this	code	shows,	a	formatter	can	be	reused,	both	for	formatting	and	for	parsing.	The
code	at	(4)	in	the	next	example	applies	the	formatter	from	(1)	in	the	preceding	code
snippet	to	format	a	LocalDateTime	object.	It	should	not	come	as	a	surprise	that	the
resulting	textual	representation	of	the	LocalDateTime	object	pertains	to	only	date-
based	values	in	the	object;	the	time-based	values	of	the	LocalDateTime	object	are
ignored.	Parsing	this	textual	representation	back	with	the	same	formatter	at	(5)	will	yield
only	a	LocalDate	object.
Click	here	to	view	code	image

LocalDateTime	dateTime	=	LocalDateTime.of(1935,	1,	8,	12,	45);
String	strDate2	=	dateTime.format(df);																							//	(4)	1935-01-
08
LocalDate	parsedDate2	=	LocalDate.parse(strDate2,	df);							//	(5)	LocalDate

To	summarize,	the	DateTimeFormatter.ISO_LOCAL_DATE	can	be	used	to	format
and	parse	a	LocalDate,	but	can	only	format	the	date	part	of	a	LocalDateTime
object.

Using	this	date-based	formatter	with	a	LocalTime	object	is	courting	disaster,	as	shown
by	the	following	code.	Formatting	with	this	formatter	results	in	a
java.time.temporal.UnsupportedTemporalTypeException,	and	parsing
results	in	a	java.time.format.DateTimeParseException.
Click	here	to	view	code	image

String	timeStr2	=	LocalTime.NOON.format(df);			//
UnsupportedTemporalTypeException

LocalTime	time2	=	LocalTime.parse(“12:00”,	df);//	DateTimeParseException

Localized	Formatters
For	more	flexible	formatters	than	the	predefined	ISO-based	formatters,	the
DateTimeFormatter	class	provides	the	static	factory	methods
ofLocalizedType(),	where	Type	is	either	Time,	Date,	or	DateTime.	These
methods	create	formatters	that	use	a	locale-specific	format	style.	However,	the	format
style	cannot	be	changed	after	the	formatter	is	created.	Format	styles	are	defined	by	the
enum	type	java.time.format.FormatStyle,	and	are	shown	in	Table	11.3.	The
styles	define	locale-specific	format	patterns	that	vary	in	their	degree	of	verbosity.

Click	here	to	view	code	image
static	DateTimeFormatter	ofLocalizedTime(FormatStyle	timeStyle)
static	DateTimeFormatter	ofLocalizedDate(FormatStyle	dateStyle)
static	DateTimeFormatter	ofLocalizedDateTime(FormatStyle	dateTimeStyle)
static	DateTimeFormatter	ofLocalizedDateTime(FormatStyle	dateStyle,
																																													FormatStyle	timeStyle)

These	static	factory	methods	of	the	DateTimeFormatter	create	a	locale-
specific	formatter	that	will	format	or	parse	a	time,	a	date,	or	a	date-time,
respectively,	using	the	specified	format	style.

In	the	code	that	follows,	the	date	formatter	created	at	(1)	is	used	at	(3)	to	parse	the	input
string	from	(2).
Click	here	to	view	code	image

DateTimeFormatter	df	=
DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT);//	(1)
String	inputStr	=	“2/29/15”;																															//	(2)
LocalDate	date	=	LocalDate.parse(inputStr,	df);												//	(3)
System.out.println(date.format(df));																							//	(4)	2/28/15
System.out.println(date);																																		//	(5)	2015-02-28

In	this	code,	the	input	string	"2/29/15"	is	specified	in	the	short	style	of	the	default
locale	(which	in	our	case	is	the	United	States).	The	input	string	is	parsed	by	the	date
formatter	(using	the	short	format	style)	to	create	a	new	LocalDate	object.	Although	the
value	29	is	invalid	for	the	number	of	days	in	February	for	the	year	2015,	the	output	shows
that	it	was	adjusted	correctly.	The	format	style	in	the	date	formatter	(in	this	case,
FormatStyle.SHORT)	and	the	contents	of	the	input	string	(in	this	case,	"2/29/15")
must	be	compatible.	If	this	is	not	the	case,	a	DateTimeParseException	is	thrown.
The	LocalDate	object	parsed	from	the	input	string	is	formatted	at	(4)	using	the	same
formatter.	Note	that	in	the	print	statement	at	(5),	the	LocalDate	object	from	the	parsing
is	converted	to	a	string	by	the	LocalDate.toString()	method	using	the	implicit
ISO-based	formatter.

Table	11.4	shows	which	temporal	classes	can	be	formatted	and	parsed	by	a	combination	of
a	format	style	from	Table	11.3	and	an	ofLocalizedType()	method	of	the
DateTimeFormatter	class,	where	Type	is	either	Time,	Date,	or	DateTime.	The
table	also	indicates	that	certain	classes	can	only	be	either	formatted	or	parsed,	depending
on	the	formatter	returned	by	the	method.	For	example,	in	Table	11.4	we	can	see	that	the

method	call	DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT)
will	return	a	formatter	that	can	be	used	to	both	format	and	parse	instances	of	the
LocalDate	class,	but	it	will	only	format	the	date	part	of	a	LocalDateTime	object.
This	formatter	will	use	the	specified	format	style,	FormatStyle.SHORT.

Table	11.4	Combination	of	Format	Styles	and	Localized	Formatters

Example	11.7,	Example	11.8,	and	Example	11.9	illustrate	the	use	of	the	formatters
supplied	by	the	DateTimeFormatter	class.	It	is	recommended	to	study	the	output
from	these	examples,	together	with	Table	11.2,	Table	11.3,	and	Table	11.4.

Example	11.7	illustrates	formatters	returned	by	the	ofLocalizedTime()	method	(the
second	column	in	Table	11.4).	Combinations	of	this	method	and	valid	format	styles	are
created	in	a	DateTimeFormatter	array	at	(1).	These	formatters	can	be	used	to	format
and	parse	temporal	objects	comprising	only	time-based	values	(i.e.,	LocalTime	objects),
as	shown	at	(4)	and	(5),	respectively.	In	addition,	these	formatters	can	be	used	to	format
only	the	time	part	of	a	LocalDateTime	object,	as	shown	at	(6).	These	formatters	cannot
be	used	for	LocalDate	objects,	as	they	do	not	deal	with	date-based	values.

Example	11.7	Using	Predefined	Format	Styles	with	Time-Based	Values
Click	here	to	view	code	image

import	java.time.DateTimeException;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;
import	java.time.format.DateTimeParseException;
import	java.time.format.FormatStyle;

public	class	FormattingParsingTime	{
		public	static	void	main(String[]	args)	{
				//	Create	some	time	formatters:
				DateTimeFormatter[]	timeFormatters	=		{																										//	(1)
								DateTimeFormatter.ISO_LOCAL_TIME,
								DateTimeFormatter.ofLocalizedTime(FormatStyle.SHORT),
								DateTimeFormatter.ofLocalizedTime(FormatStyle.MEDIUM),
//						The	following	two	combinations	result	in	a	DateTimeException	at
runtime:
//						DateTimeFormatter.ofLocalizedTime(FormatStyle.LONG),
//						DateTimeFormatter.ofLocalizedTime(FormatStyle.FULL)
				};
				String[]	formatStyles	=	{“ISO”,	“SHORT”,	“MEDIUM”,	“LONG”,	“FULL”};

				//	Formatting	and	parsing	a	time:
				LocalTime	time	=	LocalTime.of(14,	15,	30);																												//
(2)
				LocalDateTime	dateTime	=	LocalDateTime.of(2015,	12,	1,	14,	15,	30);			//
(3)
				int	i	=	0;
				System.out.println(“Style		Formatting	of	time,	date-time	|	Parsing	of
time”);
				for(DateTimeFormatter	tf	:	timeFormatters)
						try	{
								String	strTime	=	time.format(tf);																												//	(4)
								LocalTime	parsedTime	=	LocalTime.parse(strTime,	tf);									//	(5)
								String	strTime2	=	dateTime.format(tf);																							//	(6)
								System.out.printf(“%-7s”,	formatStyles[i++]);
								System.out.printf(“%14s|	%14s|	%14s%n”,
																										strTime,	strTime2,	parsedTime.format(tf));
						}	catch	(DateTimeParseException	pe)	{
								System.out.println(pe);
								return;
						}	catch	(DateTimeException	dte)	{
								System.out.println(dte);
								return;
						}
		}
}

Output	from	the	program	(default	locale	is	the	United	States):
Click	here	to	view	code	image

Style		Formatting	of	time,	date-time	|	Parsing	of	time
ISO										14:15:30|							14:15:30|							14:15:30
SHORT									2:15	PM|								2:15	PM|								2:15	PM
MEDIUM					2:15:30	PM|					2:15:30	PM|					2:15:30	PM

Example	11.8	illustrates	formatters	returned	by	the	ofLocalizedDate()	method	(the
third	column	in	Table	11.4,	p.	491).	Combinations	of	this	method	and	a	valid	format	style

are	created	in	a	DateTimeFormatter	array	at	(1).	These	formatters	can	be	used	to
format	and	parse	temporal	objects	comprising	only	date-based	values	(i.e.,	LocalDate
objects),	as	shown	at	(4)	and	(5),	respectively.	In	addition,	these	formatters	can	be	used	to
format	only	the	date	part	of	a	LocalDateTime	object,	as	shown	at	(6).	These	formatters
cannot	be	used	for	LocalTime	objects,	as	they	do	not	deal	with	time-based	values.

Example	11.8	Using	Predefined	Format	Styles	with	Date-Based	Values
Click	here	to	view	code	image

import	java.time.DateTimeException;
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.format.DateTimeFormatter;
import	java.time.format.DateTimeParseException;
import	java.time.format.FormatStyle;

public	class	FormattingParsingDate	{
		public	static	void	main(String[]	args)	{
				//	Create	some	date	formatters:
				DateTimeFormatter[]	dateFormatters	=																									{			//	(1)
								DateTimeFormatter.BASIC_ISO_DATE,
								DateTimeFormatter.ISO_LOCAL_DATE,
								DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT),
								DateTimeFormatter.ofLocalizedDate(FormatStyle.MEDIUM),
								DateTimeFormatter.ofLocalizedDate(FormatStyle.LONG),
								DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
				};
				String[]	formatStyles	=	{“BASIC”,	“ISO”,	“SHORT”,	“MEDIUM”,	“LONG”,
“FULL”};

				//	Formatting	and	parsing	a	date:
				LocalDate	date	=	LocalDate.of(2015,	12,	1);																											//
(2)
				LocalDateTime	dateTime	=	LocalDateTime.of(2015,	12,	1,	14,	15,	30);			//
(3)
				int	i	=	0;
				System.out.printf(“%s%39s%30s%n”,	“Style”,	“Formatting	of	date,	date-
time”,
																						”|	Parsing	of	date”);
				for(DateTimeFormatter	df	:	dateFormatters)
						try	{
								String	strDate	=	date.format(df);																												//	(4)
								LocalDate	parsedDate	=	LocalDate.parse(strDate,	df);									//	(5)
								String	strDate2	=	dateTime.format(df);																							//	(6)
								System.out.printf(“%-6s”,	formatStyles[i++]);
								System.out.printf(“%25s|%25s|%s%n”,
																										strDate,	strDate2,	parsedDate.format(df));
						}	catch	(DateTimeParseException	pe)	{
								System.out.println(pe);
								return;
						}	catch	(DateTimeException	dte)	{
								System.out.println(dte);
								return;
						}
		}
}

Output	from	the	program	(default	locale	is	the	United	States,	output	edited	to	fit	on	page):
Click	here	to	view	code	image

Style									Formatting	of	date,	date-time													|	Parsing	of	date
BASIC																	20151201|																	20151201|20151201
ISO																	2015-12-01|															2015-12-01|2015-12-01
SHORT																		12/1/15|																		12/1/15|12/1/15
MEDIUM													Dec	1,	2015|														Dec	1,	2015|Dec	1,	2015
LONG										December	1,	2015|									December	1,	2015|December	1,	2015
FULL	Tuesday,	December	1,	2015|Tuesday,	December	1,	2015|Tuesday,	December	1,
2015

Example	11.9	illustrates	formatters	returned	by	the	ofLocalizedDateTime()
method	(the	fourth	column	in	Table	11.4,	p.	491).	Combinations	of	this	method	and	valid
format	styles	are	created	in	a	DateTimeFormatter	array	at	(1).	These	formatters	can
be	used	to	format	and	parse	temporal	objects	comprising	both	time-based	and	date-based
values	(i.e.,	LocalDateTime	objects),	as	shown	at	(3)	and	(4),	respectively.	In	addition,
these	formatters	can	be	used	to	parse	the	time	part	or	the	date	part	of	a	date-time	textual
representation	to	obtain	a	LocalTime	object	or	a	LocalDate	object,	as	shown	at	(5)
and	(6),	respectively.	These	formatters	cannot	be	used	to	format	either	a	LocalTime
object	or	a	LocalDate	object,	as	they	require	both	time-based	and	date-based	values
when	used	for	formatting.

Example	11.9	Using	Predefined	Format	Styles	with	Date	and	Time-Based	Values
Click	here	to	view	code	image

import	java.time.DateTimeException;
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;
import	java.time.format.DateTimeParseException;
import	java.time.format.FormatStyle;

public	class	FormattingParsingDateTime	{
		public	static	void	main(String[]	args)	{
				//	Create	some	date-time	formatters:
				DateTimeFormatter[]	dtFormatters	=																									{										//
(1)
								DateTimeFormatter.ISO_LOCAL_DATE_TIME,
								DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT),
								DateTimeFormatter.ofLocalizedDateTime(FormatStyle.MEDIUM),
								DateTimeFormatter.ofLocalizedDateTime(FormatStyle.MEDIUM,
																																														FormatStyle.SHORT),
								DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT,
																																														FormatStyle.MEDIUM),
//						The	following	two	combinations	result	in	a	DateTimeException	at
runtime:
//						DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG),
//						DateTimeFormatter.ofLocalizedDateTime(FormatStyle.FULL)
				};
				String[]	formatStyles	=	{“ISO”,	“SHORT”,	“MEDIUM”,
																													“MEDIUM,SHORT”,	“SHORT,MEDIUM”};

				//	Formatting	and	parsing	a	date-time:
				LocalDateTime	dateTime	=	LocalDateTime.of(2015,	12,	1,	14,	15,	30);			//
(2)
				int	i	=	0;
				System.out.printf(“%s%31s%38s%n”,	“Style”,	“Formatting	of	date-time|”,
																							“Parsing	of	date-time,	date,	time”);

				for(DateTimeFormatter	dtf	:	dtFormatters)
						try	{
								String	strDateTime	=	dateTime.format(dtf);																			//	(3)
								LocalDateTime	parsedDateTime
																											=	LocalDateTime.parse(strDateTime,	dtf);		//	(4)
								LocalTime	parsedTime	=	LocalTime.parse(strDateTime,	dtf);				//	(5)
								LocalDate	parsedDate	=	LocalDate.parse(strDateTime,	dtf);				//	(6)
								System.out.printf(“%-12s”,	formatStyles[i++]);
								System.out.printf(“%23s|%22s|%s|%8s%n”,	strDateTime,
																											parsedDateTime.format(dtf),	parsedDate,
parsedTime);
						}	catch	(DateTimeParseException	pe)	{
								System.out.println(pe);
								return;
						}	catch	(DateTimeException	dte)	{
								System.out.println(dte);
								return;
						}
		}
}

Output	from	the	program	(default	locale	is	the	United	States):
Click	here	to	view	code	image

Style							Formatting	of	date-time|				Parsing	of	date-time,	date,	time
ISO													2015-12-01T14:15:30|			2015-12-01T14:15:30|2015-12-
01|14:15:30
SHORT															12/1/15	2:15	PM|							12/1/15	2:15	PM|2015-12-
01|			14:15
MEDIUM							Dec	1,	2015	2:15:30	PM|Dec	1,	2015	2:15:30	PM|2015-12-
01|14:15:30
MEDIUM,SHORT				Dec	1,	2015	2:15	PM|			Dec	1,	2015	2:15	PM|2015-12-
01|			14:15
SHORT,MEDIUM					12/1/15	2:15:30	PM|				12/1/15	2:15:30	PM|2015-12-
01|14:15:30

Customized	Formatters
For	more	fine-grained	formatting	and	parsing	capabilities	for	date/time-based	values,	we
can	use	the	ofPattern()	method	of	the	DateTimeFormatter	class.	This	method
creates	formatters	that	interpret	date/time-based	values	according	to	a	string	pattern	that	is
defined	using	the	pattern	letters	shown	in	Table	11.5.

Table	11.5	Selected	Date/Time	Pattern	Letters

Click	here	to	view	code	image
static	DateTimeFormatter	ofPattern(String	pattern)

This	static	method	creates	a	formatter	using	the	specified	pattern.	The	set	of
temporal	objects	it	can	be	used	with	depends	on	the	pattern	letters	used	in	the
specification	of	the	pattern.	The	letter	pattern	defines	the	rules	used	by	the
formatter.	The	method	throws	an	IllegalArgumentException	if	the	pattern
is	invalid.

Table	11.5	provides	an	overview	of	selected	pattern	letters.	All	letters	are	reserved	when
used	in	a	letter	pattern.	A	sequence	of	characters	can	be	escaped	by	enclosing	it	in	single
quotes	(e.g.,	"EEEE	'at'	HH:mm").	Non-letter	characters	in	the	string	are	interpreted
verbatim	and	need	not	be	escaped	using	single	quotes	(e.g.,	"uuuu.MM.dd	@
HH:mm:ss").	The	number	of	times	a	pattern	letter	is	repeated	can	have	a	bearing	on	the
interpretation	of	the	corresponding	date/time-based	value.	The	uppercase	letter	M	(Month
of	the	year)	should	not	be	confused	with	the	lowercase	letter	m	(minutes	in	the	hour).

A	letter	pattern	can	be	used	to	format	a	temporal	object	if	the	temporal	object	has	the
temporal	values	required	by	the	pattern.	The	pattern	"'Hour':	HH"	can	be	used	to
format	the	hour	part	of	any	LocalTime	object	or	a	LocalDateTime	object,	but	not	a
LocalDate.

A	letter	pattern	can	be	used	to	parse	a	string	if	the	string	matches	the	pattern	and	the	letter
pattern	specifies	the	mandatory	parts	needed	to	construct	a	temporal	object.	The	pattern
"MM/dd/uuuu"	can	be	used	to	parse	the	string	"08/13/2009"	to	obtain	a
LocalDate	object,	but	not	a	LocalDateTime	object.	The	latter	requires	the	time	part
as	well.

Example	11.10	demonstrates	both	formatting	and	parsing	of	temporal	objects	using	letter
patterns.

•	The	code	at	(1)	and	(2)	demonstrates	using	a	letter	pattern	for	the	time	part	to	both
format	and	parse	a	LocalTime	object,	respectively.	The	same	pattern	is	used	at	(3)
to	format	only	the	time	part	of	a	LocalDateTime	object.

•	The	code	at	(4)	and	(5)	demonstrates	using	a	letter	pattern	for	the	date	part	to	both
format	and	parse	a	LocalDate	object,	respectively.	The	same	pattern	is	used	at	(6)
to	format	only	the	date	part	of	a	LocalDateTime	object.

•	The	code	at	(7)	and	(8)	demonstrates	using	a	letter	pattern	for	the	date	and	time	parts
to	both	format	and	parse	a	LocalDateTime	object,	respectively.	The	same	pattern
is	used	at	(9)	and	(10)	to	parse	the	textual	representation	of	a	LocalDateTime	to
obtain	a	LocalDate	and	a	LocalTime	object,	respectively.

The	usage	of	letter	patterns	with	the	ofPattern()	method	in	Example	11.10	is
analogous	to	the	usage	of	the	predefined	format	styles	with	the	ofLocalizedType()
methods	(Table	11.4,	p.	491).	The	main	difference	is	that	letter	patterns	provide	great
flexibility	in	creating	customized	format	styles.

Example	11.10	Formatting	and	Parsing	with	Letter	Patterns
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	FormattingParsingWithPatterns	{
		public	static	void	main(String[]	args)	{

				LocalTime	time	=	LocalTime.of(12,	30,	15,	99);
				LocalDate	date	=	LocalDate.of(2015,	4,	28);
				LocalDateTime	dateTime	=	LocalDateTime.of(date,	time);
				System.out.printf(“Time	:	%s%n”,	time);
				System.out.printf(“Date	:	%s%n”,	date);
				System.out.printf(“DateTime	:	%s%n%n”,	dateTime);

				//	Time	part
				String	timePattern	=	“HH::mm::ss:SSS”;
				DateTimeFormatter	timeFormatter	=
DateTimeFormatter.ofPattern(timePattern);
				String	strTime	=	time.format(timeFormatter);																							//	(1)
				LocalTime	parsedTime	=	LocalTime.parse(strTime,	timeFormatter);				//	(2)
				String	strTime2	=	dateTime.format(timeFormatter);																		//	(3)
				System.out.printf(“Time	pattern:	%s%n”,	timePattern);
				System.out.printf(“LocalTime:	%s|%s%n”,
																							strTime,	parsedTime.format(timeFormatter));
				System.out.printf(“LocalDateTime	(formatted	time	part):	%s%n%n”,
strTime2);

				//	Date	part
				String	datePattern	=	“EEEE,	uuuu/MMMM/dd”;
				DateTimeFormatter	dateFormatter	=
DateTimeFormatter.ofPattern(datePattern);
				String	strDate	=	date.format(dateFormatter);																							//	(4)
				LocalDate	parsedDate	=	LocalDate.parse(strDate,	dateFormatter);				//	(5)
				String	strDate2	=	dateTime.format(dateFormatter);																		//	(6)
				System.out.printf(“Date	pattern:	%s%n”,	datePattern);
				System.out.printf(“LocalDate:	%s|%s%n”,
																							strDate,	parsedDate.format(dateFormatter));
				System.out.printf(“LocalDateTime	(formatted	date	part):	%s%n%n”,
strDate2);

				//	Date	and	time	parts
				String	dtPattern	=	“EE,	HH::mm::ss	‘on’	uuuu/MM/dd”;
				DateTimeFormatter	dtFormatter	=	DateTimeFormatter.ofPattern(dtPattern);
				String	strDateTime	=	dateTime.format(dtFormatter);																		//
(7)
				LocalDateTime	parsedDateTime	=	LocalDateTime.parse(strDateTime,					//
(8)
																																																							dtFormatter);
				LocalDate	parsedDate3	=	LocalDate.parse(strDateTime,	dtFormatter);		//
(9)
				LocalTime	parsedTime3	=	LocalTime.parse(strDateTime,	dtFormatter);		//
(10)
				System.out.printf(“DateTime	pattern:	%s%n”,	dtPattern);
				System.out.printf(“LocalDateTime:	%s|%s%n”,
																							strDateTime,	parsedDateTime.format(dtFormatter));
				System.out.printf(“LocalDate	(parsed	date	part):	%s%n”,
																							parsedDate3.format(dateFormatter));
				System.out.printf(“LocalTime	(parsed	time	part):	%s%n”,
																							parsedTime3.format(timeFormatter));
		}
}

Probable	output	from	the	program:
Click	here	to	view	code	image

Time	:	12:30:15.000000099
Date	:	2015-04-28
DateTime	:	2015-04-28T12:30:15.000000099

Time	pattern:	HH::mm::ss:SSS
LocalTime:	12::30::15:000|12::30::15:000
LocalDateTime	(formatted	time	part):	12::30::15:000

Date	pattern:	EEEE,	uuuu/MMMM/dd
LocalDate:	Tuesday,	2015/April/28|Tuesday,	2015/April/28
LocalDateTime	(formatted	date	part):	Tuesday,	2015/April/28

DateTime	pattern:	EE,	HH::mm::ss	‘on’	uuuu/MM/dd
LocalDateTime:	Tue,	12::30::15	on	2015/04/28|Tue,	12::30::15	on	2015/04/28
LocalDate	(parsed	date	part):	Tuesday,	2015/April/28
LocalTime	(parsed	time	part):	12::30::15:000

Example	11.11	demonstrates	the	versatility	of	letter	patterns	for	formatting	temporal
objects.	Note	how	a	pattern	can	be	used	to	format	specific	parts	of	a	date-time,	and	how
the	interpretation	of	a	pattern	letter	changes	with	the	number	of	times	it	is	repeated.

Example	11.11	Formatting	with	Date/Time	Letter	Patterns
Click	here	to	view	code	image

import	java.time.LocalDateTime;
import	java.time.format.DateTimeFormatter;

public	class	DateTimeFormattingPatterns	{
		static	public	void	main(String[]	args)	{
				//	DateTime	to	format.
				LocalDateTime	dateTime	=	LocalDateTime.of(1972,	12,	2,	14,	45,	30);

				//	Formatting	patterns.
				String[]	patterns	=	{
								“dd/MM/uu”,
								“u/M/d”,
								“d	MMMM	uuuu”,
								“‘Anniversary’:	d	MMMM”,
								“uuuu.MM.dd”,
								“uuuu.MM.dd@hh:mm:ss”,
								“uuuu.MMMM.dd	hh:mm	a”,
								“EEE,	MMM	d’th’,	”uu”,
								“EEEE	d	MMMM	uuuu”,
								“EEE	d	MMM	uuu”,
								“EE	d	MM	uu”,
								“E	d	M	u”,
								“h:m	a”,
								“hh:mm”,
								“HH:mm”,
								“HH:mm:ss”,
								“‘Hour’:	HH”,
								“EEE	at	hh:mm”,	//	IllegalArgumentException	-	Unknown	pattern	letter:
t
								“hh::mmm”,						//	IllegalArgumentException	-	Too	many	pattern
letters:	m
				};

				System.out.println(“Formatting	date/time	(”	+	dateTime	+	“)”	+
																							”	according	to	different	patterns:”);
				for	(String	pattern	:	patterns)	{
						String	output;
						try	{
								DateTimeFormatter	formatter	=	DateTimeFormatter.ofPattern(pattern);
								output	=	dateTime.format(formatter);

						}	catch	(IllegalArgumentException	e)	{
								output	=	String.format(“%s	-	%s”,	e.getClass().getSimpleName(),
																															e.getMessage());
						}
						System.out.printf(“%25s		%s%n”,	pattern,	output);
				}
		}
}

Probable	output	from	the	program	(default	locale	is	the	United	States):
Click	here	to	view	code	image

Formatting	date/time	(1972-12-02T14:45:30)	according	to	different	patterns:
																	dd/MM/uu		02/12/72
																				u/M/d		1972/12/2
														d	MMMM	uuuu		2	December	1972
				‘Anniversary’:	d	MMMM		Anniversary:	2	December
															uuuu.MM.dd		1972.12.02
						uuuu.MM.dd@hh:mm:ss		1972.12.02@02:45:30
					uuuu.MMMM.dd	hh:mm	a		1972.December.02	02:45	PM
					EEE,	MMM	d’th’,	”uu		Sat,	Dec	2th,	‘72
									EEEE	d	MMMM	uuuu		Saturday	2	December	1972
												EEE	d	MMM	uuu		Sat	2	Dec	1972
															EE	d	MM	uu		Sat	2	12	72
																		E	d	M	u		Sat	2	12	1972
																				h:m	a		2:45	PM
																				hh:mm		02:45
																				HH:mm		14:45
																	HH:mm:ss		14:45:30
															‘Hour’:	HH		Hour:	14
													EEE	at	hh:mm		IllegalArgumentException	-	Unknown	pattern	letter:
t
																		hh::mmm		IllegalArgumentException	-	Too	many	pattern
letters:	m

	Review	Questions

11.9	Which	statement	is	true	about	formatting	and	parsing	of	temporal	objects?

Select	the	one	correct	answer.

(a)	The	DateTimeFormatter	class	provides	only	factory	methods	to	obtain
predefined	formatters.

(b)	The	styles	defined	by	the	java.time.format.FormatStyle	enum	type
are	based	on	the	ISO	standard.

(c)	The	ofLocalizedDate()	method	of	the	DateTimeFormatter	class
returns	a	formatter	that	is	based	on	a	letter	pattern	passed	as	argument	to	the
method.

(d)	The	pattern	"yy-mm-dd"	can	be	used	to	create	a	formatter	that	can	format	a
LocalDate	object.

(e)	None	of	the	above.

11.10	Which	code,	when	inserted	at	(1),	will	make	the	program	compile	and	execute
normally?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	RQ11A75	{
		public	static	void	main(String[]	args)	{
				String	pattern		=	“MM/dd/yyyy	‘at’	HH:mm:ss”;
				String	inputStr	=	“02/29/2015	at	00:15:30”;
				DateTimeFormatter	dtf	=	DateTimeFormatter.ofPattern(pattern);
				//	(1)	INSERT	CODE	HERE.
		}
}

Select	the	four	correct	answers.

(a)	LocalTime	time	=	LocalTime.parse(inputStr,	dtf);

(b)	LocalDate	date	=	LocalDate.parse(inputStr,	dtf);

(c)	LocalDateTime	dateTime	=
LocalDateTime.parse(inputStr,	dtf);

(d)	String	timeStr	=	LocalTime.MIDNIGHT.format(dtf);

(e)	String	dateStr	=	LocalDate.of(2015,	12,
24).format(dtf);

(f)	String	dateTimeStr	=	LocalDateTime.of(2015,	12,	24,
0,	0).format(dtf);

11.11	Which	code,	when	inserted	at	(1),	will	make	the	program	compile	and	execute
normally?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	RQ11A85	{
		public	static	void	main(String[]	args)	{
				String	pattern	=	“‘Date:’	dd|MM|yyyy”;
				String	inputStr	=	“Date:	02|12|2015”;
				DateTimeFormatter	dtf	=	DateTimeFormatter.ofPattern(pattern);
				//	(1)	INSERT	CODE	HERE.
		}
}

Select	the	three	correct	answers.

(a)	LocalTime	time	=	LocalTime.parse(inputStr,	dtf);

(b)	LocalDate	date	=	LocalDate.parse(inputStr,	dtf);

(c)	LocalDateTime	dateTime	=
LocalDateTime.parse(inputStr,	dtf);

(d)	String	timeStr	=	LocalTime.MIDNIGHT.format(dtf);

(e)	String	dateStr	=	LocalDate.of(2015,	12,
24).format(dtf);

(f)	String	dateTimeStr	=	LocalDateTime.of(2015,	12,	24,
0,	0).format(dtf);

11.12	Which	code,	when	inserted	at	(1),	will	result	in	the	following	output:
Click	here	to	view	code	image

5	minutes	past	9
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	RQ11A96	{
		public	static	void	main(String[]	args)	{
				//	(1)	INSERT	CODE	HERE.

				String	inputStr	=	“5	minutes	past	9”;
				DateTimeFormatter	formatter	=	DateTimeFormatter.ofPattern(pattern);
				LocalTime	time	=	LocalTime.parse(inputStr,	formatter);
				System.out.println(time.format(formatter));
		}
}

Select	the	one	correct	answer.

(a)	String	pattern	=	"m'	minutes	past	'h";

(b)	String	pattern	=	"M'	minutes	past	'h";

(c)	String	pattern	=	"m'	minutes	past	'ha";

(d)	String	pattern	=	"m'	minutes	past	'Ha";

(e)	String	pattern	=	"m'	minutes	past	'H";

(f)	String	pattern	=	"mm'	minutes	past	'H";

(g)	String	pattern	=	"M'	minutes	past	'H";

11.13	Which	code,	when	inserted	at	(1),	will	make	the	program	compile	and	execute
normally?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;
import	java.time.format.FormatStyle;

public	class	RQ11A90	{
		public	static	void	main(String[]	args)	{
				//	(1)	INSERT	CODE	HERE.

				String	timeStr	=	LocalTime.NOON.format(dtf);
				String	dateStr	=	LocalDate.of(2015,	12,	24).format(dtf);
				String	dateTimeStr	=	LocalDateTime.of(2015,	12,	24,	12,
0).format(dtf);
		}
}

Select	the	one	correct	answer.

(a)
Click	here	to	view	code	image

DateTimeFormatter	dtf	=
		DateTimeFormatter.ofLocalizedTime(FormatStyle.SHORT);

(b)
Click	here	to	view	code	image

DateTimeFormatter	dtf	=
		DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT);

(c)
Click	here	to	view	code	image

DateTimeFormatter	dtf	=
		DateTimeFormatter.ofLocalizedDateTime(FormatStyle.SHORT);

(d)	None	of	the	above.

	Chapter	Summary

The	following	topics	were	covered	in	this	chapter:

•	An	overview	of	classes	in	the	java.time	package	that	represent	a	point	in	time:	a
(clock)	time	(LocalTime),	a	date	(LocalDate),	a	date-time	combination
(LocalDateTime),	and	a	class	that	represents	an	amount	of	time	in	years,	months,
and	days	(Period).

•	The	consequences	of	immutability	for	objects	that	represent	temporal	concepts

•	The	naming	conventions	used	for	methods	in	the	temporal	classes	that	facilitate	their
usage

•	Creating,	querying,	converting,	and	comparing	temporal	objects

•	Writing	code	to	do	temporal	arithmetic

•	Formatting	and	parsing	using	default	formatters

•	Formatting	and	parsing	using	ISO-based	predefined	formatters	of	the
DateTimeFormatter	class

•	Formatting	and	parsing	using	localized	formatters	that	are	based	on	the	predefined
format	styles	defined	by	the	java.time.format.FormatStyle	enum	type

•	Formatting	and	parsing	using	customized	formatters	that	are	based	on	letter	patterns

•	The	exceptions	thrown	when	formatting	and	parsing	temporal	objects

	Programming	Exercise

11.1	Print	statistics	about	astronauts	who	have	stayed	on	a	space	station.

Skeleton	code	for	the	problem	is	provided	in	this	exercise.	The	class	Astronaut

represents	statistics	about	an	astronaut:

•	The	name	of	the	astronaut	(astronautName)

•	The	date	and	time	when	the	astronaut	arrived	at	the	space	station
(arrivalDateTime)

•	The	scheduled	date	of	return	to	Earth	for	the	astronaut
(scheduledReturnDate)

•	The	actual	period	of	stay	at	the	space	station	(actualPeriodOfStay),	which
can	be	longer	or	shorter	than	the	scheduled	length	of	stay

The	program	should	print	the	following	report:
Click	here	to	view	code	image

Name													Arr.Date		Sched.Return	Act.Return		Status	Act.Stay
Sched.Stay	Diff
Astro	Ali							2010/03/01		2010/05/01		2010/06/01
Delayed			P3M							P2M						P1M
Laila	Lightyear	2015/02/01		2015/06/30		2015/08/30	Delayed
P210D				P4M29D						P2M
Orbit	Orwell				2014/03/01		2014/09/01		2014/09/01	On
time			P6M							P6M						P0D
Rocket
Rogers			2013/07/31		2013/09/30		2013/09/29			Early		P60D				P1M30D					P-
1D
Sam
Spacey						2009/01/01		2009/11/01		2009/04/01			Early		P90D						P10M					P-
7M

Each	row	contains	the	name	(Name	column),	the	arrival	date	at	the	space	station
(Arr.Date	column),	and	the	scheduled	return	date	(Sched.Return	column)	for	each
astronaut.	In	addition,	each	row	contains	the	actual	date	of	return	(Act.Return	column)
determined	by	the	actual	length	of	stay	(Act.Stay	column);	whether	the	astronaut	was
Delayed,	On	time,	or	Early	in	returning	to	Earth	(Status	column);	the	scheduled
length	of	stay	that	was	originally	planned	(Sched.Stay	column);	and	the	difference
between	the	scheduled	return	date	and	the	actual	return	date	(Diff	column).

Further	information	is	provided	in	the	documentation	included	in	the	code.	Implement	the
four	methods	(getActualReturnDate(),	getReturnStatus(),
getPlannedPeriodOfStay(),	getDiffPeriodOfStay())	of	the	Astronaut
class,	and	complete	the	implementation	of	the	printReport()	method	in	the
SpaceStationStats	class.
Click	here	to	view	code	image

import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.Period;

/**	Class	represents	statistics	about	an	astronaut.	*/
public	class	Astronaut	{

		private	final	String								astronautName;
		private	final	LocalDateTime	arrivalDateTime;
		private	final	LocalDate					scheduledReturnDate;

		private	final	Period								actualPeriodOfStay;

		public	Astronaut(String	name,	LocalDateTime	arrival,	Period	period,
																			LocalDate	returnDate)	{
				astronautName	=	name;
				arrivalDateTime	=	arrival;
				actualPeriodOfStay	=	period;
				scheduledReturnDate	=	returnDate;
		}

		public	String	getAstronautName()										{	return	astronautName;	}
		public	LocalDateTime	getArrivalDateTime()	{	return	arrivalDateTime;	}
		public	Period	getActualPeriodOfStay()					{	return	actualPeriodOfStay;	}
		public	LocalDate	getScheduledReturnDate()	{	return	scheduledReturnDate;	}

		/**	@return	LocalDate	The	actual	date	of	return.	*/
		public	LocalDate	getActualReturnDate()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
		}

		/**
			*	Returns	status	of	the	actual	return	compared	to	the	scheduled	return,
			*	whether	it	was	on	time,	delayed,	or	early.
			*	@return	String	Indicating	“On	time”,	“Delayed”,	or	“Early”.
			*/
		public	String	getReturnStatus()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
		}

		/**	@return	Period	The	planned	stay	according	to	the	scheduled	return.*/
		public	Period	getPlannedPeriodOfStay()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
		}

		/**
			*	@return	Period	The	difference	between	the	actual	return	date	and
			*																the	scheduled	return	date.	*/
		public	Period	getDiffPeriodOfStay()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
		}
}

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.Period;
import	java.time.format.DateTimeFormatter;

public	class	SpaceStationStats	{

		public	static	void	main(String[]	args)	{
				//	Astronaut	data
				Astronaut[]	astronauts	=	{
								new	Astronaut(“Astro	Ali”,
												LocalDateTime.of(2010,	3,	1,	10,	45),	Period.ofMonths(3),
												LocalDate.of(2010,	5,	1)),
								new	Astronaut(“Laila	Lightyear”,
												LocalDateTime.of(2015,	2,	1,	17,	0),		Period.ofWeeks(30),
												LocalDate.of(2015,	6,	30)),
								new	Astronaut(“Orbit	Orwell”,
												LocalDateTime.of(2014,	3,	1,	20,	20),	Period.ofMonths(6),
												LocalDate.of(2014,	9,	1)),

								new	Astronaut(“Rocket	Rogers”,
												LocalDateTime.of(2013,	7,	31,	15,	30),	Period.ofDays(60),
												LocalDate.of(2013,	9,	30)),
								new	Astronaut(“Sam	Spacey”,
												LocalDateTime.of(2009,	1,	1,	12,	15),	Period.ofDays(90),
												LocalDate.of(2009,	11,	1)),
				};
				printReport(astronauts);
		}

		/**
			*	Method	prints	statistics	about	stay	on	a	space	station.
			*	See	the	exercise	text	for	the	format	of	the	report.
			*	@param	astronauts	The	array	with	astronaut	data
			*/
		private	static	void	printReport(Astronaut[]	astronauts)	{
				System.out.println(“Name													Arr.Date		Sched.Return”
																							+	”	Act.Return		Status	Act.Stay	Sched.Stay	Diff”);
				String	reportFormatStr	=	“%-16s%10s%12s%12s%8s%6s%10s%9s%n”;
				/*	IMPLEMENT	THE	REST	OF	THE	METHOD.	*/
		}
}

Appendix	A.	Taking	the	Java	SE	8	Programmer	I	Exam

Please	note	that	all	information	presented	in	this	appendix	was	valid	as	of	January	2016.	It
is	imperative	to	visit	the	websites	mentioned	in	this	appendix	regularly,	as	Oracle	is
known	to	change	the	practical	information	about	the	exam	and	the	exam	objectives
intermittently.

The	primary	focus	of	this	book	is	the	Java	SE	8	Programmer	I	Exam	(1Z0-808)	required
to	qualify	as	an	Oracle	Certified	Associate	(OCA),	Java	SE	8	Programmer	(OCAJP8).
Pertinent	information	about	this	exam	can	be	found	here:

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?
page_id=5001&get_params=p_exam_id:1Z0-808

This	exam	is	the	first	of	two	required	to	obtain	Oracle	Certified	Professional	(OCP),	Java
SE	8	Programmer	Certification	(OCPJP8).	The	second	exam	required	for	this	professional
certification	is	the	Java	SE	8	Programmer	II	Exam	(1Z0-809).	We	will	not	go	into	the
details	about	the	second	exam	in	this	appendix,	but	more	information	about	the	second
exam	can	be	found	here:

https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?
page_id=5001&get_params=p_exam_id:1Z0-809

For	authoritative	information	about	the	certification	path	for	Java	SE,	consult	the
following	web	page:

https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?
page_id=653&get_params=p_id:357#tabs-1-1

Appendix	B	contains	specific	information	about	the	exam	objectives	for	the	Java	SE	8
Programmer	I	exam.

A.1	Preparing	for	the	Exam
The	goal	of	the	exam	is	to	test	practical	knowledge	and	usage	of	the	Java	programming
language.	The	exam	requires	thorough	understanding	of	both	the	syntax	and	the	semantics
of	the	language.	The	exam	covers	a	wide	variety	of	topics,	as	defined	in	the	objectives	for
the	exam	(Appendix	B).	Central	to	the	exam	is	language	constructs,	usage	of	the	core	API,
and	specific	topics,	with	heavy	emphasis	on	interpreting	code	scenarios.

The	need	for	real-world	experience	prior	to	taking	the	exam	cannot	be	stressed	enough.	It
requires	very	thorough	preparation	to	pass	the	exam	without	having	some	actual
experience	programming	in	Java.	Simply	reading	straight	through	this	book	is	not
recommended.	Readers	should	take	time	to	try	out	what	they	have	learned	along	every
step	of	the	way.	Readers	are	encouraged	to	test	their	newly	acquired	knowledge	using	the
review	questions	provided	after	every	major	topic.

Experimenting	with	the	examples	and	working	through	the	programming	exercises	in	this
book	will	serve	to	give	the	reader	a	much	better	chance	of	passing	the	exam.	Numbered
examples	in	the	book	are	complete	Java	programs,	the	source	code	for	which	is	available
from	the	book	website.	Whether	one	uses	the	tools	in	the	JDK	or	an	IDE	(integrated
development	environment),	it	is	the	hands-on	programming	that	is	important.	Tools	in	the

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=653&get_params=p_id:357#tabs-1-1

JDK	are	to	be	preferred	as	preparation	for	the	exam,	as	there	is	less	reliance	on
programming	support	provided	by	an	IDE.

When	the	reader	feels	ready,	she	should	test	her	skills	on	the	mock	exam	provided	in
Appendix	E.	This	will	give	an	indication	of	how	well	the	reader	is	prepared	for	the	exam,
and	which	topics	need	further	study.	The	structure	of	the	book	should	make	it	easy	for	the
reader	to	focus	on	single	topics,	if	necessary.

The	exam	is	considered	to	be	difficult,	and	requires	a	fair	amount	of	studying	on	the	part
of	the	candidate.	Even	seasoned	Java	programmers	should	invest	some	time	in	preparing
for	the	exam.	Simply	having	real-world	experience	is	also	not	enough	to	pass	the	exam.

Devising	a	study	plan	is	highly	recommended,	incorporating	the	activities	we	mentioned
previously.	Disruptions	in	the	study	plan	should	be	avoid,	as	this	can	result	in	revising	the
material	already	covered	when	you	pick	up	the	thread.	The	exam	should	be	scheduled
immediately	after	the	study	period,	when	the	momentum	from	the	preparation	is	at	its
maximum.

We	also	highly	recommend	joining	an	online	Java	certification	community,	such	as
CodeRanch	(www.coderanch.com),	which	has	dedicated	active	forums	for	the
different	Java	certifications.	All	things	Java	are	discussed	in	a	friendly	manner	around	the
bonfire	at	this	ranch,	where	greenhorns	are	specially	welcome.	The	forum	for	OCAJP	can
be	found	here:

www.coderanch.com/forums/f-117/ocajp

A.2	Registering	for	the	Exam
The	website	for	the	exam	provides	all	the	relevant	information	on	the	procedure	for
registering,	paying,	and	scheduling	the	exam.

It	is	a	good	idea	to	have	an	Oracle	web	account	and	authenticate	the	account	in	the
CertView	certification	portal,	where	the	exam	results	will	be	made	available.	These	steps
can	be	accomplished	at	certview.oracle.com.

Contact	Information
Both	Oracle	and	Pearson	VUE	have	offices	and	associates	around	the	world	that	can
provide	information	about	the	exam.	They	can	be	contacted	to	purchase	a	voucher	for	the
exam	before	signing	up	for	the	test	at	a	local	testing	center.

The	best	way	to	find	contact	information	and	local	testing	centers	is	to	visit	their	websites.

Oracle	University
http://education.oracle.com/

Pearson	VUE
http://pearsonvue.com/oracle/

http://www.coderanch.com
http://www.coderanch.com/forums/f-117/ocajp
http://certview.oracle.com
http://education.oracle.com/
http://pearsonvue.com/oracle/

Obtaining	an	Exam	Voucher
Exam	vouchers	are	sold	by	Oracle	and	Pearson	VUE.	Be	sure	to	obtain	the	correct
voucher	for	the	exam.	Credit	card	information	is	required	to	arrange	payment.	The	cost	of
the	voucher	may	vary	depending	on	the	country	you	live	in.	For	U.S.	residents,	it	cost
$245	at	the	time	of	this	book’s	writing.

Note	that	the	voucher	has	an	expiration	date,	usually	6	months	after	it	is	acquired.	Neither
Oracle	nor	Pearson	VUE	will	replace	lost	or	expired	vouchers,	nor	will	they	offer	refunds
for	unused	vouchers.

Signing	Up	for	the	Test
After	obtaining	the	exam	voucher,	Pearson	VUE	can	be	contacted	to	sign	up	for	the	test	by
making	an	appointment	at	one	of	the	local	testing	centers.	The	exam	can	be	rescheduled
without	penalty	up	to	24	hours	before	the	appointment	time.

After	Taking	the	Exam
The	candidate	will	immediately	receive	an	email	from	Oracle	informing	her	that	the	exam
results	are	available	in	CertView.	On	passing	the	exam,	the	candidate	will	receive	an	email
informing	her	that	an	eCertificate	is	available	in	CertView.	Instructions	for	requesting	a
printed	copy	of	the	certificate	are	included	in	this	email.

A	candidate	who	fails	the	exam	can	register	to	retake	the	exam	after	a	14-day	waiting
period.

A.3	How	the	Exam	Is	Conducted

The	Testing	Locations
To	be	on	the	safe	side,	a	candidate	should	bring	two	forms	of	ID	on	the	day	of	the	exam.
When	a	candidate	shows	up	at	the	local	testing	center	at	the	appointed	time,	she	will	be
escorted	to	her	own	little	cubicle	with	a	desktop	computer.	The	test	will	be	conducted	in
this	cubicle,	using	a	testing	program	on	the	computer.	The	program	will	ask	questions,
record	answers,	and	tabulate	scores.

Candidates	will	not	be	allowed	to	bring	any	personal	belongings	or	food	with	them	to	the
cubicle.	A	candidate	will	be	provided	with	either	erasable	or	nonerasable	boards.	During
the	exam,	candidates	can	use	the	board	to	make	notes,	but	they	will	not	be	allowed	to	take
anything	with	them	after	the	exam.	Quite	often	the	exam	area	is	fitted	with	security
cameras.

Utilizing	the	Allotted	Time
The	exam	consists	of	a	fixed	number	of	questions	that	must	be	answered	within	the
allocated	time.	Some	of	these	questions	may	be	unscored,	meaning	they	do	not	contribute
to	the	final	score,	whether	they	are	answered	correctly	or	not.	There	is	also	no	way	to
distinguish	whether	a	question	is	scored	or	unscored	on	the	exam.

The	questions	vary	in	difficulty.	Some	are	easy	and	some	are	difficult.	With	limited	time

to	answer	each	question,	the	candidate	cannot	afford	to	get	stuck	on	the	hard	questions.	If
the	answer	does	not	become	apparent	within	a	reasonable	time,	it	is	advisable	to	move	on
to	the	next	question.	Time	permitting,	it	is	possible	to	return	to	the	unanswered	questions
later.	It	is	important	to	answer	all	question.	A	wrong	answer	and	a	blank	answer	carry	the
same	penalty:	loss	of	points.	Therefore	it	is	better	to	guess	an	answer	than	to	leave	it
blank,	and	hope	that	the	guess	is	right.	The	process	of	elimination	can	sometimes	be	useful
in	narrowing	down	the	answer	to	a	question.	Eliminating	obvious	incorrect	choices
increases	the	chances	of	arriving	at	the	right	answer.

An	experienced	Java	programmer	used	to	taking	exams	should	be	able	to	complete	the
exam	within	the	allotted	time.	Any	remaining	time	is	best	used	in	reviewing	the	answers.

The	Exam	Program
The	computer	program	used	to	conduct	the	exam	will	select	a	set	of	questions	at	random,
and	present	them	through	a	graphical	user	interface.	The	interface	is	designed	in	such	a
way	that	candidates	are	able	to	move	back	and	forth	through	the	questions	for	reviewing
purposes.	Questions	can	be	temporarily	left	unanswered,	and	the	candidate	can	return	to
them	later.	Questions	can	also	be	marked	for	review	at	the	end	of	the	exam.

Before	the	exam	starts,	the	candidate	is	allowed	a	test	run	with	the	computer	program.	A
demo	test	that	has	nothing	to	do	with	the	Java	exam	is	used.	Its	sole	purpose	is	to	acquaint
the	candidate	with	the	program	being	used	to	conduct	the	exam.

The	Exam	Result
After	taking	the	exam,	the	candidate	should	log	on	to	the	CertView	certification	portal	to
see	the	result.	The	candidate	will	be	presented	with	the	following	information:

•	An	indication	of	whether	the	candidate	passed	or	failed.

•	The	total	score.	Only	the	scored	questions	on	the	exam	contribute	to	the	final	score.
All	the	scored	questions	are	weighted	equally,	and	the	score	is	calculated	based	on
the	percentage	of	correct	answers.	No	credit	is	given	for	partially	correct	answers	for
the	scored	questions.

•	Indications	on	how	well	the	candidate	did	on	each	of	the	categories	of	the	objectives.
Candidates	who	fail	the	exam	should	pay	close	attention	to	this	information.	If	the
candidate	is	planning	to	retake	the	exam,	it	may	give	a	good	indication	of	which
topics	need	closer	attention.

The	result	will	not	divulge	which	questions	were	answered	correctly.

A.4	The	Questions

Assumptions	about	the	Exam	Questions
The	website	for	the	Java	SE	8	Programmer	I	Exam	lists	certain	assumptions	about	the
exam	questions.	In	the	following	list,	we	provide	a	short	explanation	of	these	assumptions.

•	Missing	package	and	import	statements

Unless	explicitly	provided,	stated,	or	referred	to	in	the	question,	assume	that	the
code	is	in	the	same	package	and	all	necessary	import	statements	are	given.

•	No	file	or	directory	path	names	for	classes

In	this	case,	assume	that	either	all	classes	are	in	the	same	file	or	each	class	is	in	a
separate	file	and	these	files	are	in	the	same	directory.

•	Unintended	line	breaks

Line	breaks	that	make	the	code	lines	appear	to	be	wrapped	unintentionally	should	be
ignored,	and	the	code	assumed	to	compile	without	errors.

•	Code	fragments

Assume	that	the	necessary	context	exists	to	compile	and	execute	the	code,	if	such
context	is	not	explicitly	specified	by	the	question.

•	Descriptive	comments

Such	comments	should	be	taken	at	their	face	value,	providing	the	intent	described	in
the	comment.

Types	of	Questions	Asked
Most	of	the	questions	follow	a	common	format	that	requires	candidates	to	apply	their
knowledge	in	a	special	way.

•	Analyzing	program	code.	The	question	provides	a	source	code	snippet,	and	asks	a
specific	question	pertaining	to	the	snippet.	Will	running	the	program	provide	the
expected	result?	What	will	be	written	to	the	standard	output	when	the	program	is
run?	Will	the	code	compile?

•	Identifying	true	or	false	statements.

When	analyzing	program	code,	it	is	useful	to	try	to	apply	the	same	rules	as	the	compiler:
examining	the	exact	syntax	used,	rather	than	making	assumptions	on	what	the	code	tries	to
accomplish.

The	wording	of	the	questions	is	precise,	and	the	responses	selected	in	multiple-choice
questions	are	likewise	expected	to	be	precise.	This	often	causes	the	test	to	be	perceived	as
fastidious.	Close	attention	should	be	paid	to	the	wording	of	the	responses	in	a	multiple-
choice	question.

None	of	the	questions	is	intentionally	meant	to	be	a	trick	question.	Exam	questions	have
been	reviewed	by	both	Java	experts	and	language	experts	to	remove	as	much	ambiguity
from	their	wording	as	possible.

Since	the	program	used	in	the	exam	will	select	and	present	the	questions	in	a	random
fashion,	there	is	no	point	in	trying	to	guess	the	form	of	the	questions.	The	order	of	the
answers	in	multiple-choice	questions	has	been	randomized	and,	therefore,	has	no
significance.

Types	of	Answers	Expected
All	exam	questions	are	multiple	choice.	The	correct	number	of	alternatives	to	select	is
designated	in	the	question,	and	all	must	be	selected	for	the	question	as	a	whole	to	be
considered	correctly	answered.

There	should	be	no	problem	identifying	which	form	of	answer	each	question	requires.	The
wording	of	the	questions	will	indicate	this,	and	the	software	used	will	present	the
candidate	with	an	input	method	corresponding	to	the	form	of	answer	expected.

For	multiple-choice	questions,	the	program	will	ask	the	candidate	to	select	a	specific
number	of	answers	from	a	list.	Where	a	single	correct	answer	is	expected,	radio	buttons
will	allow	the	selection	of	only	one	answer.	The	most	appropriate	response	should	be
selected.

In	questions	where	all	appropriate	responses	should	be	selected,	check	boxes	will	allow
the	selection	of	each	response	individually.	In	this	case,	all	choices	should	be	considered
on	their	own	merits;	that	is,	responses	should	not	be	weighed	against	each	other.	It	can	be
helpful	to	think	of	each	of	the	choices	as	an	individual	true–false	question.

Topics	Covered	by	the	Questions
Topics	covered	by	the	exam	are	basically	derived	from	the	set	of	exam	objectives	defined
by	Oracle.	The	objectives	for	the	Java	SE	8	Programmer	I	exam	are	included	in	Appendix
B,	with	references	to	where	the	topics	are	covered	in	the	book.

The	ultimate	goal	of	an	exam	is	to	distinguish	experienced	Java	programmers	from	the
rest.	To	this	end,	some	of	the	questions	are	aimed	at	topics	that	new	Java	programmers
usually	find	difficult.	Such	topics	include:

•	Casting	and	conversion

•	Polymorphism,	overriding,	and	overloading

•	Exception	handling	with	try-catch-finally	blocks

Knowledge	obtained	from	studying	other	languages	such	as	C++	should	be	used	with	care.
Some	of	the	questions	often	seem	to	lead	astray	C++	programmers	who	have	not	grasped
the	many	differences	between	C++	and	Java.	Those	with	a	C++	background	should	pay
special	attention	to	the	following	Java	topics:

•	Using	null,	not	NULL

•	Using	true	and	false,	not	1	and	0

•	Widening	conversions

•	Conditional	and	boolean	logic	operators

•	Accessibility	rules

•	Polymorphism

Some	of	the	questions	may	require	intimate	knowledge	of	the	core	Java	API.	This	book
covers	the	most	important	classes	and	methods	of	the	Java	SE	platform	API,	but	it	does

not	go	as	far	as	listing	every	member	of	every	class.	The	Java	SE	platform	API
documentation	should	be	consulted.	It	is	essential	that	readers	familiarize	themselves	with
the	relevant	parts	of	the	API	documentation.

Appendix	B.	Exam	Topics:	Java	SE	8	Programmer	I

Please	note	that	all	information	presented	in	this	appendix	was	valid	as	of	January	2016.	It
is	imperative	to	visit	the	exam	website	mentioned	in	this	appendix	regularly	while	you	are
preparing	for	the	exam,	as	Oracle	is	known	to	change	the	exam	objectives	intermittently.

The	Java	SE	8	Programmer	I	exam	is	required	to	qualify	as	Oracle	Certified	Associate,
Java	SE	8	Programmer	(OCAJP8).	Pertinent	information	about	this	exam	can	be	found	at:

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?
page_id=5001&get_params=p_exam_id:1Z0-808

The	web	page	also	provides	links	to	the	exam	topics	defined	by	Oracle.	The	topics	are
organized	in	sections,	and	each	section	is	reproduced	verbatim	in	this	appendix.	For	each
section,	we	have	provided	references	to	where	in	the	book	the	exam	topics	in	the	section
are	covered.	In	addition,	the	extensive	index	at	the	end	of	the	book	can	be	used	to	look	up
specific	topics.

General	information	about	taking	the	exam	can	be	found	in	Appendix	A.	Oracle	has	also
specified	certain	important	assumptions	about	the	exam	questions,	which	can	found	in
Appendix	A,	p.	511.

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808

Appendix	C.	Annotated	Answers	to	Review	Questions

1	Basics	of	Java	Programming
1.1	(d)

A	method	is	an	operation	defining	the	behavior	for	a	particular	abstraction.	Java
implements	abstractions	using	classes	that	have	properties	and	behavior.	Behavior
is	defined	by	the	operations	of	the	abstraction.

1.2	(b)

An	object	is	an	instance	of	a	class.	Objects	are	created	from	classes	that	implement
abstractions.	The	objects	that	are	created	are	concrete	realizations	of	those
abstractions.	An	object	is	neither	a	reference	nor	a	variable.

1.3	(b)

(2)	is	the	first	line	of	a	constructor	declaration.	A	constructor	in	Java	is	declared
like	a	method,	but	does	not	specify	a	return	value.	(1)	is	the	header	of	a	class
declaration,	(3)	is	the	first	statement	in	the	constructor	body,	and	(4),	(5)	and	(6)	are
instance	method	declarations.

1.4	(b)	and	(f)

Two	objects	and	three	references	are	created	by	the	code.	Objects	are	normally
created	by	using	the	new	operator.	The	declaration	of	a	reference	creates	a	variable
regardless	of	whether	a	reference	value	is	assigned	to	it.

1.5	(d)

An	instance	member	is	a	field	or	an	instance	method.	These	members	belong	to	an
instance	of	the	class	rather	than	to	the	class	as	a	whole.	Members	that	are	not
explicitly	declared	as	static	in	a	class	declaration	are	instance	members.

1.6	(c)

An	object	communicates	with	another	object	by	calling	an	instance	method	of	the
other	object.

1.7	(d)	and	(f)

Given	the	declaration	class	B	extends	A	{...},	we	can	conclude	that
class	B	extends	class	A,	class	A	is	the	superclass	of	class	B,	class	B	is	a	subclass	of
class	A,	and	class	B	inherits	from	class	A,	which	means	that	objects	of	class	B	will
inherit	the	field	value1	from	class	A.

1.8	(b),	(d),	and	(g)

A	Train	object	can	share	both	the	TrainDriver	and	its	Carriage	objects
with	other	Train	objects,	when	it	is	not	using	them.	In	other	words,	they	can
outlive	the	Train	object.	This	is	an	example	of	aggregation.	However,	a	Train
object	owns	the	array	object	used	for	handling	its	carriages.	The	lifetime	of	an	array

object	is	nested	in	the	lifetime	of	its	Train	object.	This	is	an	example	of
composition.

1.9	(d)

The	compiler	supplied	with	the	JDK	is	named	javac.	The	names	of	the	source
files	to	be	compiled	are	listed	on	the	command	line	after	the	command	javac.

1.10	(a)

Java	programs	are	executed	by	the	Java	Virtual	Machine	(JVM).	In	the	JDK,	the
command	java	is	used	to	start	the	execution	by	the	JVM.	The	java	command
requires	the	name	of	a	class	that	has	a	valid	main()	method.	The	JVM	starts	the
program	execution	by	calling	the	main()	method	of	the	given	class.	The	exact
name	of	the	class	should	be	specified,	rather	than	the	name	of	the	class	file;	that	is,
the	.class	extension	in	the	class	file	name	should	not	be	specified.

1.11	(e)

(a):	The	JVM	must	be	compatible	with	the	Java	Platform	on	which	the	program
was	developed.

(b):	The	JIT	feature	of	the	JVM	translates	bytecode	to	machine	code.

(c):	Other	languages,	such	as	Scala,	also	compile	to	bytecode	and	can	be	executed
by	a	JVM.

(d):	A	Java	program	can	only	create	objects;	destroying	objects	occurs	at	the
discretion	of	the	automatic	garbage	collector.

2	Language	Fundamentals
2.1	(c)

52pickup	is	not	a	legal	identifier.	The	first	character	of	an	identifier	cannot	be	a
digit.	An	underscore	is	treated	as	a	letter	in	identifier	names.

2.2	(b),	(c),	(d),	and	(f)

In	(b),	the	underscore	is	not	between	digits.	In	(c),	digit	9	is	not	valid	in	an	octal
literal.	In	(d),	the	underscore	is	not	between	digits.	In	(f),	there	is	no	such	escape
sequence.

2.3	(e)

In	Java,	the	identifiers	delete,	thrown,	exit,	unsigned,	and	next	are	not
keywords.	Java	has	a	goto	keyword,	but	it	is	reserved	and	not	currently	used.

2.4	(e)

Everything	from	the	start	sequence	(/*)	of	a	multiple-line	comment	to	the	first
occurrence	of	the	end	sequence	(*/)	of	a	multiple-line	comment	is	ignored	by	the
compiler.	Everything	from	the	start	sequence	(//)	of	a	single-line	comment	to	the
end	of	the	line	is	ignored	by	the	compiler.	In	(e),	the	multiple-line	comment	ends

with	the	first	occurrence	of	the	end	sequence	(*/),	leaving	the	second	occurrence
of	the	end	sequence	(*/)	unmatched.

2.5	(a)	and	(d)

String	is	a	class,	and	"hello"	and	"t"	denote	String	objects.	Java	has	the
following	primitive	data	types:	boolean,	byte,	short,	char,	int,	long,
float,	and	double.

2.6	(a),	(c),	and	(e)

(a)	is	a	boolean	data	type,	while	(c)	and	(e)	are	floating-point	data	types.

2.7	(c)

The	bit	representation	of	int	is	32	bits	wide	and	can	hold	values	in	the	range	–231

through	231	–	1.

2.8	(a),	(c),	and	(d)

The	\uxxxx	notation	can	be	used	anywhere	in	the	source	to	represent	Unicode
characters.

2.9	(c)

Local	variable	i	is	declared	but	not	initialized.	The	first	line	of	code	declares	the
local	variables	i	and	j.	The	second	line	of	code	initializes	the	local	variable	j.
Local	variable	i	remains	uninitialized.

2.10	(c)

The	local	variable	of	type	float	will	remain	uninitialized.	Fields	and	static
variables	are	initialized	with	a	default	value.	An	instance	variable	of	type	int[]	is
a	reference	variable	that	will	be	initialized	with	the	null	value.	Local	variables
remain	uninitialized	unless	explicitly	initialized.	The	type	of	the	variable	does	not
affect	whether	a	variable	is	initialized.

2.11	(e)

The	program	will	compile.	The	compiler	can	figure	out	that	the	local	variable
price	will	always	be	initialized,	since	the	value	of	the	condition	in	the	if
statement	is	true.	The	two	instance	variables	and	the	two	static	variables	are	all
initialized	to	the	respective	default	value	of	their	type.

3	Declarations
3.1	(b)

Only	(b)	is	a	valid	method	declaration.	Methods	must	specify	a	return	type	or	must
be	declared	as	void.	This	makes	(d)	and	(e)	invalid.	Methods	must	specify	a	list	of
zero	or	more	comma-separated	parameters	enclosed	by	parentheses,	().	The
keyword	void	cannot	be	used	to	specify	an	empty	parameter	list.	This	makes	(a)
and	(c)	invalid.

3.2	(a),	(b),	and	(e)

Non-static	methods	have	an	implicit	this	object	reference.	The	this	reference
cannot	be	changed,	as	in	(c).	The	this	reference	can	be	used	in	a	non-static
context	to	refer	to	both	instance	and	static	members.	However,	it	cannot	be	used	to
refer	to	local	variables,	as	in	(d).

3.3	(a)	and	(e)

The	first	and	third	pairs	of	methods	will	compile.	The	second	pair	of	methods	will
not	compile,	since	their	method	signatures	do	not	differ.	The	compiler	has	no	way
of	differentiating	between	the	two	methods.	Note	that	the	return	type	and	the	names
of	the	parameters	are	not	a	part	of	the	method	signature.	Both	methods	in	the	first
pair	are	named	fly	and	have	different	numbers	of	parameters,	thus	overloading
this	method	name.	The	methods	in	the	last	pair	do	not	overload	the	method	name
glide,	since	only	one	method	has	that	name.	The	method	named	Glide	is
distinct	from	the	method	named	glide,	as	identifiers	are	case	sensitive	in	Java.

3.4	(a)

A	constructor	cannot	specify	any	return	type,	not	even	void.	A	constructor	cannot
be	final,	static,	or	abstract.

3.5	(b)	and	(e)

A	constructor	can	be	declared	as	private,	but	this	means	that	this	constructor	can
be	used	only	within	the	class.	Constructors	need	not	initialize	all	the	fields	when	a
class	is	instantiated.	A	field	will	be	assigned	a	default	value	if	not	explicitly
initialized.	A	constructor	is	non-static	and,	as	such,	it	can	directly	access	both	the
static	and	non-static	members	of	the	class.

3.6	(c)

A	compile-time	error	will	occur	at	(3),	since	the	class	does	not	have	a	constructor
accepting	a	single	argument	of	type	int.	The	declaration	at	(1)	declares	a	method,
not	a	constructor,	since	it	is	declared	as	void.	The	method	happens	to	have	the
same	name	as	the	class,	but	that	is	irrelevant.	The	class	has	a	default	constructor,
since	the	class	contains	no	constructor	declarations.	This	constructor	will	be
invoked	to	create	a	MyClass	object	at	(2).

3.7	(d)

In	Java,	arrays	are	objects.	Each	array	object	has	a	public	final	field	named
length	that	stores	the	size	of	the	array.

3.8	(a)

Java	allows	arrays	of	length	zero.	Such	an	array	is	passed	as	an	argument	to	the
main()	method	when	a	Java	program	is	run	without	any	program	arguments.

3.9	(c)

The	[]	notation	can	be	placed	both	after	the	type	name	and	after	the	variable	name

in	an	array	declaration.	Multidimensional	arrays	are	created	by	constructing	arrays
that	can	contain	references	to	other	arrays.	The	expression	new	int[4][]	will
create	an	array	of	length	4,	which	can	contain	references	to	arrays	of	int	values.
The	expression	new	int[4][4]	will	also	create	a	two-dimensional	array,	but
will	in	addition	create	four	more	one-dimensional	arrays,	each	of	length	4	and	of
the	type	int[].	References	to	each	of	these	arrays	are	stored	in	the	two-
dimensional	array.	The	expression	int[][4]	will	not	work,	because	the	arrays
for	the	dimensions	must	be	created	from	left	to	right.

3.10	(b)	and	(e)

The	size	of	the	array	cannot	be	specified,	as	in	(b)	and	(e).	The	size	of	the	array	is
given	implicitly	by	the	initialization	code.	The	size	of	the	array	is	never	specified	in
the	declaration	of	an	array	reference.	The	size	of	an	array	is	always	associated	with
the	array	instance	(on	the	right-hand	side),	not	the	array	reference	(on	the	left-hand
side).

3.11	(e)

The	array	declaration	is	valid,	and	will	declare	and	initialize	an	array	of	length	20
containing	int	values.	All	the	values	of	the	array	are	initialized	to	their	default
value	of	0.	The	for(;;)	loop	will	print	all	the	values	in	the	array;	that	is,	it	will
print	0	twenty	times.

3.12	(d)

The	program	will	print	0	false	0	null	at	runtime.	All	the	instance	variables,
and	the	array	element,	will	be	initialized	to	their	default	values.	When	concatenated
with	a	string,	the	values	are	converted	to	their	string	representation.	Notice	that	the
null	pointer	is	converted	to	the	string	“null",	rather	than	throwing	a
NullPointerException.

3.13	(b)

Evaluation	of	the	actual	parameter	i++	yields	0,	and	increments	i	to	1	in	the
process.	The	value	0	is	copied	into	the	formal	parameter	i	of	the	method
addTwo()	during	method	invocation.	However,	the	formal	parameter	is	local	to
the	method,	and	changing	its	value	does	not	affect	the	value	in	the	actual	parameter.
The	value	of	the	variable	i	in	the	main()	method	remains	1.

3.14	(d)

The	variables	a	and	b	are	local	variables	that	contain	primitive	values.	When	these
variables	are	passed	as	arguments	to	another	method,	the	method	receives	copies	of
the	primitive	values	in	the	variables.	The	actual	variables	are	unaffected	by
operations	performed	on	the	copies	of	the	primitive	values	within	the	called
method.	The	variable	bArr	contains	a	reference	value	that	denotes	an	array	object
containing	primitive	values.	When	the	variable	is	passed	as	a	parameter	to	another
method,	the	method	receives	a	copy	of	the	reference	value.	Using	this	reference
value,	the	method	can	manipulate	the	object	that	the	reference	value	denotes.	This

allows	the	elements	in	the	array	object	referenced	by	bArr	to	be	accessed	and
modified	in	the	method	inc2().

3.15	(a)	and	(f)

A	value	can	be	assigned	to	a	final	variable	only	once.	A	final	formal
parameter	is	assigned	the	value	of	the	actual	parameter	at	method	invocation.
Within	the	method	body,	it	is	illegal	to	reassign	or	modify	the	value	stored	in	a
final	parameter.	This	causes	a++	and	c	=	d	to	fail.	Whether	the	actual
parameter	is	final	does	not	constrain	the	client	that	invoked	the	method,	since	the
actual	parameter	values	are	assigned	to	the	formal	parameters.

3.16	(a),	(d),	and	(f)

The	ellipses	(...)	must	be	specified	before	the	parameter	name.	Only	one	variable
arity	parameter	is	permitted,	and	it	must	be	the	last	parameter	in	the	formal
parameter	list.

3.17	(c)

In	(a)	and	(b),	the	arguments	are	encapsulated	as	elements	in	the	implicitly	created
array	that	is	passed	to	the	method.	In	(c),	the	int	array	object	itself	is	encapsulated
as	an	element	in	the	implicitly	created	array	that	is	passed	to	the	method.	(a),	(b)
and	(c)	are	fixed	arity	calls.	Note	that	int[]	is	not	a	subtype	of	Object[].	In
(d),	(e),	and	(f),	the	argument	is	a	subtype	of	Object[],	and	the	argument	itself	is
passed	without	the	need	of	an	implicitly	created	array;	that	is,	these	are	fixed	arity
method	calls.	However,	in	(d)	and	(e),	the	compiler	issues	a	warning	that	both	fixed
arity	and	variable	arity	method	calls	are	feasible,	but	chooses	fixed	arity	method
calls.

4	Access	Control
4.1	(a)	and	(c)

Bytecode	of	all	reference	type	declarations	in	the	file	is	placed	in	the	designated
package,	and	all	reference	type	declarations	in	the	file	can	access	the	imported
types.

4.2	(e)

Both	classes	are	in	the	same	package	app,	so	the	first	two	import	statements	are
unnecessary.	The	package	java.lang	is	always	imported	in	all	compilation	units,
so	the	next	two	import	statements	are	unnecessary.	The	last	static	import	statement
is	necessary	to	access	the	static	variable	frame	in	the	Window	class	by	its	simple
name.

4.3	(b),	(c),	(d),	and	(e)

(a):	The	import	statement	imports	types	from	the	mainpkg	package,	but	Window
is	not	one	of	them.

(b):	The	import	statement	imports	types	from	the	mainpkg.subpkg1	package,

and	Window	is	one	of	them.

(c):	The	import	statement	imports	types	from	the	mainpkg.subpkg2	package,
and	Window	is	one	of	them.

(d):	The	first	import	statement	is	type-import-on-demand	and	the	second	import
statement	is	single-type-import.	Both	import	the	type	Window.	The	second
overrides	the	first	one.

(e):	The	first	import	statement	is	single-type-import	and	the	second	import
statement	is	type-import-on-demand.	Both	import	the	type	Window.	The	first
overrides	the	second	one.

(f):	Both	import	statements	import	the	type	Window,	making	the	import
ambiguous.

(g):	Both	single-type-import	statements	import	the	type	Window.	The	second
import	statement	causes	a	conflict	with	the	first.

4.4	(c)	and	(e)

The	name	of	the	class	must	be	fully	qualified.	A	parameter	list	after	the	method
name	is	not	permitted.	(c)	illustrates	single	static	import	and	(e)	illustrates	static
import	on	demand.

4.5	(b),	(d),	and	(f)

In	(a),	the	file	A.class	will	be	placed	in	the	same	directory	as	the	file	A.java.
There	is	no	-D	option	for	the	javac	command,	as	in	(c).	The	compiler	maps	the
package	structure	to	the	file	system,	creating	the	necessary	(sub)directories.

4.6	(b)	and	(d)

In	(a)	and	(c),	class	A	cannot	be	found.	In	(e)	and	(f),	class	B	cannot	be	found—
there	is	no	package	under	the	current	directory	/top/wrk/pkg	to	search	for	class
B.	Note	that	specifying	pkg	in	the	classpath	in	(d)	is	superfluous.	The	parent
directory	of	the	package	must	be	specified,	meaning	the	location	of	the	package.

4.7	(d)	and	(f)

The	parent	directory	(or	location)	of	the	package	must	be	specified.	Only	(d)	and
(f)	do	that.	(d)	specifies	the	current	directory	first,	but	there	is	no	file
top/sub/A.class	under	the	current	directory.	Searching	under	../bin	(i.e.,
/proj/bin)	finds	the	file	top/sub/A.class.

4.8	(c)	and	(d)

A	class	or	interface	name	can	be	referred	to	by	using	either	its	fully	qualified	name
or	its	simple	name.	Using	the	fully	qualified	name	will	always	work,	but	to	use	the
simple	name	it	has	to	be	imported.	When	net.basemaster.*	is	imported,	all
the	type	names	from	the	package	net.basemaster	will	be	imported	and	can
now	be	referred	to	using	simple	names.	Importing	net.*	will	not	import	the
subpackage	basemaster.

4.9	(c)

Any	non-final	class	can	be	declared	as	abstract.	A	class	cannot	be	instantiated	if
the	class	is	declared	as	abstract.	The	declaration	of	an	abstract	method
cannot	provide	an	implementation.	The	declaration	of	a	non	abstract	method
must	provide	an	implementation.	If	any	method	in	a	class	is	declared	as
abstract,	then	the	class	must	be	declared	as	abstract,	so	(a)	is	invalid.	The
declaration	in	(b)	is	not	valid,	since	it	omits	the	keyword	abstract	in	the	method
declaration.	The	declaration	in	(d)	is	not	valid,	since	it	omits	the	keyword	class.
In	(e),	the	return	type	of	the	method	is	missing.

4.10	(e)

Only	a	final	class	cannot	be	extended,	as	in	(d).	(c)	and	(e)	will	also	not	compile.
The	keyword	native	can	be	used	only	for	methods,	not	for	classes	and	fields.	A
class	cannot	be	declared	as	both	final	and	abstract.

4.11	(b)

Outside	the	package,	the	member	j	is	accessible	to	any	class,	whereas	the	member
k	is	accessible	only	to	subclasses	of	MyClass.

The	field	i	has	package	accessibility,	and	is	accessible	to	only	classes	inside	the
package.	The	field	j	has	public	accessibility,	and	is	accessible	from	anywhere.	The
field	k	has	protected	accessibility,	and	is	accessible	from	any	class	inside	the
package	and	from	subclasses	anywhere.	The	field	l	has	private	accessibility,	and	is
accessible	only	within	its	own	class.

4.12	(c)

The	default	accessibility	for	members	is	more	restrictive	than	protected
accessibility,	but	less	restrictive	than	private	accessibility.	Members	with	default
accessibility	are	accessible	only	within	the	class	itself	and	from	classes	in	the	same
package.	Protected	members	are,	in	addition,	accessible	from	subclasses	anywhere.
Members	with	private	accessibility	are	accessible	only	within	the	class	itself.

4.13	(b)

A	private	member	is	accessible	only	within	the	class	of	the	member.	If	no
accessibility	modifier	has	been	specified	for	a	member,	the	member	has	default
accessibility,	also	known	as	package	accessibility.	The	keyword	default	is	not	an
accessibility	modifier.	A	member	with	package	accessibility	is	accessible	only	from
classes	in	the	same	package.	Subclasses	in	other	packages	cannot	access	a	member
with	default	accessibility.

4.14	(a),	(c),	(d),	(e),	and	(h)

The	lines	(1),	(3),	(4),	(5),	and	(8)	will	compile.	A	protected	member	of	a
superclass	is	always	inherited	by	a	subclass.	Direct	access	to	the	protected	field
pf	is	permitted	in	subclasses	B	and	C	at	(1)	and	(5),	respectively.

A	subclass	in	another	package	can	access	protected	members	in	the	superclass	only

via	references	of	its	own	type	or	its	subtypes.	In	packageB,	the	subclass	B	can
access	the	protected	field	pf	in	the	superclass	packageA.A	via	references	of	type
B	(i.e.,	parameter	obj2)	and	references	of	its	subclass	C	(i.e.,	parameter	obj3).
However,	the	subclass	C	can	access	the	protected	field	pf	in	the	superclass
packageA.A	only	via	references	of	type	C	(i.e.,	parameter	obj3).	This	is	the
case	at	(3),	(4),	and	(8).

The	class	D	does	not	have	any	inheritance	relationship	with	any	of	the	other	classes,
and	therefore	the	protected	field	pf	is	not	accessible	in	the	class	D.	This	rules
out	the	lines	from	(9)	to	(12).

4.15	(b)	and	(e)

If	no	accessibility	modifier	(public,	protected,	or	private)	is	given	in	the
member	declaration	of	a	class,	the	member	is	accessible	only	to	classes	in	the	same
package.

A	subclass	does	not	have	access	to	members	with	default	accessibility	declared	in	a
superclass,	unless	they	are	in	the	same	package.

Local	variables	cannot	be	declared	as	static	or	have	an	accessibility	modifier.

4.16	(c)

Line	(3)	void	k()	{	i++;	}	can	be	reinserted	without	introducing	errors.
Reinserting	line	(1)	will	cause	the	compilation	to	fail,	since	MyOtherClass	will
try	to	override	a	final	method.	Reinserting	line	(2)	will	fail,	since
MyOtherClass	will	no	longer	have	the	(no-argument)	default	constructor.	The
main()	method	needs	to	call	the	no-argument	constructor.	Reinserting	line	(3)
will	work	without	any	problems,	but	reinserting	line	(4)	will	fail,	since	the	method
will	try	to	access	a	private	member	of	the	superclass.

4.17	(b)

The	keyword	this	can	be	used	only	in	non-static	code,	as	in	non-static	methods,
constructors,	and	instance	initializer	blocks.	Only	one	occurrence	of	each	static
variable	of	a	class	is	created,	when	the	class	is	loaded	by	the	JVM.	This	occurrence
is	shared	among	all	the	objects	of	the	class	(and	for	that	matter,	by	other	clients).
Local	variables	are	accessible	only	within	the	block	scope,	regardless	of	whether
the	block	scope	is	defined	within	a	static	context.

4.18	(c)

The	declaration	in	(c)	is	not	legal,	as	variables	cannot	be	declared	as	abstract.
The	keywords	static	and	final	are	valid	modifiers	for	both	field	and	method
declarations.	The	modifiers	abstract	and	native	are	valid	for	methods,	but
not	together.	They	cannot	be	specified	for	fields.

4.19	(a)	and	(c)

Abstract	classes	can	declare	both	final	methods	and	non-abstract	methods.
Non-abstract	classes	cannot,	however,	contain	abstract	methods.	Nor	can

abstract	classes	be	final.	Only	methods	can	be	declared	native.

4.20	(a)

The	keyword	transient	signifies	that	the	fields	should	not	be	stored	when
objects	are	serialized.	Constructors	cannot	be	declared	as	abstract.	When	an
array	object	is	created,	as	in	(c),	the	elements	in	the	array	object	are	assigned	the
default	value	corresponding	to	the	type	of	the	elements.	Whether	the	reference
variable	denoting	the	array	object	is	a	local	variable	or	a	member	variable	is
irrelevant.	Abstract	methods	from	a	superclass	need	not	be	implemented	by	a
subclass,	but	the	subclass	must	then	be	declared	as	abstract.	Static	methods	can
also	be	accessed	in	a	non-static	context—for	example,	in	instance	methods,
constructors,	and	instance	initializer	blocks.

5	Operators	and	Expressions
5.1	(a)

A	value	of	type	char	can	be	assigned	to	a	variable	of	type	int.	A	widening
conversion	will	convert	the	value	to	an	int.

5.2	(d)

An	assignment	statement	is	an	expression	statement.	The	value	of	the	expression
statement	is	the	value	of	the	expression	on	the	right-hand	side.	Since	the
assignment	operator	is	right	associative,	the	statement	a	=	b	=	c	=	20	is
evaluated	as	follows:	(a	=	(b	=	(c	=	20))).	This	results	in	the	value	20
being	assigned	to	c,	then	the	same	value	being	assigned	to	b	and	finally	to	a.	The
program	will	compile,	and	print	20	at	runtime.

5.3	(c)

Strings	are	objects.	The	variables	a,	b,	and	c	are	references	that	can	denote	such
objects.	Assigning	to	a	reference	only	changes	the	reference	value;	it	does	not
create	a	copy	of	the	source	object	or	change	the	object	denoted	by	the	old	reference
value	in	the	target	reference.	In	other	words,	assignment	to	references	affects	only
which	object	the	target	reference	denotes.	The	reference	value	of	the	"cat"	object
is	first	assigned	to	a,	then	to	b,	and	later	to	c.	The	program	prints	the	string
denoted	by	c,	"cat".	The	local	final	String	variable	b	is	initialized	only
once	in	the	code.

5.4	(a),	(d),	and	(e)

A	binary	expression	with	any	floating-point	operand	will	be	evaluated	using
floating-point	arithmetic.	Expressions	such	as	2/3,	where	both	operands	are
integers,	will	use	integer	arithmetic	and	evaluate	to	an	integer	value.	In	(e),	the
result	of	(0x10	*	1L)	is	promoted	to	a	floating-point	value.

5.5	(b)

The	/	operator	has	higher	precedence	than	the	+	operator.	This	means	that	the

expression	is	evaluated	as	((1/2)	+	(3/2)	+	0.1).	The	associativity	of	the
binary	operators	is	from	left	to	right,	giving	(((1/2)	+	(3/2))	+	0.1).
Integer	division	results	in	((0	+	1)	+	0.1),	which	evaluates	to	1.1.

5.6	(e)

0x10	is	a	hexadecimal	literal	equivalent	to	the	decimal	value	16.	10	is	a	decimal
literal.	010	is	an	octal	literal	equivalent	to	the	decimal	value	8.	0b10	is	a	binary
literal	equivalent	to	the	decimal	value	2.	The	println()	method	will	print	the
sum	of	these	values,	which	is	36,	in	decimal	form.

5.7	(b),	(c),	and	(f)

The	unary	+	and	-	operators	with	right	associativity	are	used	in	the	valid
expressions	(b),	(c),	and	(f).	Expression	(a)	tries	to	use	a	nonexistent	unary	-
operator	with	left	associativity,	expression	(d)	tries	to	use	a	decrement	operator	(--
)	on	an	expression	that	does	not	resolve	to	a	variable,	and	expression	(e)	tries	to	use
a	nonexistent	unary	*	operator.	(c)	compiles	because	the	unary	operators	cannot	be
interpreted	as	increment	(++)	or	decrement	(--)	operators:	(+(-(+(-(+
(-1)))))).

5.8	(b)

The	expression	evaluates	to	–6.	The	whole	expression	is	evaluated	as	(((-(-1))
-	((3	*	10)	/	5))	-	1)	according	to	the	precedence	and	associativity
rules.

5.9	(a),	(b),	(d),	and	(e)

In	(a),	the	conditions	for	implicit	narrowing	conversion	are	fulfilled:	The	source	is	a
constant	expression	of	type	int,	the	destination	type	is	of	type	short,	and	the
value	of	the	source	(12)	is	in	the	range	of	the	destination	type.	The	assignments	in
(b),	(d),	and	(e)	are	valid,	since	the	source	type	is	narrower	than	the	target	type	and
an	implicit	widening	conversion	will	be	applied.	The	expression	(c)	is	not	valid.
Values	of	type	boolean	cannot	be	converted	to	other	types.

5.10	(a),	(c),	and	(d)

The	left	associativity	of	the	+	operator	makes	the	evaluation	of	(1	+	2	+	"3")
proceed	as	follows:	(1	+	2)	+	"3"	→	3	+	"3"	→	"33".	Evaluation	of	the
expression	("1"	+	2	+	3),	however,	will	proceed	as	follows:	("1"	+	2)	+
3	→	"12"	+	3	→	"123".	(4	+	1.0f)	evaluates	as	4.0f	+	1.0f	→
5.0f	and	(10/9)	performs	integer	division,	resulting	in	the	value	1.	The	operand
'a'	in	the	expression	('a'	+	1)	will	be	promoted	to	int,	and	the	resulting
value	will	be	of	type	int.

5.11	(d)

The	expression	++k	+	k++	+	+	k	is	evaluated	as	((++k)	+	(k++))	+
(+k)	→	((2)	+	(2)	+	(3)),	resulting	in	the	value	7.

5.12	(d)

The	types	char	and	int	are	both	integral.	A	char	value	can	be	assigned	to	an
int	variable	since	the	int	type	is	wider	than	the	char	type	and	an	implicit
widening	conversion	will	be	done.	An	int	type	cannot	be	assigned	to	a	char
variable	because	the	char	type	is	narrower	than	the	int	type.	The	compiler	will
report	an	error	about	a	possible	loss	of	precision	in	(4).

5.13	(c)

Variables	of	the	type	byte	can	store	values	in	the	range	–128	to	127.	The
expression	on	the	right-hand	side	of	the	first	assignment	is	the	int	literal	128.	Had
this	literal	been	in	the	range	of	the	byte	type,	an	implicit	narrowing	conversion
would	have	been	applied	to	convert	it	to	a	byte	value	during	assignment.	Since
128	is	outside	the	range	of	the	type	byte,	the	program	will	not	compile.

5.14	(a)

First,	the	expression	++i	is	evaluated,	resulting	in	the	value	2.	Now	the	variable	i
also	has	the	value	2.	The	target	of	the	assignment	is	now	determined	to	be	the
element	array[2].	Evaluation	of	the	right-hand	expression,	--i,	results	in	the
value	1.	The	variable	i	now	has	the	value	1.	The	value	of	the	right-hand
expression,	1,	is	then	assigned	to	the	array	element	array[2],	causing	the	array
contents	to	become	{4,	8,	1}.	The	program	computes	and	prints	the	sum	of
these	values,	13.

5.15	(a)	and	(c)

In	(a)	and	(e),	both	operands	are	evaluated,	with	(a)	yielding	true,	but	(e)	yielding
false.	The	null	literal	can	be	compared,	so	(null	!=	null)	yields	false.
The	expression	(4	<=	4)	is	true.	(!true)	is	false.

5.16	(c)	and	(e)

The	remainder	operator	%	is	not	limited	to	integral	values,	but	can	also	be	applied
to	floating-point	operands.	Short-circuit	evaluation	occurs	only	with	the	conditional
operators	(&&,	||).	The	operators	*,	/,	and	%	have	the	same	level	of	precedence.
The	data	type	short	is	a	16-bit	signed	two’s	complement	integer,	so	the	range	of
values	is	from	-32768	to	+32767,	inclusive.	(+15)	is	a	legal	expression	using
the	unary	+	operator.

5.17	(a),	(c),	and	(e)

The	!=	and	^	operators,	when	used	on	boolean	operands,	will	return	true	if	and
only	if	one	operand	is	true,	and	false	otherwise.	This	means	that	d	and	e	in	the
program	will	always	be	assigned	the	same	value,	given	any	combination	of	truth
values	in	a	and	b.	The	program	will,	therefore,	print	true	four	times.

5.18	(b)

The	element	referenced	by	a[i]	is	determined	based	on	the	current	value	of	i,

which	is	0—that	is,	the	element	a[0].	The	expression	i	=	9	will	evaluate	to	the
value	9,	which	will	be	assigned	to	the	variable	i.	The	value	9	is	also	assigned	to	the
array	element	a[0].	After	the	execution	of	the	statement,	the	variable	i	will
contain	the	value	9,	and	the	array	a	will	contain	the	values	9	and	6.	The	program
will	print	9	9	6	at	runtime.

5.19	(c)	and	(d)

Note	that	the	logical	and	conditional	operators	have	lower	precedence	than	the
relational	operators.	Unlike	the	&	and	|	operators,	the	&&	and	||	operators	short-
circuit	the	evaluation	of	their	operands	if	the	result	of	the	operation	can	be
determined	from	the	value	of	the	first	operand.	The	second	operand	of	the	||
operator	in	the	program	is	never	evaluated	because	of	short-circuiting.	All	the
operands	of	the	other	operators	are	evaluated.	Variable	i	ends	up	with	the	value	3,
which	is	the	first	digit	printed,	and	j	ends	up	with	the	value	1,	which	is	the	second
digit	printed.

5.20	(d)	and	(f)

&&=	and	%%	are	not	operators	in	Java.	The	operators	%,	&&,	%=,	<=,	and	->	are
called	remainder,	conditional	AND,	remainder	compound	assignment,	relational
less	than	or	equal,	and	arrow	operator,	respectively.

5.21	(c),	(e),	and	(f)

In	(a),	the	third	operand	has	the	type	double,	which	is	not	assignment	compatible
with	the	type	int	of	the	variable	result1.	Blocks	are	not	legal	operands	in	the
conditional	operator,	as	in	(b).	In	(c),	the	last	two	operands	result	in	wrapper	objects
with	type	Integer	and	Double,	respectively,	which	are	assignment	compatible
with	the	type	Number	of	the	variable	number.	The	evaluation	of	the	conditional
expression	results	in	the	reference	value	of	an	Integer	object,	with	value	20
being	assigned	to	the	number	variable.	All	three	operands	of	the	operator	are
mandatory,	which	is	not	the	case	in	(d).	In	(e),	the	last	two	operands	are	of	type
int,	and	the	evaluation	of	the	conditional	expression	results	in	an	int	value	(21),
whose	string	representation	is	printed.	In	(f),	the	value	of	the	second	operand	is
boxed	into	a	Boolean.	The	evaluation	of	the	conditional	expression	results	in	a
string	literal	("i	not	equal	to	j"),	which	is	printed.	The	println()
method	creates	and	prints	a	string	representation	of	any	object	whose	reference
value	is	passed	as	parameter.

5.22	(d)

The	condition	in	the	outer	conditional	expression	is	false.	The	condition	in	the
nested	conditional	expression	is	true,	resulting	in	the	value	of	m1	(i.e.,	20)	being
printed.

6	Control	Flow
6.1	(d)

The	program	will	display	the	letter	b	when	run.	The	second	if	statement	is
evaluated	since	the	boolean	expression	of	the	first	if	statement	is	true.	The
else	clause	belongs	to	the	second	if	statement.	Since	the	boolean	expression	of
the	second	if	statement	is	false,	the	if	block	is	skipped	and	the	else	clause	is
executed.

6.2	(a),	(b),	and	(e)

The	condition	of	an	if	statement	can	be	any	expression,	including	method	calls,	as
long	as	it	evaluates	or	can	be	unboxed	to	a	value	of	type	boolean.	The	expression
(a	=	b)	does	not	compare	the	variables	a	and	b,	but	assigns	the	value	of	b	to	the
variable	a.	The	result	of	the	expression	is	the	value	being	assigned.	Since	a	and	b
are	either	boolean	or	Boolean	variables,	the	value	returned	by	the	expression	is
also	either	boolean	or	Boolean.	This	allows	the	expression	to	be	used	as	the
condition	for	an	if	statement.	An	if	statement	must	always	have	an	if	block,	but
the	else	clause	is	optional.	The	expression	if	(false)	;	else	;	is	legal.
In	this	case,	both	the	if	block	and	the	else	block	are	simply	the	empty	statement.

6.3	(f)

There	is	nothing	wrong	with	the	code.	The	case	and	default	labels	do	not	have
to	be	specified	in	any	specific	order.	The	use	of	the	break	statement	is	not
mandatory,	and	without	it	the	control	flow	will	simply	fall	through	the	labels	of	the
switch	statement.

6.4	(c)

The	case	label	value	2	*	iLoc	is	a	constant	expression	whose	value	is	6,	the
same	as	the	switch	expression.	Fall-through	results	in	the	program	output	shown
in	(c).

6.5	(b)

The	switch	expression,	when	unboxed,	has	the	value	5.	The	statement	associated
with	the	default	label	is	executed,	and	the	fall-through	continues	until	the
break	statement.

6.6	(a),	(b),	(f),	and	(j)

In	(a),	(b),	(f),	and	(j),	the	string	expression	involves	constant	values	and	evaluates
to	"TomTom".	Program	output	is	"Hi,	TomTom!"	In	(i),	the	constant	string
expression	evaluates	to	"304Tom"	(84+111+109+"Tom").	The	first	three
literals	are	of	type	char,	and	their	int	values	are	added	before	being
concatenated	with	last	String	operand.	Program	output	is	"Whatever!"	In	(c),
(d),	(e),	(g),	and	(h),	the	case	label	is	not	a	constant	string	expression,	and	the
program	will	not	compile.

6.7	(e)

The	loop	body	is	executed	twice	and	the	program	will	print	3.	The	first	time	the

loop	is	executed,	the	variable	i	changes	from	1	to	2	and	the	variable	b	changes
from	false	to	true.	Then	the	loop	condition	is	evaluated.	Since	b	is	true,	the
loop	body	is	executed	again.	This	time	the	variable	i	changes	from	2	to	3	and	the
variable	b	changes	from	true	to	false.	The	loop	condition	is	then	evaluated
again.	Since	b	is	now	false,	the	loop	terminates	and	the	current	value	of	i	is
printed.

6.8	(b)	and	(e)

Both	the	first	and	second	numbers	printed	will	be	10.	Both	the	loop	body	and	the
update	expression	will	be	executed	exactly	10	times.	Each	execution	of	the	loop
body	will	be	directly	followed	by	an	execution	of	the	update	expression.	Afterward,
the	condition	j	<	10	is	evaluated	to	see	whether	the	loop	body	should	be
executed	again.

6.9	(c)

Only	(c)	contains	a	valid	for	loop.	The	initialization	in	a	for(;;)	statement	can
contain	either	declarations	or	a	list	of	expression	statements,	but	not	both	as
attempted	in	(a).	The	loop	condition	must	be	of	type	boolean.	(b)	tries	to	use	an
assignment	of	an	int	value	(notice	the	use	of	=	rather	than	==)	as	a	loop	condition
and,	therefore,	is	not	valid.	The	loop	condition	in	the	for	loop	(d)	tries	to	use	the
uninitialized	variable	i,	and	the	for(;;)	loop	in	(e)	is	syntactically	invalid,	as
there	is	only	one	semicolon.

6.10	(f)

The	code	will	compile	without	error,	but	will	never	terminate	when	run.	All	the
sections	in	the	for	header	are	optional	and	can	be	omitted	(but	not	the
semicolons).	An	omitted	loop	condition	is	interpreted	as	being	true.	Thus,	a
for(;;)	loop	with	an	omitted	loop	condition	will	never	terminate,	unless	an
appropriate	control	transfer	statement	is	encountered	in	the	loop	body.	The	program
will	enter	an	infinite	loop	at	(4).

6.11	(b),	(d),	and	(e)

The	loop	condition	in	a	while	statement	is	not	optional.	It	is	missing	in	(a).	It	is
not	possible	to	break	out	of	the	if	statement	in	(c).	Notice	that	if	this	if	statement
had	been	placed	within	a	switch	statement	or	a	loop,	the	usage	of	break	would
be	valid.	Inside	a	labeled	block,	a	labeled	break	statement	would	be	required.

6.12	(a)	and	(d)

“i=1,	j=0”	and	“i=2,	j=1”	are	part	of	the	output.	The	variable	i	iterates
through	the	values	0,	1,	and	2	in	the	outer	loop,	while	j	toggles	between	the	values
0	and	1	in	the	inner	loop.	If	the	values	of	i	and	j	are	equal,	the	printing	of	the
values	is	skipped	and	the	execution	continues	with	the	next	iteration	of	the	outer
loop.	The	following	can	be	deduced	when	the	program	is	run:	Variables	i	and	j	are
both	0	and	the	execution	continues	with	the	update	expression	of	the	outer	loop.
“i=1,	j=0”	is	printed	and	the	next	iteration	of	the	inner	loop	starts.	Variables	i

and	j	are	both	1	and	the	execution	continues	with	the	update	expression	of	the
outer	loop.	“i=2,	j=0”	is	printed	and	the	next	iteration	of	the	inner	loop	starts.
“i=2,	j=1”	is	printed,	j	is	incremented,	j	<	2	is	false,	and	the	inner	loop
ends.	Variable	i	is	incremented,	i	<	3	is	false,	and	the	outer	loop	ends.

6.13	(b)

The	code	will	fail	to	compile,	since	the	condition	of	the	if	statement	is	not	of	type
boolean.	The	variable	i	is	of	type	int.	There	is	no	conversion	between
boolean	and	other	primitive	types.

6.14	(c)	and	(d)

The	element	type	of	the	array	nums	must	be	assignment	compatible	with	the	type
of	the	loop	variable,	int.	Only	the	element	type	in	(c),	Integer,	can	be
automatically	unboxed	to	an	int.	The	element	type	in	(d)	is	int.

6.15	(d)	and	(e)

In	the	header	of	a	for(:)	loop,	we	can	declare	only	one	local	variable.	This	rules
out	(a)	and	(b),	as	they	specify	two	local	variables.	Also	the	array	expression	in	(a),
(b),	and	(c)	is	not	valid.	Only	(d)	and	(e)	specify	a	legal	for(:)	header.

6.16	(d)

The	program	will	print	1,	4,	and	5,	in	that	order.	The	expression	5/k	will	throw	an
ArithmeticException,	since	k	equals	0.	Control	is	transferred	to	the	first
catch	clause,	since	it	is	the	first	clause	that	can	handle	the	arithmetic	exceptions.
This	exception	handler	simply	prints	1.	The	exception	has	now	been	caught	and
normal	execution	can	resume.	Before	leaving	the	try	statement,	the	finally
clause	is	executed.	This	clause	prints	4.	The	last	statement	of	the	main()	method
prints	5.

6.17	(b)	and	(e)

If	run	with	no	arguments,	the	program	will	print	The	end.	If	run	with	one
argument,	the	program	will	print	the	given	argument	followed	by	"The	end".
The	finally	clause	will	always	be	executed,	no	matter	how	control	leaves	the
try	block.

6.18	(c)	and	(d)

Normal	execution	will	resume	only	if	the	exception	is	caught	by	the	method.	The
uncaught	exception	will	propagate	up	the	JVM	stack	until	some	method	handles	it.
An	overriding	method	need	simply	declare	that	it	can	throw	a	subset	of	the	checked
exceptions	that	the	overridden	method	can	throw.	The	main()	method	can	declare
that	it	throws	checked	exceptions	just	like	any	other	method.	The	finally	clause
will	always	be	executed,	no	matter	how	control	leaves	the	try	block.

6.19	(a)

The	program	will	print	2	and	throw	an	InterruptedException.	An

InterruptedException	is	thrown	in	the	try	block.	There	is	no	catch
clause	to	handle	the	exception,	so	it	will	be	sent	to	the	caller	of	the	main()
method—that	is,	to	the	default	exception	handler.	Before	this	happens,	the
finally	clause	is	executed.	The	code	to	print	3	is	never	reached.

6.20	(b)

The	only	thing	that	is	wrong	with	the	code	is	the	ordering	of	the	catch	and
finally	clauses.	If	present,	the	finally	clause	must	always	appear	last	in	a
try-catch-finally	construct.

6.21	(a)

Overriding	methods	can	specify	all,	none,	or	a	subset	of	the	checked	exceptions
that	the	overridden	method	declares	in	its	throws	clause.	The
InterruptedException	is	the	only	checked	exception	specified	in	the
throws	clause	of	the	overridden	method.	The	overriding	method	compute()
need	not	specify	the	InterruptedException	from	the	throws	clause	of	the
overridden	method,	because	the	exception	is	not	thrown	here.

7	Object-Oriented	Programming
7.1	(a)	and	(b)

The	extends	clause	is	used	to	specify	that	a	class	extends	another	class.	A
subclass	can	be	declared	as	abstract	regardless	of	whether	the	superclass	was
declared	as	abstract.	Private,	overridden,	and	hidden	members	from	the
superclass	are	not	inherited	by	the	subclass.	A	class	cannot	be	declared	as	both
abstract	and	final,	since	an	abstract	class	needs	to	be	extended	to	be
useful,	and	a	final	class	cannot	be	extended.	The	accessibility	of	the	class	is	not
limited	by	the	accessibility	of	its	members.	A	class	with	all	the	members	declared
private	can	still	be	declared	as	public.

7.2	(b)	and	(e)

The	Object	class	has	a	public	method	named	equals,	but	it	does	not	have
any	method	named	length.	Since	all	classes	are	subclasses	of	the	Object	class,
they	all	inherit	the	equals()	method.	Thus,	all	Java	objects	have	a	public
method	named	equals.	In	Java,	a	class	can	extend	only	a	single	superclass,	but
there	is	no	limit	on	how	many	subclasses	can	extend	a	superclass.

7.3	(a),	(b),	and	(d)

Bar	is	a	subclass	of	Foo	that	overrides	the	method	g().	The	statement	a.j	=	5
is	not	legal,	since	the	member	j	in	the	class	Bar	cannot	be	accessed	through	a	Foo
reference.	The	statement	b.i	=	3	is	not	legal	either,	since	the	private	member
i	cannot	be	accessed	from	outside	of	the	class	Foo.

7.4	(g)

It	is	not	possible	to	invoke	the	doIt()	method	in	A	from	an	instance	method	in

class	C.	The	method	in	C	needs	to	call	a	method	in	a	superclass	two	levels	up	in	the
inheritance	hierarchy.	The	super.super.doIt()	strategy	will	not	work,	since
super	is	a	keyword	and	cannot	be	used	as	an	ordinary	reference,	nor	can	it	be
accessed	like	a	field.	If	the	member	to	be	accessed	had	been	a	field,	the	solution
would	be	to	cast	the	this	reference	to	the	class	of	the	field	and	use	the	resulting
reference	to	access	the	field.	Field	access	is	determined	by	the	declared	type	of	the
reference,	whereas	the	instance	method	to	execute	is	determined	by	the	actual	type
of	the	object	denoted	by	the	reference	at	runtime.

7.5	(e)

The	code	will	compile	without	errors.	None	of	the	calls	to	a	max()	method	are
ambiguous.	When	the	program	is	run,	the	main()	method	will	call	the	max()
method	on	the	C	object	referred	to	by	the	reference	b	with	the	parameters	13	and
29.	This	method	will	call	the	max()	method	in	B	with	the	parameters	23	and	39.
The	max()	method	in	B	will	in	turn	call	the	max()	method	in	A	with	the
parameters	39	and	23.	The	max()	method	in	A	will	return	39	to	the	max()
method	in	B.	The	max()	method	in	B	will	return	29	to	the	max()	method	in	C.
The	max()	method	in	C	will	return	29	to	the	main()	method.

7.6	(c)

The	simplest	way	to	print	the	message	in	the	class	Message	would	be	to	use
msg.text.	The	main()	method	creates	an	instance	of	MyClass,	which	results
in	the	creation	of	a	Message	instance.	The	field	msg	denotes	this	Message
object	in	MySuperclass	and	is	inherited	by	the	MyClass	object,	as	this	field
has	default	accessibility.	Thus,	the	message	in	the	Message	object	can	be	accessed
directly	by	msg.text	in	the	print()	method	of	MyClass,	and	also	by
this.msg.text	and	super.msg.text.

7.7	(g)

In	the	class	Car,	the	static	method	getModelName()	hides	the	static	method	of
the	same	name	in	the	superclass	Vehicle.	In	the	class	Car,	the	instance	method
getRegNo()	overrides	the	instance	method	of	the	same	name	in	the	superclass
Vehicle.	The	declared	type	of	the	reference	determines	the	method	to	execute
when	a	static	method	is	called,	but	the	actual	type	of	the	object	at	runtime
determines	the	method	to	execute	when	an	overridden	method	is	called.

7.8	(e)

The	class	MySuper	does	not	have	a	no-argument	constructor.	This	means	that
constructors	in	subclasses	must	explicitly	call	the	superclass	constructor	and
provide	the	required	parameters.	The	supplied	constructor	accomplishes	this	by
calling	super(num)	in	its	first	statement.	Additional	constructors	can	accomplish
this	either	by	calling	the	superclass	constructor	directly	using	the	super()	call,	or
by	calling	another	constructor	in	the	same	class	using	the	this()	call,	which	in
turn	calls	the	superclass	constructor.	(a)	and	(b)	are	not	valid,	since	they	do	not	call

the	superclass	constructor	explicitly.	(d)	fails,	since	the	super()	call	must	always
be	the	first	statement	in	the	constructor	body.	(f)	fails,	since	the	super()	and
this()	calls	cannot	be	combined.

7.9	(b)

In	a	subclass	without	any	declared	constructors,	the	default	constructor	will	call
super().	The	use	of	the	super()	and	this()	statements	are	not	mandatory	as
long	as	the	superclass	has	a	default	constructor.	If	neither	super()	nor	this()
is	declared	as	the	first	statement	in	the	body	of	a	constructor,	then	the	default
super()	will	implicitly	be	the	first	statement.	A	constructor	body	cannot	have
both	a	super()	and	a	this()	statement.	Calling	super()	will	not	always
work,	since	a	superclass	might	not	have	a	default	constructor.

7.10	(d)

The	program	will	print	12	followed	by	Test.	When	the	main()	method	is
executed,	it	will	create	a	new	instance	of	B	by	passing	"Test"	as	an	argument.
This	results	in	a	call	to	the	constructor	of	B,	which	has	one	String	parameter.	The
constructor	does	not	explicitly	call	any	superclass	constructor	or	any	overloaded
constructor	in	B	using	a	this()	call;	instead,	the	no-argument	constructor	of	the
superclass	A	is	called	implicitly.	The	no-argument	constructor	of	A	calls	the
constructor	in	A	that	has	two	String	parameters,	passing	it	the	argument	list
("1",	"2").	This	constructor	calls	the	constructor	with	one	String	parameter,
passing	the	argument	"12".	This	constructor	prints	the	argument,	after	implicitly
invoking	the	no-argument	constructor	of	the	superclass	Object.	Now	the
execution	of	all	the	constructors	in	A	is	completed,	and	execution	continues	in	the
constructor	of	B.	This	constructor	now	prints	the	original	argument	"Test"	and
returns	to	the	main()	method.

7.11	(b)	and	(c)

Interface	declarations	do	not	provide	any	method	implementations	and	permit	only
multiple	interface	inheritance.	An	interface	can	extend	any	number	of	interfaces
and	can	be	extended	by	any	number	of	interfaces.	Fields	in	interfaces	are	always
static,	and	can	be	declared	as	static	explicitly.	Abstract	method	declarations
in	interfaces	are	always	non-static,	and	cannot	be	declared	static.

Interfaces	allow	only	multiple	interface	inheritance.	An	interface	can	extend	any
number	of	interfaces,	and	can	be	extended	by	any	number	of	interfaces.	Fields	in
interfaces	are	always	static,	and	can	be	declared	as	static	explicitly.	Static
methods,	of	course,	can	be	declared	as	static.	Abstract	method	declarations	in
interfaces	are	always	non-static,	and	cannot	be	declared	as	static.

7.12	(a),	(d),	(e),	and	(f)

The	keywords	protected,	private,	and	final	cannot	be	applied	to	interface
methods.	The	keyword	public	is	implied,	but	can	be	specified	for	all	interface
methods.	The	keywords	default,	abstract,	and	static	can	be	specified	for

default,	abstract,	and	static	methods,	respectively.	The	keywords	default	and
static	are	required	for	default	and	static	methods,	respectively,	but	the	keyword
abstract	is	optional	and	is	implicitly	implied	for	abstract	methods.

7.13	(a),	(f),	and	(g)

Only	the	keywords	public,	static,	and	final	are	implicitly	implied	for
interface	variables.

7.14	(e)

(1):	The	final	static	constant	is	not	initialized.

(2):	The	abstract	method	cannot	have	an	implementation.

(3):	The	static	method	is	missing	the	implementation.

(4):	The	default	method	cannot	be	final.

7.15	(b)	and	(c)

The	default	instance	method	printSlogan()	is	inherited	by	the	class
Company.

(a):	It	can	be	called	from	a	non-static	context	(instance	method	testSlogan())
by	its	simple	name,	but	not	from	a	static	context	(static	method	main()).

(b),	(c):	An	instance	method	can	be	invoked	on	an	instance	via	a	reference,
regardless	of	whether	it	is	in	a	static	or	non-static	context.

(d),	(e):	An	instance	method	cannot	be	invoked	via	a	reference	type,	but	only	on	an
instance	via	a	reference;	that	is,	you	cannot	make	a	static	reference	to	a	non-static
method.

7.16	(e)

The	static	method	printSlogan()	is	not	inherited	by	the	class	Firm.	It	can
be	invoked	by	using	a	static	reference,	the	name	of	the	interface	in	which	it	is
declared,	regardless	of	whether	the	call	is	in	a	static	or	a	non-static	context.

7.17	(c)

The	instance	method	at	(3)	overrides	the	default	method	at	(1).	The	static	method	at
(2)	is	not	inherited	by	the	class	RaceA.	The	instance	method	at	(4)	does	not
override	the	static	method	at	(2).

The	method	to	be	invoked	by	the	call	at	(5)	is	determined	at	runtime	by	the	object
type	of	the	reference,	which	in	this	case	is	Athlete,	resulting	in	the	method	at	(3)
being	invoked.	Similarly,	the	call	at	(6)	will	invoke	the	instance	method	at	(4).

7.18	(a)

The	program	will	not	compile,	because	the	overriding	method	at	(2)	cannot	have
narrower	accessibility	than	the	overridden	method	at	(1).	The	method	at	(1)	has
public	accessibility,	whereas	the	method	at	(2)	has	package	accessibility.

7.19	(a),	(c),	and	(d)

Fields	in	interfaces	declare	named	constants,	and	are	always	public,	static,
and	final.	None	of	these	modifiers	is	mandatory	in	a	constant	declaration.	All
named	constants	must	be	explicitly	initialized	in	the	declaration.

7.20	(a)	and	(d)

The	keyword	implements	is	used	when	a	class	implements	an	interface.	The
keyword	extends	is	used	when	an	interface	inherits	from	another	interface	or	a
class	inherits	from	another	class.

7.21	(d)

The	code	will	compile	without	errors.	The	class	MyClass	declares	that	it
implements	the	interfaces	Interface1	and	Interface2.	Since	the	class	is
declared	as	abstract,	it	does	not	need	to	implement	all	abstract	method
declarations	defined	in	these	interfaces.	Any	non-abstract	subclasses	of
MyClass	must	provide	the	missing	method	implementations.	The	two	interfaces
share	a	common	abstract	method	declaration	void	g().	MyClass	provides	an
implementation	for	this	abstract	method	declaration	that	satisfies	both
Interface1	and	Interface2.	Both	interfaces	provide	declarations	of
constants	named	VAL_B.	This	can	lead	to	ambiguity	when	referring	to	VAL_B	by
its	simple	name	from	MyClass.	The	ambiguity	can	be	resolved	by	using	the
qualified	names:	Interface1.VAL_B	and	Interface2.VAL_B.	However,
there	are	no	problems	with	the	code	as	it	stands.

7.22	(a)	and	(c)

Declaration	(b)	fails,	since	it	contains	an	illegal	forward	reference	to	its	own	named
constant.	The	type	of	the	constant	is	missing	in	declaration	(d).	Declaration	(e)	tries
(illegally)	to	use	the	protected	modifier,	even	though	named	constants	always
have	public	accessibility.	Such	constants	are	implicitly	public,	static,	and
final.

7.23	(c)

The	program	will	throw	a	java.lang.ClassCastException	in	the
assignment	at	(3)	at	runtime.	The	statement	at	(1)	will	compile,	since	the
assignment	is	done	from	a	subclass	reference	to	a	superclass	reference.	The	cast	at
(2)	assures	the	compiler	that	arrA	refers	to	an	object	that	can	be	cast	to	type	B[].
This	will	work	when	run,	since	arrA	will	refer	to	an	object	of	type	B[].	The	cast
at	(3)	assures	the	compiler	that	arrA	refers	to	an	object	that	can	be	cast	to	type
B[].	This	will	not	work	when	run,	since	arrA	will	refer	to	an	object	of	type	A[].

7.24	(d)	and	(f)

(4)	and	(6)	will	cause	a	compile-time	error,	since	an	attempt	is	made	to	assign	a
reference	value	of	a	supertype	object	to	a	reference	of	a	subtype.	The	type	of	the
source	reference	value	is	MyClass	and	the	type	of	the	destination	reference	is

MySubclass.	(1)	and	(2)	will	compile,	since	the	reference	is	assigned	a	reference
value	of	the	same	type.	(3)	will	also	compile,	since	the	reference	is	assigned	a
reference	value	of	a	subtype.

7.25	(e)

Only	the	assignment	I1	b	=	obj3	is	valid.	The	assignment	is	allowed,	since	C3
extends	C1,	which	implements	I1.	The	assignment	obj2	=	obj1	is	not	legal,
since	C1	is	not	a	subclass	of	C2.	The	assignments	obj3	=	obj1	and	obj3	=
obj2	are	not	legal,	since	neither	C1	nor	C2	is	a	subclass	of	C3.	The	assignment
I1	a	=	obj2	is	not	legal,	since	C2	does	not	implement	I1.	Assignment	I2	c
=	obj1	is	not	legal,	since	C1	does	not	implement	I2.

7.26	(b)

The	compiler	will	allow	the	statement,	as	the	cast	is	from	the	supertype	(Super)	to
the	subtype	(Sub).	However,	if	at	runtime	the	reference	x	does	not	denote	an	object
of	the	type	Sub,	a	ClassCastException	will	be	thrown.

7.27	(b)

The	expression	(o	instanceof	B)	will	return	true	if	the	object	referred	to
by	o	is	of	type	B	or	a	subtype	of	B.	The	expression	(!(o	instanceof	C))
will	return	true	unless	the	object	referred	to	by	o	is	of	type	C	or	a	subtype	of	C.
Thus,	the	expression	(o	instanceof	B)	&&	(!(o	instanceof	C))
will	return	true	only	if	the	object	is	of	type	B	or	a	subtype	of	B	that	is	not	C	or	a
subtype	of	C.	Given	objects	of	the	classes	A,	B,	and	C,	this	expression	will	return
true	only	for	objects	of	class	B.

7.28	(d)

The	program	will	print	all	the	letters	I,	J,	C,	and	D	at	runtime.	The	object	referred
to	by	the	reference	x	is	of	class	D.	Class	D	extends	class	C	and	implements	J,	and
class	C	implements	interface	I.	This	makes	I,	J,	and	C	supertypes	of	class	D.	The
reference	value	of	an	object	of	class	D	can	be	assigned	to	any	reference	of	its
supertypes	and,	therefore,	is	an	instanceof	these	types.

7.29	(a)

The	signatures	yingyang(Integer[])	and	yingyang(Integer…)	are
equivalent	and,	therefore,	are	not	permitted	in	the	same	class.

7.30	(c)

The	calls	to	the	compute()	method	in	the	method	declarations	at	(2)	and	at	(3)
are	to	the	compute()	method	declaration	at	(1),	as	the	argument	is	always	an
int[].

The	method	call	at	(4)	calls	the	method	at	(2).	The	signature	of	the	call	at	(4)	is
compute(int[],	int[])

which	matches	the	signature	of	the	method	at	(2).	No	implicit	array	is	created.

The	method	call	in	(5)	calls	the	method	at	(1).	An	implicit	array	of	int	is	created	to
store	the	argument	values.

The	method	calls	in	(6)	and	(7)	call	the	method	in	(3).	Note	the	type	of	the	variable
arity	parameter	in	(3):	an	int[][].	The	signature	of	the	calls	at	(6)	and	(7)	is
compute(int[],	int[][])

which	matches	the	signature	of	the	method	at	(3).	No	implicit	array	is	created.

7.31	(e)

The	program	will	print	2	when	System.out.println(ref2.f())	is
executed.	The	object	referenced	by	ref2	is	of	class	C,	but	the	reference	is	of	type
B.	Since	B	contains	a	method	f(),	the	method	call	will	be	allowed	at	compile	time.
During	execution	it	is	determined	that	the	object	is	of	class	C,	and	dynamic	method
lookup	will	cause	the	overriding	method	in	C	to	be	executed.

7.32	(c)

The	program	will	print	1	when	run.	The	f()	methods	in	A	and	B	are	private,
and	are	not	accessible	by	the	subclasses.	Because	of	this,	the	subclasses	cannot
overload	or	override	these	methods,	but	simply	define	new	methods	with	the	same
signature.	The	object	being	called	is	of	class	C.	The	reference	used	to	access	the
object	is	of	type	B.	Since	B	contains	a	method	g(),	the	method	call	will	be	allowed
at	compile	time.	During	execution	it	is	determined	that	the	object	is	of	class	C,	and
dynamic	method	lookup	will	cause	the	overriding	method	g()	in	B	to	be	executed.
This	method	calls	a	method	named	f.	It	can	be	determined	during	compilation	that
this	can	refer	to	only	the	f()	method	in	B,	since	the	method	is	private	and
cannot	be	overridden.	This	method	returns	the	value	1,	which	is	printed.

7.33	(b),	(c),	and	(d)

The	code	as	it	stands	will	compile.	The	use	of	inheritance	in	this	code	defines	a
Planet	is-a	Star	relationship.	The	code	will	fail	if	the	name	of	the	field
starName	is	changed	in	the	Star	class,	since	the	subclass	Planet	tries	to
access	it	using	the	name	starName.	An	instance	of	Planet	is	not	an	instance	of
HeavenlyBody.	Neither	Planet	nor	Star	implements	HeavenlyBody.

7.34	(b)

The	code	will	compile.	The	code	will	not	fail	to	compile	if	the	name	of	the	field
starName	is	changed	in	the	Star	class,	since	the	Planet	class	does	not	try	to
access	the	field	by	name,	but	instead	uses	the	public	method	describe()	in
the	Star	class	for	that	purpose.	An	instance	of	Planet	is	not	an	instance	of
HeavenlyBody,	since	it	neither	implements	HeavenlyBody	nor	extends	a
class	that	implements	HeavenlyBody.

7.35	(e)

(a)	to	(f)	are	all	true;	therefore	(e)	is	not.

8	Fundamental	Classes
8.1	(b)

The	method	hashCode()	in	the	Object	class	returns	a	hash	code	value	of	type
int.

8.2	(e)

All	arrays	are	genuine	objects	and	inherit	all	the	methods	defined	in	the	Object
class,	including	the	clone()	method.	Neither	the	hashCode()	method	nor	the
equals()	method	is	declared	as	final	in	the	Object	class,	and	it	cannot	be
guaranteed	that	implementations	of	these	methods	will	differentiate	among	all
objects.

8.3	(a)

The	clone()	method	of	the	Object	class	will	throw	a
CloneNotSupportedException	if	the	class	of	the	object	does	not	implement
the	Cloneable	interface.

8.4	(a),	(c),	and	(d)

The	class	java.lang.Void	is	considered	a	wrapper	class,	although	it	does	not
wrap	any	value.	There	is	no	class	named	java.lang.Int,	but	there	is	a	wrapper
class	named	java.lang.Integer.	A	class	named	java.lang.String	also
exists,	but	it	is	not	a	wrapper	class	since	all	strings	in	Java	are	objects.

8.5	(c)	and	(d)

The	classes	Character	and	Boolean	are	non-numeric	wrapper	classes	and	do
not	extend	the	Number	class.	The	classes	Byte,	Short,	Integer,	Long,
Float,	and	Double	are	numeric	wrapper	classes	that	extend	the	abstract
Number	class.

8.6	(a),	(b),	and	(d)

All	instances	of	concrete	wrapper	classes	are	immutable.	The	Number	class	is	an
abstract	class.

8.7	(b)	and	(c)

All	instances	of	wrapper	classes	except	Void	and	Character	have	a	constructor
that	accepts	a	single	String	parameter.	The	class	Object	has	only	a	no-
argument	constructor.

8.8	(e)

While	all	numeric	wrapper	classes	have	the	methods	byteValue(),
doubleValue(),	floatValue(),	intValue(),	longValue(),	and
shortValue(),	only	the	Boolean	class	has	the	booleanValue()	method.
Likewise,	only	the	Character	class	has	the	charValue()	method.

8.9	(b)	and	(d)

String	is	not	a	wrapper	class.	All	wrapper	classes	except	Void	have	a
compareTo()	method.	Only	the	numeric	wrapper	classes	have	an	intValue()
method.	The	Byte	class,	like	all	other	numeric	wrapper	classes,	extends	the
Number	class.

8.10	(a)

Using	the	new	operator	creates	a	new	object.	Boxing	also	creates	a	new	object	if
one	is	not	already	interned	from	before.

8.11	(b)	and	(e)

The	operators	-	and	&	cannot	be	used	in	conjunction	with	a	String	object.	The
operators	+	and	+=	perform	concatenation	on	strings,	and	the	dot	operator	accesses
members	of	the	String	object.

8.12	(d)

The	expression	str.substring(2,5)	will	extract	the	substring	"kap".	The
method	extracts	the	characters	from	index	2	to	index	4,	inclusive.

8.13	(d)

The	program	will	print	str3str1	when	run.	The	concat()	method	will	create
and	return	a	new	String	object,	which	is	the	concatenation	of	the	current
String	object	and	the	String	object	given	as	an	argument.	The	expression
statement	str1.concat(str2)	creates	a	new	String	object,	but	its	reference
value	is	not	stored	after	the	expression	is	evaluated.	Therefore	this	String	object
gets	discarded.

8.14	(c)

The	trim()	method	of	the	String	class	returns	a	string	where	both	the	leading
and	trailing	whitespace	of	the	original	string	have	been	removed.

8.15	(a)	and	(c)

The	String	class	and	all	wrapper	classes	are	declared	as	final	and,	therefore,
cannot	be	extended.	The	clone()	method	is	declared	as	protected	in	the
Object	class.	String	objects	and	wrapper	class	objects	are	immutable	and,
therefore,	cannot	be	modified.	The	class	String	and	char	array	types	are
unrelated,	resulting	in	a	compile-time	error.

8.16	(d)

The	constant	expressions	"ab"	+	"12"	and	"ab"	+	12	will,	at	compile	time,
be	evaluated	to	the	string-valued	constant	"ab12".	Both	variables	s	and	t	are
assigned	a	reference	to	the	same	interned	String	object	containing	"ab12".	The
variable	u	is	assigned	a	new	String	object,	created	by	using	the	new	operator.

8.17	(a),	(c),	(d),	(f),	and	(j)

The	String	class	has	constructors	with	the	parameter	lists	given	in	(a),	(c),	(d),

(f),	and	(j).

8.18	(e)

The	String	class	has	no	reverse()	method.

8.19	(b)

The	reference	value	in	the	reference	str1	never	changes;	it	always	refers	to	the
string	literal	"lower".	The	calls	to	toUpperCase()	and	replace()	return	a
new	String	object	whose	reference	value	is	ignored.

8.20	(d)

The	call	to	the	putO()	method	does	not	change	the	String	object	referred	to	by
the	s1	reference	in	the	main()	method.	The	reference	value	returned	by	the	call
to	the	concat()	method	is	ignored.

8.21	(a)

The	code	will	fail	to	compile,	since	the	expression	(s	==	sb)	is	illegal.	It
compares	references	of	two	classes	that	are	not	related.

8.22	(e)

The	program	will	compile	without	errors	and	will	print	have	a	when	run.	The
contents	of	the	string	buffer	are	truncated	to	6	characters	by	the	method	call
sb.setLength(6).

8.23	(a),	(b),	(d),	and	(e)

The	StringBuilder	class	has	only	constructors	with	the	parameter	lists	given
in	(a),	(b),	(d),	and	(e).

8.24	(a)

The	StringBuilder	class	does	not	define	a	trim()	method.

8.25	(b)

The	references	sb1	and	sb2	are	not	aliases.	The	StringBuilder	class	does	not
override	the	equals()	method;	hence	the	answer	is	(b).

8.26	(a)

The	StringBuilder	class	does	not	override	the	hashCode()	method,	but	the
String	class	does.	The	references	s1	and	s2	refer	to	a	String	object	and	a
StringBuilder	object,	respectively.	The	hash	values	of	these	objects	are
computed	by	the	hashCode()	method	in	the	String	and	the	Object	class,
respectively—giving	different	results.	The	references	s1	and	s3	refer	to	two
different	String	objects	that	are	equal;	hence	they	have	the	same	hash	value.

8.27	(b)

The	call	to	the	putO()	method	changes	the	StringBuilder	object	referred	to

by	the	s1	reference	in	the	main()	method.	So	does	the	call	to	the	append()
method.

9	Object	Lifetime
9.1	(e)

An	object	is	eligible	for	garbage	collection	only	if	all	remaining	references	to	the
object	are	from	other	objects	that	are	also	eligible	for	garbage	collection.	Therefore,
if	an	object	obj2	is	eligible	for	garbage	collection	and	object	obj1	contains	a
reference	to	it,	then	object	obj1	must	also	be	eligible	for	garbage	collection.	Java
does	not	have	a	keyword	delete.	An	object	will	not	necessarily	be	garbage
collected	immediately	after	it	becomes	unreachable,	but	the	object	will	be	eligible
for	garbage	collection.	Circular	references	do	not	prevent	objects	from	being
garbage	collected;	only	reachable	references	do.	An	object	is	not	eligible	for
garbage	collection	as	long	as	the	object	can	be	accessed	by	any	live	thread.	An
object	that	is	eligible	for	garbage	collection	can	be	made	non-eligible	if	the
finalize()	method	of	the	object	creates	a	reachable	reference	to	the	object.

9.2	(b)

Before	(1),	the	String	object	initially	referenced	by	arg1	is	denoted	by	both
msg	and	arg1.	After	(1),	the	String	object	is	denoted	by	only	msg.	At	(2),
reference	msg	is	assigned	a	new	reference	value.	This	reference	value	denotes	a
new	String	object	created	by	concatenating	the	contents	of	several	other
String	objects.	After	(2),	there	are	no	references	to	the	String	object	initially
referenced	by	arg1.	The	String	object	is	now	eligible	for	garbage	collection.

9.3	(d)

It	is	difficult	to	say	how	many	objects	are	eligible	for	garbage	collection	when
control	reaches	(1),	because	some	of	the	eligible	objects	may	have	already	been
finalized.

9.4	(a)

All	the	objects	created	in	the	loop	are	reachable	via	p,	when	control	reaches	(1).

9.5	(b)

The	Object	class	defines	a	protected	finalize()	method.	All	classes
inherit	from	Object;	thus,	all	objects	have	a	finalize()	method.	Classes	can
override	the	finalize()	method	and,	as	with	all	overriding,	the	new	method
must	not	reduce	the	accessibility.	The	finalize()	method	of	an	eligible	object
is	called	by	the	garbage	collector	to	allow	the	object	to	do	any	cleaning	up	before
the	object	is	destroyed.	When	the	garbage	collector	calls	the	finalize()
method,	it	will	ignore	any	exceptions	thrown	by	the	finalize()	method.	If	the
finalize()	method	is	called	explicitly,	normal	exception	handling	occurs	when
an	exception	is	thrown	during	the	execution	of	the	finalize()	method;	that	is,
exceptions	are	not	simply	ignored.	Calling	the	finalize()	method	does	not	in

itself	destroy	the	object.	Chaining	of	the	finalize()	method	is	not	enforced	by
the	compiler,	and	it	is	not	mandatory	to	call	the	overridden	finalize()	method.

9.6	(d)

The	finalize()	method	is	like	any	other	method:	It	can	be	called	explicitly	if	it
is	accessible.	However,	such	a	method	is	intended	to	be	called	by	the	garbage
collector	to	clean	up	before	an	object	is	destroyed.	Overloading	the	finalize()
method	is	allowed,	but	only	the	method	with	the	original	signature	will	be	called	by
the	garbage	collector.	The	finalize()	method	in	the	Object	class	is
protected.	This	means	that	any	overriding	method	must	be	declared	as	either
protected	or	public.	The	finalize()	method	in	the	Object	class
specifies	a	Throwable	object	in	its	throws	clause.	An	overriding	definition	of
this	method	can	throw	any	type	of	Throwable.	Overriding	methods	can	limit	the
range	of	throwables	to	unchecked	exceptions	or	specify	no	exceptions	at	all.	Further
overriding	definitions	of	this	method	in	subclasses	will	then	not	be	able	to	throw
checked	exceptions.

9.7	(d)	and	(g)

(a),	(b),	(c),	(j),	(k),	and	(l)	reduce	the	visibility	of	the	inherited	method.	In	(e),	(f),
(h),	and	(i),	the	call	to	the	finalize()	method	of	the	superclass	can	throw	a
Throwable,	which	is	not	handled	by	the	method.	The	Throwable	superclass	is
not	assignable	to	the	Exception	subclass.

9.8	(e)

It	is	not	guaranteed	if	and	when	garbage	collection	will	occur,	nor	in	which	order
the	objects	will	be	finalized.	However,	it	is	guaranteed	that	the	finalization	of	an
object	will	be	run	only	once.	Hence,	(e)	cannot	possibly	be	a	result	from	running
the	program.

9.9	(c)	and	(e)

It	is	not	guaranteed	if	and	when	garbage	collection	will	occur,	nor	in	which	order
the	objects	will	be	finalized.	Thus,	the	program	may	not	print	anything.	If	garbage
collection	does	take	place,	the	MyString	object	created	in	the	program	may	get
finalized	before	the	program	terminates.	In	that	case,	the	finalize()	method
will	print	A,	as	the	string	in	the	field	str	is	not	changed	by	the	concat()
method.	Keep	in	mind	that	a	String	object	is	immutable.

9.10	(c),	(e),	and	(f)

The	static	initializer	blocks	(a)	and	(b)	are	not	legal,	since	the	fields	alive	and
STEP	are	non-static	and	final,	respectively.	(d)	is	not	a	syntactically	legal
static	initializer	block.	The	static	block	in	(e)	will	have	no	effect,	as	it	executes	the
empty	statement.	The	static	block	in	(f)	will	change	the	value	of	the	static	field
count	from	5	to	1.

9.11	(c)

The	program	will	compile,	and	print	50,	70,	0,	20,	0	at	runtime.	All	fields
are	given	default	values	unless	they	are	explicitly	initialized.	Field	i	is	assigned	the
value	50	in	the	static	initializer	block	that	is	executed	when	the	class	is	initialized.
This	assignment	will	override	the	explicit	initialization	of	field	i	in	its	declaration
statement.	When	the	main()	method	is	executed,	the	static	field	i	is	50	and	the
static	field	n	is	0.	When	an	instance	of	the	class	is	created	using	the	new	operator,
the	value	of	static	field	n	(i.e.,	0)	is	passed	to	the	constructor.	Before	the	body	of
the	constructor	is	executed,	the	instance	initializer	block	is	executed,	which	assigns
the	values	70	and	20	to	the	fields	j	and	n,	respectively.	When	the	body	of	the
constructor	is	executed,	the	fields	i,	j,	k,	and	n	and	the	parameter	m	have	the
values	50,	70,	0,	20,	and	0,	respectively.

9.12	(f)

This	class	has	a	blank	final	boolean	instance	variable	active.	This	variable
must	be	initialized	when	an	instance	is	constructed,	or	else	the	code	will	not
compile.	This	also	applies	to	blank	final	static	variables.	The	keyword
static	is	used	to	signify	that	a	block	is	a	static	initializer	block.	No	keyword	is
used	to	signify	that	a	block	is	an	instance	initializer	block.	(a)	and	(b)	are	not
instance	initializers	blocks,	and	(c),	(d),	and	(e)	fail	to	initialize	the	blank	final
variable	active.

9.13	(c)

The	program	will	compile,	and	print	2,	3,	and	1	at	runtime.	When	the	object	is
created	and	initialized,	the	instance	initializer	block	is	executed	first,	printing	2.
Then	the	instance	initializer	expression	is	executed,	printing	3.	Finally,	the
constructor	body	is	executed,	printing	1.	The	forward	reference	in	the	instance
initializer	block	is	legal,	as	the	use	of	the	field	m	is	on	the	left-hand	side	of	the
assignment.

9.14	(c)	and	(e)

Line	A	will	cause	an	illegal	redefinition	of	the	field	width.	Line	B	uses	an	illegal
forward	reference	to	the	fields	width	and	height.	The	assignment	in	Line	C	is
legal.	Line	D	is	an	assignment	statement,	so	it	is	illegal	in	this	context.	Line	E
declares	a	local	variable	inside	an	initializer	block,	with	the	same	name	as	the
instance	variable	width,	which	is	allowed.	The	simple	name	in	this	block	will
refer	to	the	local	variable.	To	access	the	instance	variable	width,	the	this
reference	must	be	used	in	this	block.

10	The	ArrayList<E>	Class	and	Lambda	Expressions
10.1	(h)

The	method	remove()	can	be	used	to	delete	an	element	at	a	specific	index	in	an
ArrayList.

The	method	clear()	can	be	used	to	delete	all	elements	in	an	ArrayList.

The	method	add(int,	E)	can	be	used	to	insert	an	element	at	a	specific	index	in
an	ArrayList.

The	method	add()	can	be	used	to	append	an	element	at	the	end	of	an
ArrayList.

The	method	set()	can	be	used	to	replace	the	element	at	a	specific	index	with
another	element	in	an	ArrayList.

The	method	contains()	can	be	used	to	determine	whether	an	element	is	in	an
ArrayList.

There	is	no	method	to	determine	the	current	capacity	of	an	ArrayList.

10.2	(e)

The	for(;;)	loop	correctly	increments	the	loop	variable	so	that	all	the	elements
in	the	list	are	traversed.	Removing	elements	using	the	for(;;)	loop	does	not
throw	a	ConcurrentModificationException	at	runtime.

10.3	(b)	and	(c)

In	the	method	doIt1(),	one	of	the	common	elements	("Ada")	between	the	two
lists	is	reversed.	The	value	null	is	added	to	only	one	of	the	lists	but	not	the	other.

In	the	method	doIt2(),	the	two	lists	have	common	elements.	Swapping	the
elements	in	one	list	does	not	change	their	positions	in	the	other	list.

10.4	(c)

The	element	at	index	2	has	the	value	null.	Calling	the	equals()	method	on	this
element	throws	a	NullPointerException.

10.5	(f)

Deleting	elements	when	traversing	a	list	requires	care,	as	the	size	changes	and	any
elements	to	the	right	of	the	deleted	element	are	shifted	left.	Incrementing	the	loop
variable	after	deleting	an	element	will	miss	the	next	element,	as	is	the	case	with	the
last	occurrence	of	"Bob".	Removing	elements	using	the	for(;;)	loop	does	not
throw	a	ConcurrentModificationException	at	runtime.

10.6	(f)

The	while	loop	will	execute	as	long	as	the	remove()	methods	returns	true—
that	is,	as	long	as	there	is	an	element	with	the	value	"Bob"	in	the	list.	The	while
loop	body	is	the	empty	statement.	The	remove()	method	does	not	throw	an
exception	if	an	element	value	is	null,	or	if	it	is	passed	a	null	value.

10.7	(f)

A	functional	interface	can	be	implemented	by	lambda	expressions	and	classes.

A	functional	interface	declaration	can	have	only	one	abstract	method	declaration.

In	the	body	of	a	lambda	expression,	all	members	in	the	enclosing	class	can	be

accessed.

In	the	body	of	a	lambda	expression,	only	effectively	final	local	variables	in	the
enclosing	scope	can	be	accessed.

A	lambda	expression	in	a	program	can	implement	more	than	one	functional
interface.	For	example,	the	lambda	expression	(i	->	i%2	==	0)	can	be	the
target	type	of	both	the	functional	interfaces	IntPredicate	and
Predicate<Integer>.

10.8	(a)	and	(c)

(1)	redeclares	the	local	variable	p	from	the	enclosing	scope,	which	is	not	legal.

In	(2),	the	equals()	method	of	the	String	class	is	called,	because	it	is	invoked
on	the	textual	representation	of	the	parameter.	In	the	other	statements,	the
equals()	method	of	the	object	referred	to	by	the	parameter	is	called.

The	lambda	body	in	(3)	is	a	statement	block	with	an	expression	whose	value	must
be	returned	by	the	return	statement.

(4)	and	(5)	access	static	members	in	the	class,	which	is	legal.

In	(6),	the	parameter	name	lock2	shadows	the	static	variable	by	the	same	name,
but	is	a	local	variable	in	the	lambda	expression.	The	static	variable	is	referred	to
using	the	class	name.

10.9	(e),	(f),	(g),	and	(i)

Assignments	in	(5),	(6),	(7),	and	(9)	will	not	compile.	We	must	check	whether	the
function	type	of	the	target	type	and	the	type	of	the	lambda	expression	are
compatible.	The	function	type	of	the	target	type	p1	in	the	assignment	statements
from	(1)	to	(5)	is	String	->	void,	or	a	void	return.	The	function	type	of	the
target	type	p2	in	the	assignment	statements	from	(6)	to	(10)	is	String	->
String,	or	a	non-void	return.	In	the	following	code,	the	functional	type	of	the
target	type	is	shown	in	a	comment	with	the	prefix	LHS	(left-hand	side),	and	the
type	of	the	lambda	expression	for	each	assignment	from	(1)	to	(10)	is	shown	in	a
comment	with	the	prefix	RHS	(right-hand	side).

Click	here	to	view	code	image
Funky1	p1;																																	//					LHS:	String	->	void

				p1	=	s	->	System.out.println(s);											//	(1)	RHS:	String	->	void
				p1	=	s	->	s.length();																						//	(2)	RHS:	String	->	int
				p1	=	s	->	s.toUpperCase();																	//	(3)	RHS:	String	->
String
				p1	=	s	->	{	s.toUpperCase();	};												//	(4)	RHS:	String	->	void
//		p1	=	s	->	{	return	s.toUpperCase();	};					//	(5)	RHS:	String	->
String

				Funky2	p2;																																	//					LHS:	String	->
String
//		p2	=	s	->	System.out.println(s);											//	(6)	RHS:	String	->	void
//		p2	=	s	->	s.length();																						//	(7)	RHS:	String	->	int
				p2	=	s	->	s.toUpperCase();																	//	(8)	RHS:	String	->
String

//		p2	=	s	->	{	s.toUpperCase();	};												//	(9)	RHS:	String	->	void
				p2	=	s	->	{	return	s.toUpperCase();	};					//	(10)RHS:	String	->
String

The	non-void	return	of	a	lambda	expression	with	an	expression	statement	as	the
body	can	be	interpreted	as	a	void	return,	if	the	function	type	of	the	target	type
returns	void.	This	is	the	case	in	(2)	and	(3).	The	return	value	is	ignored.	The	type
String	->	String	of	the	lambda	expression	in	(5)	is	not	compatible	with	the
function	type	String	->	void	of	the	target	type	p1.

The	type	of	the	lambda	expression	in	(6),	(7),	and	(9)	is	not	compatible	with	the
function	type	String	->	String	of	the	target	type	p2.

10.10	(d)

The	lambda	expression	filters	all	integer	values	that	are	both	negative	and	even
numbers.	These	values	are	replaced	with	their	absolute	values	in	the	integer	array.
The	functional	interface	java.util.function.IntPredicate	has	the
abstract	method:	boolean	test(int	i).

10.11	(d)

The	three	interfaces	are	functional	interfaces.	InterfaceB	explicitly	provides	an
abstract	method	declaration	of	the	public	method	equals()	from	the	Object
class,	but	such	declarations	are	excluded	from	the	definition	of	a	functional
interface.	Thus	InterfaceB	effectively	has	only	one	abstract	method.	A
functional	interface	can	be	implemented	by	a	concrete	class,	such	as	Beta.	The
function	type	of	the	target	type	in	the	assignments	(1)	to	(3)	is	void	->	void.
The	type	of	the	lambda	expression	in	(1)	to	(3)	is	also	void	->	void.	The
assignments	(1)	to	(3)	are	legal.

The	assignment	in	(4)	is	legal.	Subtype	references	are	assigned	to	supertype
references.	References	o,	a,	and	c	refer	to	the	lambda	expression	in	(3).

The	assignment	in	(5)	is	legal.	The	reference	b	has	the	type	InterfaceB,	and
class	Beta	implements	this	interface.

(6),	(7),	and	(8)	invoke	the	method	doIt().	(6)	evaluates	the	lambda	expression	in
(3),	printing	Jingle|.	(7)	invokes	the	doIt()	method	on	an	object	of	class
Beta,	printing	Jazz|.	(8)	also	evaluates	the	lambda	expression	in	(3),	printing
Jingle|.

In	(9),	the	reference	o	is	cast	down	to	InterfaceA.	The	reference	o	actually
refers	to	the	lambda	expression	in	(3),	which	has	target	type	InterfaceC.	This
interface	is	a	subtype	of	InterfaceA.	The	subtype	is	cast	to	a	supertype,	which
is	allowed,	so	no	ClassCastException	is	thrown	at	runtime.	Invoking	the
doIt()	method	again	results	in	evaluation	of	the	lambda	expression	in	(3),
printing	Jingle|.

Apart	from	the	declarations	of	the	lambda	expressions,	the	rest	of	the	code	is	plain-
vanilla	Java.	Note	also	that	the	following	assignment	that	defines	a	lambda

expression	would	not	be	valid,	since	the	Object	class	is	not	a	functional	interface
and	therefore	cannot	provide	a	target	type	for	the	lambda	expression:

Click	here	to	view	code	image
Object	obj	=	()	->	System.out.println(“Jingle”);						//	Compile-time
error!

11	Date	and	Time
11.1	(e)

The	LocalDateTime	class	does	not	provide	the	isLeapYear()	method.

The	LocalTime	class	does	not	provide	the	isEqual()	method.

The	Period	class	does	not	provide	the	withWeeks()	method,	but	does	provide
the	ofWeeks()	static	method.

Both	the	Period	and	LocalTime	classes	do	not	provide	the	plusWeeks()
method.

11.2	(e)

The	date	reference	never	gets	updated,	as	the	return	value	is	ignored.	If	it	had
been	updated,	the	correct	answer	would	have	been	(c).	The
LocalDate.getMonth()	method	returns	a	Month	enum	constant—in	this
case,	Month.MARCH.	The	LocalDate.getMonthValue()	method	returns
the	month	as	a	value	between	1	and	12—in	this	case,	3.

11.3	(b),	(c),	(e),	and	(g)

(a):	The	month	numbers	start	with	1.	August	has	month	value	8.

(d):	Invalid	month	(0)	and	day	(0)	arguments	in	the	call	to	the	of()	method	result
in	a	DateTimeException	being	thrown	at	runtime.

(f):	The	LocalDate	class	does	not	provide	a	public	constructor.

11.4	(c),	(d),	and	(f)

(a):	Invalid	argument	for	the	minutes	(0–59).

(b):	The	LocalTime	class	does	not	provide	a	public	constructor.

(c):	The	time	assigned	is	09:00.

(d):	The	time	assigned	is	00:00.

(e):	There	is	no	withHours()	method,	but	there	is	a	withHour()	method	in
the	LocalTime	class.

(f):	The	time	assigned	is	11:45.

11.5	(c)

Both	the	hour	and	minutes	are	normalized	by	the	plus	methods,	and	the	time	of
day	wraps	around	midnight.	The	calculation	of

time.plusHours(10).plusMinutes(120)	proceeds	as	follows:
Click	here	to	view	code	image

12:00	+	10	hours	==>	22:00	+	120	min	(i.e.,	2	hrs.)	==>	00:00

11.6	(d)

The	calculation	of	p1.plus(p2).plus(p1)	proceeds	as	follows:
Click	here	to	view	code	image

P1Y1M1D	+	P2Y12M30D	==>	P3Y13M31D	+	P1Y1M1D	==>	P4Y14M32D

11.7	(c)

The	calculation	of	date.withYear(5).plusMonths(14)	proceeds	as
follows:

Click	here	to	view	code	image
2015-01-01	with	year	5	==>	0005-01-01	+	14	months	(i.e.,	1	year	2	months)
==>
0006-03-01

11.8	(a),	(d),	(e),	(g),	and	(i)

The	between()	and	until()	methods	return	a	Period,	which	can	be
negative.	The	isAfter(),	isBefore(),	between(),	and	until()	methods
are	strict	in	the	sense	that	the	end	date	is	excluded.	The	compareTo()	method
returns	0	if	the	two	dates	are	equal,	a	negative	value	if	date1	is	less	than	date2,
and	a	positive	value	if	date1	is	greater	than	date2.

11.9	(e)

(a):	The	DateTimeFormatter	class	provides	factory	methods	to	obtain	both
predefined	and	customized	formatters.

(b):	The	styles	defined	by	the	java.time.format.FormatStyle	enum	type
are	locale	sensitive.

(c):	The	ofLocalizedDate()	method	of	the	DateTimeFormatter	class
returns	a	formatter	that	is	based	on	a	format	style	(a	constant	of	the
FormatStyle	enum	type)	passed	as	an	argument	to	the	method.

(d):	The	pattern	"yy-mm-dd"	cannot	be	used	to	create	a	formatter	that	can	format
a	LocalDate	object.	The	letter	m	stands	for	minutes	of	the	hour,	which	is	not	a
part	of	a	date.

11.10	(a),	(b),	(c),	and	(f)

(a),	(b),	(c):	The	input	string	matches	the	pattern.	The	input	string	specifies	the
mandatory	parts	of	both	a	date	and	a	time,	needed	by	the	respective	method	to
construct	either	a	LocalTime,	a	LocalDate,	or	a	LocalDateTime.

To	use	the	pattern	for	formatting,	the	temporal	object	must	provide	the	parts
corresponding	to	the	pattern	letters	in	the	pattern.	The	LocalTime	object	in	(d)
does	not	have	the	date	part	required	by	the	pattern.	The	LocalDate	object	in	(e)

does	not	have	the	time	part	required	by	the	pattern.	Both	(d)	and	(e)	will	throw	an
UnsupportedTemporalTypeException.	Only	the	LocalDateTime
object	in	(f)	has	both	the	date	and	time	parts	required	by	the	pattern.

11.11	(b),	(e),	and	(f)

The	input	string	matches	the	pattern.	It	specifies	the	date-based	values	that	can	be
used	to	construct	a	LocalDate	object	in	(b),	based	on	the	date-related	pattern
letters	in	the	pattern.	No	time-based	values	can	be	interpreted	from	the	input	string,
as	this	pattern	has	only	date-related	pattern	letters.	(a)	and	(c),	which	require	a	time
part,	will	throw	a	DateTimeParseException.

To	use	the	pattern	for	formatting,	the	temporal	object	must	provide	values	for	the
parts	corresponding	to	the	pattern	letters	in	the	pattern.	The	LocalTime	object	in
(d)	does	not	have	the	date	part	required	by	the	pattern.	(d)	will	throw	an
UnsupportedTemporalTypeException.	The	LocalDate	object	in	(e)	has
the	date	part	required	by	the	pattern,	as	does	the	LocalDateTime	object	in	(f).	In
(f),	only	the	date	part	of	the	LocalDateTime	object	is	formatted.

11.12	(e)

(a),	(b),	(c),	(d),	and	(f)	result	in	a	DateTimeParseException	when	parsing.

(a):	The	pattern	letter	h	represents	hour	in	the	day,	but	requires	AM/PM
information	to	resolve	the	hour	in	a	24-hour	clock	(i.e.,	pattern	letter	a),	which	is
missing.

(b):	The	pattern	letter	M	is	interpreted	correctly	as	month	of	the	year	(value	5).
Matching	the	pattern	letter	h	is	the	problem,	as	explained	for	(a).

(c),	(d):	The	pattern	letter	a	cannot	be	resolved	from	the	input	string,	as	an	AM/PM
marker	is	missing	in	the	input	string.

(e):	The	parse	succeeds,	with	the	LocalTime	object	having	the	value	09:05.
Formatting	this	object	with	the	formatter	results	in	the	output	string:	5	minutes
past	9.

(f):	The	letter	pattern	mm	cannot	be	resolved,	as	the	minutes	value	has	only	one
digit	(i.e.,	5)	in	the	input	string.

(g):	The	parse	succeeds,	with	the	resulting	LocalTime	object	having	the	value
09:00.	The	month	value	5	is	ignored.	Formatting	this	object	with	the	formatter
results	in	an	UnsupportedTemporalTypeException,	because	now	the
pattern	letter	M	requires	a	month	value,	which	is	not	part	of	a	LocalTime	object.

11.13	(d)

(a):	The	formatter	will	format	a	LocalTime	object,	or	the	time	part	of	a
LocalDateTime	object,	but	not	a	LocalDate	object,	as	it	knows	nothing	about
formatting	the	date	part.

(b):	The	formatter	will	format	a	LocalDate	object,	or	the	date	part	of	a

LocalDateTime	object,	but	not	a	LocalTime	object,	as	it	knows	nothing	about
formatting	the	time	part.

(c):	The	formatter	will	format	a	LocalDateTime	object,	but	not	a	LocalDate
object	or	a	LocalTime	object,	as	it	will	format	only	temporal	objects	with	both
date	and	time	parts.

The	program	throws	a
java.time.temporal.UnsupportedTemporalTypeException	in	all
cases.

Appendix	D.	Solutions	to	Programming	Exercises

1	Basics	of	Java	Programming
1.1	The	printStackElements()	method	of	the	PrintableCharStack	class

does	not	pop	the	elements.
Click	here	to	view	code	image

//	File:	CharStack.java
public	class	CharStack	{
		//	Instance	variables:
		protected	char[]	stackArray;			//	The	array	implementing	the	stack.
		protected	int				topOfStack;			//	The	top	of	the	stack.

		//	Static	variable
		private	static	int	counter;																																						//	(1)

		//	Constructor	now	increments	the	counter	for	each	object	created.
		public	CharStack(int	capacity)	{																																	//	(2)
				stackArray	=	new	char[capacity];
				topOfStack	=	-1;
				counter++;
		}

		//	Instance	methods:
		public	void	push(char	element)	{	stackArray[++topOfStack]	=	element;	}
		public	char	pop()														{	return	stackArray[topOfStack—];	}
		public	char	peek()													{	return	stackArray[topOfStack];	}
		public	boolean	isEmpty()							{	return	topOfStack	==	-1;	}
		public	boolean	isFull()								{	return	topOfStack	==	stackArray.length
-	1;	}

		//	Static	method																																																				(3)
		public	static	int	getInstanceCount()	{	return	counter;	}
}

Click	here	to	view	code	image
//	File:	PrintableCharStack.java
public	class	PrintableCharStack	extends	CharStack	{																	//
(1)

		//	Instance	method
		public	void	printStackElements()	{																																//
(2)
				for	(int	i	=	0;	i	<=	topOfStack;	i++)
						System.out.print(stackArray[i]);	//	print	each	char	on	terminal
				System.out.println();
		}

		//	Constructor	calls	the	constructor	of	the	superclass	explicitly.
		PrintableCharStack(int	capacity)	{	super(capacity);	}													//
(3)
}

Click	here	to	view	code	image
//	File:	Client.java
public	class	Client	{

		public	static	void	main(String[]	args)	{

				//	Create	a	printable	character	stack.
				PrintableCharStack	stack	=	new	PrintableCharStack(40);

				//	Create	a	string	to	push	on	the	stack:
				String	str	=	“!no	tis	ot	nuf	era	skcatS”;
				System.out.println(“Original	string:	”	+	str);
				int	length	=	str.length();

				//	Push	the	string	char	by	char	onto	the	stack:
				for	(int	i	=	0;	i	<	length;	i++)	{
						stack.push(str.charAt(i));
				}

				System.out.print(“Stack	contents:	“);
				stack.printStackElements();

				System.out.print(“Reversed	string:	“);
				//	Pop	and	print	each	char	from	the	stack:
				while	(!stack.isEmpty())	{
						System.out.print(stack.pop());
				}
				System.out.println();

				System.out.print(“Stack	contents:	“);
				stack.printStackElements();
		}
}

2	Language	Fundamentals
2.1	The	following	program	compiles	and	runs	without	errors:

Click	here	to	view	code	image
//	File:	Temperature.java
/*	Identifiers	and	keywords	in	Java	are	case	sensitive.	Therefore,	the
			the	name	of	the	public	class	must	match	the	name	of	the	file,	and
keywords	must
			all	be	written	in	lowercase.	The	name	of	the	String	class	has	an
			uppercase	S.	The	main	method	must	be	static	and	takes	an	array	of
			String	objects	as	an	argument.	*/
public	class	Temperature	{
		public	static	void	main(String[]	args)	{		//	Correct	method	signature
				double	fahrenheit	=	62.5;
				//	A	multiple-line	comment,	which	can	span	several	lines,	starts	with
				//	the	character	sequence	/*	and	ends	with	the	character	sequence	*/.
				/*	Convert	*/
				double	celsius	=	f2c(fahrenheit);
				//	Character	literals	are	enclosed	in	single	quotes;
				//	string	literals	are	enclosed	in	double	quotes.
				//	Only	the	first	character	literal	is	quoted	as	a	string	to	avoid
addition.
				//	The	second	char	literal	is	implicitly	converted	to	its	string
				//	representation,	as	string	concatenation	is	performed	by
				//	the	last	+	operator.
				//	Java	is	case	sensitive.	The	name	Celsius	should	be	changed	to
				//	the	variable	name	celsius.
				System.out.println(fahrenheit	+	“F”	+	”	=	”	+	celsius	+	‘C’);
		}
		/*	Method	should	be	declared	static.	*/
		static	double	f2c(double	fahr)	{		//	Note	parameter	type	should	be

double.
				return	(fahr	-	32.0)	*	5.0	/	9.0;
		}
}

3	Declarations
3.1

Click	here	to	view	code	image
public	class	QuizGrader	{

		/**	Enum	type	to	represent	the	result	of	answering	a	question.	*/
		enum	Result	{	CORRECT,	WRONG,	UNANSWERED	}

		private	static	final	int	PASS_MARK	=	5;
		private	static	String[]	correctAnswers	=	{	“C”,	“A”,	“B”,	“D”,
																																													“B”,	“C”,	“C”,	“A”	};

		public	static	void	main(String[]	args)	{

				System.out.println(“Question		Submitted	Ans.	Correct	Ans.		Result”);

				//	Counters	for	miscellaneous	statistics:
				int	numOfCorrectAnswers	=	0;
				int	numOfWrongAnswers	=	0;
				int	numOfUnanswered	=	0;

				//	Loop	through	submitted	answers	and	correct	answers:
				for	(int	i	=	0;	i	<	args.length;	i++)	{
						String	submittedAnswer	=	args[i];
						String	correctAnswer	=	correctAnswers[i];
						Result	result	=	determineResult(submittedAnswer,	correctAnswer);

						//	Print	report	for	current	question.
						System.out.printf(“%5d%10s%15s%15s%n”,
																									i+1,	submittedAnswer,	correctAnswer,	result);
						//	Accumulate	statistics:
						switch(result)	{
								case	CORRECT:				numOfCorrectAnswers++;	break;
								case	WRONG:						numOfWrongAnswers++;			break;
								case	UNANSWERED:	numOfUnanswered++;					break;
						}
				}
				//	Print	summary	of	statistics:
				System.out.println(“No.	of	correct	answers:						”	+
numOfCorrectAnswers);
				System.out.println(“No.	of	wrong	answers:								”	+
numOfWrongAnswers);
				System.out.println(“No.	of	questions	unanswered:	”	+
numOfUnanswered);
				System.out.println(“The	candidate	”	+
																				(numOfCorrectAnswers	>=	PASS_MARK	?	“PASSED.”	:
“FAILED.”));
		}

		/**	Determines	the	result	of	answer	to	a	question.	*/
		public	static	Result	determineResult(String	submittedAnswer,
																																							String	correctAnswer)	{
				Result	result	=	null;
				if	(submittedAnswer.equals(correctAnswer))
						result	=	Result.CORRECT;

				else	if	(submittedAnswer.equals(“X”))
						result	=	Result.UNANSWERED;
				else
						result	=	Result.WRONG;
				return	result;
		}
}

4	Access	Control
4.1

Click	here	to	view	code	image
//	File:	Account.java
package	com.megabankcorp.records;

public	class	Account	{	}

//	File:	Database.java
//	Specify	package.
package	com.megabankcorp.system;

//	Refer	to	the	Account	class	by	using	its	simple	name.
import	com.megabankcorp.records.Account;

//	Class	must	be	abstract	since	it	has	abstract	methods.
public	abstract	class	Database	{

		//	Abstract	and	accessible	to	all	classes	in	any	package.
		public	abstract	void	deposit(Account	acc,	double	amount);

		//	Abstract	and	accessible	to	all	classes	in	any	package.
		public	abstract	void	withdraw(Account	acc,	double	amount);

		//	Abstract	and	accessible	to	all	classes	within	its	own	package
		//	and	to	subclasses	in	other	packages.
		protected	abstract	double	balance(Account	acc);

		//	Cannot	be	overridden	by	a	subclass	and	accessible	only
		//	to	classes	within	its	own	package.
		final	void	transfer(Account	from,	Account	to,	double	amount)	{
				withdraw(from,	amount);
				deposit(to,	amount);
		}
}

5	Operators	and	Expressions
5.1

Click	here	to	view	code	image
//	File:	SunlightSolution.java
public	class	SunlightSolution	{
		public	static	void	main(String[]	args)	{
				//	Distance	from	sun	(150	million	kilometers)
				/*	The	max	value	for	int	is	2_147_483_647,	so	using	int	here	will
							work.	*/
				int	kmFromSun	=	150_000_000;

				//	Again,	using	int	for	this	value	is	OK.
				int	lightSpeed	=	299_792_458;	//	Meters	per	second

				//	Convert	distance	to	meters.
				/*	The	result	of	this	equation	will	not	fit	in	an	int,
							so	we	use	a	long	instead.	We	need	to	ensure	that	the	values	that
							are	multiplied	are	actually	multiplied	using	long
							data	types,	and	not	multiplied	as	int	data	types	and	later
							converted	to	long.	The	L	suffix	on	the	1000L	integer
							literal	ensures	this.	The	value	of	the	variable	kmFromSun	will
							implicitly	be	converted	from	int	to	long	to	match	the
							data	type	of	the	other	factor.	The	conversion	can	be	done
							implicitly	by	the	compiler	since	the	conversion	represents
							a	widening	of	the	data	type.	*/
				long	mFromSun	=	kmFromSun	*	1000L;

				/*	We	know	that	the	result	value	will	fit	in	an	int.
							However,	the	narrowing	conversion	on	assignment	from	long	to	int
							in	this	case	requires	a	cast.*/
				int	seconds	=	(int)	(mFromSun	/	lightSpeed);

				System.out.print(“Light	will	use	“);
				printTime(seconds);
				System.out.println(”	to	travel	from	the	sun	to	the	earth.”);
		}

		/*	No	changes	necessary	in	this	method.	*/
		public	static	void	printTime(int	sec)	{
				int	min	=	sec	/	60;
				sec	=	sec	-	(min	*	60);
				System.out.print(min	+	”	minute(s)	and	”	+	sec	+	”	second(s)”);
		}
}

6	Control	Flow
6.1	Finding	primes	using	for	loops.

Click	here	to	view	code	image
//	File:	ForPrimes.java
public	class	ForPrimes	{
		private	static	final	int	MAX	=	100;
		public	static	void	main(String[]	args)	{
				numbers:
						for	(int	num	=	1;	num	<	MAX;	num++)	{
								int	divLim	=	(int)	Math.sqrt(num);
								for	(int	div	=	2;	div	<=	divLim;	div++)	{
										if	((num	%	div)	==	0)	{
												continue	numbers;
										}
								}
								System.out.println(num);
						}
		}
}

Finding	primes	using	while	loops.
Click	here	to	view	code	image

//	File:	WhilePrimes.java
public	class	WhilePrimes	{
		private	static	final	int	MAX	=	100;
		public	static	void	main(String[]	args)	{

				int	num	=	1;
				numbers:
						while	(num	<	MAX)	{
								int	number	=	num++;
								int	divLim	=	(int)	Math.sqrt(number);
								int	div	=	2;
								while	(div	<=	divLim)	{
										if	((number	%	div++)	==	0)	{
												continue	numbers;
										}
								}
								System.out.println(number);
						}
		}
}

6.2
Click	here	to	view	code	image

package	energy;
/**	A	PowerPlant	with	a	reactor	core.
				The	solution	presented	here	is	provided	by	Jennie	Yip.	*/
public	class	PowerPlant	{
		/**	Each	power	plant	has	a	reactor	core.
						This	field	has	package	accessibility	so	that	the	Control	class,
						defined	in	the	same	package,	can	access	it.	*/
		final	Reactor	core;

		/**	Initializes	the	power	plant,	creates	a	reactor	core.	*/
		PowerPlant()	{
				core	=	new	Reactor();
		}

		/**	Sounds	the	alarm	to	evacuate	the	power	plant.	*/
		public	void	soundEvacuateAlarm()	{
				//	…	implementation	unspecified	…
		}

		/**	@return	the	level	of	reactor	output	that	is	most	desirable	at	this
time.
						(Units	are	unspecified.)	*/
		public	int	getOptimalThroughput()	{
				//	…	implementation	unspecified	…
				return	0;
		}

		/**	The	main	entry	point	of	the	program:	sets	up	a	PowerPlant	object
						and	a	Control	object	and	lets	the	Control	object	run	the	power
plant.	*/
		public	static	void	main(String[]	args)	{
				PowerPlant	plant	=	new	PowerPlant();
				Control	ctrl	=	new	Control(plant);
				ctrl.runSystem();
		}
}

//__

/**	A	reactor	core	that	has	a	throughput	that	can	be	either	decreased	or
				increased.	*/
class	Reactor	{
		/**	@return	the	current	throughput	of	the	reactor.	(Units	are

unspecified.)	*/
		public	int	getThroughput()	{
				//	…	implementation	unspecified	…
				return	0;
		}

		/**	@return	true	if	the	reactor	status	is	critical,	false	otherwise.	*/
		public	boolean	isCritical()	{
				//	…	implementation	unspecified	…
				return	false;
		}

		/**	Asks	the	reactor	to	increase	throughput.	*/
		void	increaseThroughput()	throws	ReactorCritical	{
				//	…	implementation	unspecified	…
		}

		/**	Asks	the	reactor	to	decrease	throughput.	*/
		void	decreaseThroughput()	{
				//	…	implementation	unspecified	…
		}
}

//__

/**	This	exception	class	should	be	used	to	report	that	the	reactor	status
is
				critical.	*/
class	ReactorCritical	extends	Exception	{}

//__

/**	A	controller	that	will	manage	the	power	plant	to	make	sure	that	the
				reactor	runs	with	optimal	throughput.	*/
class	Control	{
		private	final	PowerPlant	thePlant;

		static	final	int	TOLERANCE	=	10;

		/**	@param	p	the	power	plant	to	control	*/
		public	Control(PowerPlant	p)	{
				thePlant	=	p;
		}

		/**	Run	the	power	plant	by	continuously	monitoring	the
						optimal	throughput	and	the	actual	throughput	of	the	reactor.
						If	the	throughputs	differ	by	more	than	10	units	(i.e.	tolerance),
						adjust	the	reactor	throughput.
						If	the	reactor	goes	critical,	the	evacuate	alarm	is
						sounded	and	the	reactor	is	shut	down.
						The	runSystem()	method	calls	the	methods	needAdjustment(),
						adjustThroughput(),	and	shutdown().	*/
		public	void	runSystem()	{
				try	{
						while	(true)	{	//	infinite	loop
								int	optimalThroughput	=	thePlant.getOptimalThroughput();
								if	(needAdjustment(optimalThroughput))	{
										adjustThroughput(optimalThroughput);
								}
						}
				}	catch	(ReactorCritical	rc)	{
						thePlant.soundEvacuateAlarm();

				}	finally	{
						shutdown();
				}
		}

		/**	Reports	whether	the	throughput	of	the	reactor	needs	adjusting.
						This	method	should	also	monitor	and	report	if	the	reactor	goes
critical.
						@param	target	the	desired	throughput.
						@return	true	if	the	optimal	and	actual	throughput	values	differ	by
						more	than	10	units.
						@throws	ReactorCritical	if	the	reactor	goes	critical	*/
		public	boolean	needAdjustment(int	target)	throws	ReactorCritical	{
				/*	We	added	the	throws	clause	to	the	method	declaration	so	that
							the	method	can	throw	a	ReactorCritical	exception	if	the	reactor
							goes	critical.	*/
				if	(thePlant.core.isCritical())	{
						throw	new	ReactorCritical();
				}
				return	Math.abs(thePlant.core.getThroughput()	-	target)	>	TOLERANCE;
		}

		/**	Adjusts	the	throughput	of	the	reactor	by	calling
increaseThroughput()
						and	decreaseThroughput()	methods	until	the	actual	throughput	is
within
						10	units	of	the	target	throughput.
						@param	target	the	desired	throughput.
						@throws	ReactorCritical	if	the	reactor	goes	critical.	*/
		public	void	adjustThroughput(int	target)	throws	ReactorCritical	{
				/*	We	added	the	throws	clause	to	the	method	declaration	because
							this	method	does	not	want	to	handle	any	ReactorCritical	exception
							thrown	by	the	increaseThroughput()	method.	*/
				while	(needAdjustment(target))	{
						if	((thePlant.core.getThroughput()	-	target)	>	TOLERANCE)	{
								thePlant.core.increaseThroughput();
						}	else	{
								thePlant.core.decreaseThroughput();
						}
				}
		}

		/**	Shuts	down	the	reactor	by	lowering	the	throughput	to	0.	*/
		public	void	shutdown()	{
				while	(thePlant.core.getThroughput()	>	0)	{
						thePlant.core.decreaseThroughput();
				}
		}
}

7	Object-Oriented	Programming
7.1

Click	here	to	view	code	image
//	File:	Exercise1.java
package	chap07pe1;

interface	Function	{
		int	evaluate(int	arg);
}

class	Half	implements	Function	{
		@Override	public	int	evaluate(int	arg)	{
				return	arg/2;
		}
}

public	class	Exercise1	{

		public	static	int[]	applyFunction(int…	arrIn)	{
				int	length	=	arrIn.length;
				int[]	arrOut	=	new	int[length];
				Function	func	=	new	Half();
				for	(int	i	=	0;	i	<	length;	i++)	{
						arrOut[i]	=	func.evaluate(arrIn[i]);
				}
				return	arrOut;
		}

		public	static	void	main(String[]	args)	{

				//	Halve	the	values.
				int[]	myArr	=	applyFunction(2,	4,	6,	8);

				System.out.println(“Array	with	values	halved	by	integer	division:”);
				for	(int	value	:	myArr)	{
						System.out.println(value);
				}
		}
}

7.2
Click	here	to	view	code	image

//	File:	Exercise2.java
package	chap07pe2;

interface	Function	{
		int	evaluate(int	arg);
}

class	Half	implements	Function	{
		@Override	public	int	evaluate(int	arg)	{
				return	arg/2;
		}
}

class	Print	implements	Function	{
		@Override	public	int	evaluate(int	arg)	{
				System.out.println(arg);
				return	arg;
		}
}

public	class	Exercise2	{
		public	static	int[]	applyFunction(Function	func,	int…	arrIn)	{
				int	length	=	arrIn.length;
				int[]	arrOut	=	new	int[length];
				for	(int	i	=	0;	i	<	length;	i++)	{
						arrOut[i]	=	func.evaluate(arrIn[i]);
				}
				return	arrOut;
		}

		public	static	void	main(String[]	args)	{
				//	Create	a	print	function.
				Function	print	=	new	Print();

				System.out.println(“Original	values:”);
				int[]	myArr	=	applyFunction(print,	2,	4,	6,	8);

				//	Halve	the	array	values.
				myArr	=	applyFunction(new	Half(),	myArr);

				System.out.println(“Halved	values:”);
				applyFunction(print,	myArr);
		}
}

8	Fundamental	Classes
8.1

Click	here	to	view	code	image
/**
	*	Aggregate	(non-generic)	pairs	of	arbitrary	objects.
	*/
public	final	class	Pair	{
		private	final	Object	first,	second;

		/**	Construct	a	Pair	object.	*/
		public	Pair(Object	one,	Object	two)	{
				first	=	one;
				second	=	two;
		}

		/**	@return	the	first	constituent	object.	*/
		public	Object	getFirst()	{	return	first;	}

		/**	@return	the	second	constituent	object.	*/
		public	Object	getSecond()	{	return	second;	}

		/**	@return	true	if	the	pair	of	objects	are	identical.	*/
		@Override
		public	boolean	equals(Object	other)	{
				if	(this	==	other)	return	true;
				if	(!	(other	instanceof	Pair))	return	false;
				Pair	otherPair	=	(Pair)	other;
				return	first.equals(otherPair.first)	&&
second.equals(otherPair.second);
		}

		/**	@return	a	hash	code	for	the	aggregate	pair.	*/
		@Override
		public	int	hashCode()	{
				//	XORing	the	hash	codes	to	create	a	hash	code	for	the	pair.
				return	first.hashCode()	^	second.hashCode();
		}

		/**	@return	a	textual	representation	of	the	aggregated	object.	*/
		@Override
		public	String	toString()	{
				return	“[”	+	first	+	“,”	+	second	+	“]”;
		}
}

8.2
Click	here	to	view	code	image

/**	Determine	whether	a	string	is	a	case-sensitive	palindrome.	*/
public	class	Palindrome	{
		public	static	void	main(String[]	args)	{
				if	(args.length	!=	1)	{
						System.out.println(“Usage:	java	Palindrome	<word>”);
						return;
				}
				String	word	=	args[0];
				StringBuilder	reverseWord	=	new	StringBuilder(word).reverse();
				boolean	isPalindrome	=	word.equals(reverseWord.toString());
				System.out.println(“The	word	”	+	word	+	”	is	”	+
																							(isPalindrome	?	””	:	“not	“)	+	“a	palindrome”);
		}
}

9	Object	Lifetime
No	programming	exercises.

10	The	ArrayList<E>	Class	and	Lambda	Expressions
10.1

Click	here	to	view	code	image
/*	Find	all	elements	in	a	list	that	satisfy	all	predicates.	*/
import	java.util.ArrayList;
import	java.util.List;
import	java.util.function.Predicate;

public	class	FilterFunSolution	{

		public	static	void	main(String[]	args)
{																															//	(1)
				//	Create	a	list	of	strings:
				String[]	strings	=	{	“Cheer	up!”,	“7Up	coming	up!”,	null,
																									“Bottoms	up!”,“Get	down!”,	“What’s	up?”	};
				List<String>	strList	=	new	ArrayList<>();
				/*	WRITE	CODE	TO	POPULATE	THE	LIST	OF	STRINGS	HERE.	*/
				for	(String	str	:	strings)
						strList.add(str);
				System.out.println(strList);

				//	Create	a	list	of	predicates.
				List<Predicate<String>>	predList	=	new	ArrayList<>();
				/*	WRITE	CODE	TO	POPULATE	THE	LIST	OF	PREDICATES	HERE.	*/
				predList.add(str	->	str	!=	null);
				predList.add(str	->	str.toLowerCase().contains(“up”));
				predList.add(str	->	Character.isLetter(str.charAt(0)));
				System.out.println(predList);

				//	Apply	filtering.
				applyAllPredicates(strList,	predList);
				applyAllPredicatesAlt(strList,	predList);
				applyAllPredicatesGenAlt(strList,	predList);
		}

		/**
			*	Prints	all	the	strings	in	the	specified	list	that	satisfy	all	the

			*	predicates	in	the	list	of	predicates.
			*	It	uses	the	andPredicates()	method	at	(3).
			*	@param	list								List	of	strings	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	void	applyAllPredicates(List<String>
list,															//	(2)
																																								List<Predicate<String>>
predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
				List<String>	resultList	=	new	ArrayList<>();
				for	(String	str	:	list)	{
						if	(andPredicates(str,	predicates))	{
								resultList.add(str);
						}
				}
				System.out.println(resultList);
		}

		/**
			*	Determines	whether	a	string	satisfies	all	the	predicates.
			*	@param	str									String	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*	@return												true	only	if	the	string	satisfies	all	the
predicates
			*/
		public	static	boolean	andPredicates(String
str,																								//	(3)
																																						List<Predicate<String>>	predicates)
{
				/*	IMPLEMENT	THIS	METHOD	*/
				boolean	proceed	=	true;
				for	(Predicate<String>	p	:	predicates)	{
						proceed	=	proceed	&&	p.test(str);
						if	(!proceed)	break;
				}
				return	proceed;
		}

		/**
			*	Removes	all	the	elements	in	the	specified	list	that	do	not	satisfy
all	the
			*	predicates	in	the	list	of	predicates,	and	prints	the	remaining
elements
			*	that	do.
			*	Uses	Predicate.and(),	Predicate.negate(),	and	List.removeIf()
methods.
			*	@param	list								List	of	strings	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	void	applyAllPredicatesAlt(List<String>
list,												//	(4)
																																											List<Predicate<String>>
predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
				Predicate<String>	compPred	=	s	->	true;
				for	(Predicate<String>	p	:	predicates)	{
						compPred	=	compPred.and(p);
				}
				list.removeIf(compPred.negate());
				System.out.println(list);
		}

		/**	Generic	version.
			*	Removes	all	the	elements	in	the	specified	list	that	do	not	satisfy
all	the
			*	predicates	in	the	list	of	predicates,	and	prints	the	remaining
elements
			*	that	do.
			*	Uses	Predicate.and(),	Predicate.negate(),	and	List.removeIf()
methods.
			*	@param	list								List	of	elements	to	apply	the	predicates	on
			*	@param	predicates		List	of	predicates	to	apply
			*/
		public	static	<T>	void	applyAllPredicatesGenAlt(List<T>
list,										//	(5)
																																	List<Predicate<T>>	predicates)	{
				/*	IMPLEMENT	THIS	METHOD	*/
				Predicate<T>	compPred	=	s	->	true;
				for	(Predicate<T>	p	:	predicates)	{
						compPred	=	compPred.and(p);
				}
				list.removeIf(compPred.negate());
				System.out.println(list);
		}
}

11	Date	and	Time
11.1

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.Period;

/**	Class	represents	statistics	about	an	astronaut.	*/
public	class	Astronaut	{

		private	final	String								astronautName;
		private	final	LocalDateTime	arrivalDateTime;
		private	final	LocalDate					scheduledReturnDate;
		private	final	Period								actualPeriodOfStay;

		public	Astronaut(String	name,	LocalDateTime	arrival,	Period	period,
																			LocalDate	returnDate)	{
				astronautName	=	name;
				arrivalDateTime	=	arrival;
				actualPeriodOfStay	=	period;
				scheduledReturnDate	=	returnDate;
		}

		public	String	getAstronautName()										{	return	astronautName;	}
		public	LocalDateTime	getArrivalDateTime()	{	return	arrivalDateTime;	}
		public	Period	getActualPeriodOfStay()					{	return	actualPeriodOfStay;
}
		public	LocalDate	getScheduledReturnDate()	{	return	scheduledReturnDate;
}

		/**	@return	LocalDate	The	actual	date	of	return.	*/
		public	LocalDate	getActualReturnDate()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
				return	arrivalDateTime.toLocalDate().plus(actualPeriodOfStay);
		}

		/**
			*	Returns	status	of	the	actual	return	compared	to	the	scheduled
return,
			*	whether	it	was	on	time,	delayed,	or	early.
			*	@return	String	Indicating	“On	time”,	“Delayed”,	or	“Early”.
			*/
		public	String	getReturnStatus()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
				String	status	=	“On	time”;
				LocalDate	actualReturnDate	=	getActualReturnDate();
				if	(scheduledReturnDate.isBefore(actualReturnDate))	{
						status	=	“Delayed”;
				}	else	if	(scheduledReturnDate.isAfter(actualReturnDate))	{
						status	=	“Early”;
				}
				return	status;
		}

		/**	@return	Period	The	planned	stay	according	to	the	scheduled
return.*/
		public	Period	getPlannedPeriodOfStay()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
				return	Period.between(arrivalDateTime.toLocalDate(),
scheduledReturnDate);
		}

		/**
			*	@return	Period	The	difference	between	the	actual	return	date	and
			*																the	scheduled	return	date.	*/
		public	Period	getDiffPeriodOfStay()	{
				/*	IMPLEMENT	THIS	METHOD.	*/
				return	scheduledReturnDate.until(getActualReturnDate());
				//	Following	code	has	logical	error,	as	a	period	has	no	notion	of	a
date.
				//	return	actualPeriodOfStay.minus(getPlannedPeriodOfStay());
		}
}

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.Period;
import	java.time.format.DateTimeFormatter;

public	class	SpaceStationStats	{

		public	static	void	main(String[]	args)	{
				//	Astronaut	data
				Astronaut[]	astronauts	=	{
								new	Astronaut(“Astro	Ali”,
												LocalDateTime.of(2010,	3,	1,	10,	45),	Period.ofMonths(3),
												LocalDate.of(2010,	5,	1)),
								new	Astronaut(“Laila	Lightyear”,
												LocalDateTime.of(2015,	2,	1,	17,	0),		Period.ofWeeks(30),
												LocalDate.of(2015,	6,	30)),
								new	Astronaut(“Orbit	Orwell”,
												LocalDateTime.of(2014,	3,	1,	20,	20),	Period.ofMonths(6),
												LocalDate.of(2014,	9,	1)),
								new	Astronaut(“Rocket	Rogers”,
												LocalDateTime.of(2013,	7,	31,	15,	30),	Period.ofDays(60),
												LocalDate.of(2013,	9,	30)),
								new	Astronaut(“Sam	Spacey”,

												LocalDateTime.of(2009,	1,	1,	12,	15),	Period.ofDays(90),
												LocalDate.of(2009,	11,	1)),
				};
				printReport(astronauts);
		}

		/**
			*	Method	prints	statistics	about	stay	on	a	space	station.
			*	See	the	exercise	text	for	the	format	of	the	report.
			*	@param	astronauts	The	array	with	astronaut	data
			*/
		private	static	void	printReport(Astronaut[]	astronauts)	{
				System.out.println(“Name													Arr.Date		Sched.Return”
																							+	”	Act.Return		Status	Act.Stay	Sched.Stay	Diff”);
				String	reportFormatStr	=	“%-16s%10s%12s%12s%8s%6s%10s%9s%n”;
				/*	IMPLEMENT	THE	REST	OF	THE	METHOD.	*/
				DateTimeFormatter	df	=	DateTimeFormatter.ofPattern(“uuuu/MM/dd”);
					for	(Astronaut	astro	:	astronauts)	{
							String	astronautName	=	astro.getAstronautName();
							LocalDate	arrivalDate	=	astro.getArrivalDateTime().toLocalDate();
							LocalDate	scheduledReturnDate	=	astro.getScheduledReturnDate();
							LocalDate	actualReturnDate	=	astro.getActualReturnDate();
							String	status	=	astro.getReturnStatus();
							Period	periodOfStay	=	astro.getActualPeriodOfStay();
							Period	plannedPeriodOfStay	=	astro.getPlannedPeriodOfStay();
							Period	diffPeriodOfStay	=	astro.getDiffPeriodOfStay();

							System.out.printf(reportFormatStr,	astronautName,
																									arrivalDate.format(df),
scheduledReturnDate.format(df),
																									actualReturnDate.format(df),	status,
																									periodOfStay,	plannedPeriodOfStay,
diffPeriodOfStay);
					}
		}
}

Appendix	E.	Mock	Exam:	Java	SE	8	Programmer	I

This	is	a	mock	exam	for	the	Java	SE	8	Programmer	I	exam.	It	comprises	brand-new
questions,	which	are	similar	to	the	questions	that	can	be	expected	on	the	real	exam.
Working	through	this	exam	will	give	you	a	good	indication	of	how	well	you	are	prepared
for	the	real	exam,	and	whether	any	topics	need	further	study.	Annotated	answers	to	the
questions	can	be	found	in	Appendix	F.

Questions
Q1	Which	expression	statements,	when	inserted	at	(1),	will	cause	the	following	class	to

compile	without	errors?
public	class	Q6db8	{
		private	int	a;
		private	int	b	=	0;
		private	static	int	c;

		public	void	m()	{
				int	d;
				int	e	=	0;

				//	(1)	INSERT	CODE	HERE.
		}
}

Select	the	four	correct	answers.

(a)	a++;

(b)	b++;

(c)	c++;

(d)	d++;

(e)	e++;

Q2	What	will	be	printed	when	the	following	program	is	run?
Click	here	to	view	code	image

public	class	Qd803	{
		public	static	void	main(String[]	args)	{
				String	word	=	“restructure”;
				System.out.println(word.substring(2,	3));
		}
}

Select	the	one	correct	answer.

(a)	est

(b)	es

(c)	str

(d)	st

(e)	s

Q3	What	will	be	printed	when	the	following	program	is	run?
Click	here	to	view	code	image

public	class	Q8929	{
		public	static	void	main(String[]	args)	{
				for	(int	i	=	12;	i	>	0;	i	-=	3)
						System.out.print(i);
				System.out.println(””);
		}
}

Select	the	one	correct	answer.

(a)	12

(b)	129630

(c)	12963

(d)	36912

(e)	None	of	the	above.

Q4	What	will	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

public	class	Q275d	{
		private	static	int	a;
		private	int	b;

		public	Q275d()	{
				int	c;
				c	=	a;									//	(1)
				a++;											//	(2)
				b	+=	c;								//	(3)
				a	-=	b;								//	(4)
		}

		public	static	void	main(String[]	args)	{
				new	Q275d();
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile	because	of	the	line	marked	(1).

(b)	The	program	will	fail	to	compile	because	of	the	line	marked	(2).

(c)	The	program	will	fail	to	compile	because	of	the	line	marked	(3).

(d)	The	program	will	fail	to	compile	because	of	the	line	marked	(4).

(e)	The	program	will	compile	and	run	without	any	problems.

Q5	What	will	be	printed	when	the	following	program	is	run?
Click	here	to	view	code	image

class	Base	{
		protected	int	i;

		Base()	{	add(1);	}
		void	add(int	v)	{	i	+=	v;	}
		void	print()	{	System.out.println(i);	}
}

class	Extension	extends	Base	{
		Extension()	{	add(2);	}
		void	add(int	v)	{	i	+=	v*2;	}
}

public	class	Qd073	{
		public	static	void	main(String[]	args)	{
				bogo(new	Extension());
		}

		static	void	bogo(Base	b)	{
				b.add(8);
				b.print();
		}
}

Select	the	one	correct	answer.

(a)	9

(b)	11

(c)	13

(d)	21

(e)	22

Q6	Which	is	the	first	line	in	the	following	code	after	which	the	object	created	in	the	line
marked	(0)	will	be	a	candidate	for	garbage	collection,	assuming	no	compiler
optimizations	are	done?

Click	here	to	view	code	image
class	Widget	{
		private	String	message;

		Widget(String	message)	{
				this.message	=	message;
		}

		public	String	toString()	{
				return	this.message;
		}
}

public	class	Q76a9	{
		static	Widget	fiddle()	{
				Widget	a	=	new	Widget(“hello”);
				Widget	b	=	new	Widget(“bye”);				//	(0)
				Widget	c	=	new	Widget(b	+	“!”);		//	(1)
				Widget	d	=	b;																				//	(2)
				b	=	a;																											//	(3)
				d	=	a;																											//	(4)
				return	c;																								//	(5)
		}
		public	static	void	main(String[]	args)	{
				Widget	giz	=	fiddle();

				System.out.println(giz);									//	(6)
		}
}

Select	the	one	correct	answer.

(a)	The	line	marked	(1)

(b)	The	line	marked	(2)

(c)	The	line	marked	(3)

(d)	The	line	marked	(4)

(e)	The	line	marked	(5)

(f)	The	line	marked	(6)

Q7	Which	methods	from	the	String	or	the	StringBuilder	class	modify	the
object	on	which	they	are	invoked?

Select	the	two	correct	answers.

(a)	The	charAt()	method	of	the	String	class

(b)	The	toUpperCase()	method	of	the	String	class

(c)	The	replace()	method	of	the	String	class

(d)	The	replace()	method	of	the	StringBuilder	class

(e)	The	reverse()	method	of	the	StringBuilder	class

(f)	The	charAt()	method	of	the	StringBuilder	class

Q8	Which	of	the	following	statements,	when	inserted	independently	at	(1),	will	throw	a
runtime	exception?

Click	here	to	view	code	image
class	A	{}

class	B	extends	A	{}

class	C	extends	A	{}

public	class	Q3ae4	{
		public	static	void	main(String[]	args)	{
				A	x	=	new	A();
				B	y	=	new	B();
				C	z	=	new	C();

				//	(1)	INSERT	CODE	HERE.

		}
}

Select	the	one	correct	answer.

(a)	x	=	y;

(b)	z	=	x;

(c)	y	=	(B)	x;

(d)	z	=	(C)	y;

(e)	y	=	(A)	y;

Q9	Given	the	following	program:
Click	here	to	view	code	image

public	class	Q400A60	{
		public	static	void	main(String[]	args)	{
				String	str	=	“loop	or	not	to	loop”;
				String[]	strs	=	{“loop”,	“or”,	“not”,	“to”,	“loop”};
				//	(1)	INSERT	LOOP	HERE.
		}
}

Which	code,	when	inserted	independently	at	(1),	will	compile	without	errors?

Select	the	four	correct	answers.

(a)
for	(char	ch	:	str)
		System.out.print(ch);

(b)
Click	here	to	view	code	image

for	(char	ch	:	str.toCharArray())
		System.out.print(ch);

(c)
Click	here	to	view	code	image

for	(Character	ch	:	str.toCharArray())
		System.out.print(ch);

(d)
Click	here	to	view	code	image

for	(Character	ch	:	str.toCharArray())
		System.out.print(ch.charValue());

(e)
for	(String	str	:	strs)
		System.out.print(str);

(f)
for	(String	elt	:	strs[])
		System.out.print(elt);

(g)
for	(String	elt	:	strs)
		System.out.print(elt);

(h)
Click	here	to	view	code	image

for	(Character	ch	:	strs[strs.length-1].toArray())
		System.out.print(ch);

Q10	Which	code	initializes	the	two-dimensional	array	matrix	so	that	matrix[3]
[2]	is	a	valid	element?

Select	the	two	correct	answers.

(a)
int[][]	matrix	=	{
					{	0,	0,	0	},
					{	0,	0,	0	}
};

(b)
Click	here	to	view	code	image

int	matrix[][]	=	new	int[4][];
for	(int	i	=	0;	i	<	matrix.length;	i++)	matrix[i]	=	new	int[3];

(c)
int	matrix[][]	=	{
					0,	0,	0,	0,
					0,	0,	0,	0,
					0,	0,	0,	0,
					0,	0,	0,	0
};

(d)	int	matrix[3][2];

(e)	int[]	matrix[]	=	{	{0,	0,	0},	{0,	0,	0},	{0,	0,	0},
{0,	0,	0}	};

Q11	What	will	be	the	result	of	attempting	to	run	the	following	program?
Click	here	to	view	code	image

public	class	Qaa75	{
		public	static	void	main(String[]	args)	{
				String[][][]	arr	=	{
								{	{},	null	},
								{	{	“1”,	“2”	},	{	“1”,	null,	“3”	}	},
								{},
								{	{	“1”,	null	}	}
				};
								System.out.println(arr.length	+	arr[1][2].length);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	throw	an	ArrayIndexOutOfBoundsException	and
terminate.

(b)	The	program	will	throw	a	NullPointerException	and	terminate.

(c)	The	program	will	print	4.

(d)	The	program	will	print	6.

(e)	The	program	will	print	7.

Q12	Which	expressions	will	evaluate	to	true	if	preceded	by	the	following	code?

Click	here	to	view	code	image
String	a	=	“hello”;
String	b	=	new	String(a);
String	c	=	a;
char[]	d	=	{	‘h’,	‘e’,	‘l’,	‘l’,	‘o’	};

Select	the	two	correct	answers.

(a)	(a	==	"Hello")

(b)	(a	==	b)

(c)	(a	==	c)

(d)	a.equals(b)

(e)	a.equals(d)

Q13	Which	statements	are	true	about	the	value	of	a	field,	when	no	explicit	initial	value
has	been	assigned?

Select	the	two	correct	answers.

(a)	The	value	of	a	field	of	type	int	is	undetermined.

(b)	The	value	of	a	field	of	any	numeric	type	is	0.

(c)	The	compiler	may	issue	an	error	if	the	field	is	used	in	a	method	before	it	is
initialized.

(d)	A	field	of	type	String	will	denote	the	empty	string	("").

(e)	The	value	of	all	fields	that	are	references	is	null.

Q14	Which	main()	method	will	succeed	in	printing	the	last	program	argument	and
terminate	normally	with	no	output,	if	no	program	arguments	are	specified?

Select	the	one	correct	answer.

(a)
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{
			if	(args.length	!=	0)
					System.out.println(args[args.length-1]);
}

(b)
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{
			try	{	System.out.println(args[args.length]);	}
			catch	(ArrayIndexOutOfBoundsException	e)	{}
}

(c)
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{
			int	ix	=	args.length;
			String	last	=	args[ix];

			if	(ix	!=	0)	System.out.println(last);
}

(d)
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{
			int	ix	=	args.length-1;
			if	(ix	>	0)	System.out.println(args[ix]);
}

(e)
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{
			try	{	System.out.println(args[args.length-1]);	}
			catch	(NullPointerException	e)	{}
}

Q15	What	will	be	printed	when	the	following	program	is	executed?
Click	here	to	view	code	image

public	class	Qcb90	{
		private	int	a;
		private	int	b;
		public	void	f()	{
				a	=	0;
				b	=	0;
				int[]	c	=	{	0	};
				g(b,	c);
				System.out.println(a	+	”	”	+	b	+	”	”	+	c[0]	+	”	“);
		}

		public	void	g(int	b,	int[]	c)	{
				a	=	1;
				b	=	1;
				c[0]	=	1;
		}

		public	static	void	main(String[]	args)	{
				Qcb90	obj	=	new	Qcb90();

				obj.f();
		}
}

Select	the	one	correct	answer.

(a)	0	0	0

(b)	0	0	1

(c)	0	1	0

(d)	1	0	0

(e)	1	0	1

Q16	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	Q28fd	{

		public	static	void	main(String[]	args)	{
				int	counter	=	0;
				l1:
				for	(int	i	=	0;	i	<	10;	i++)	{
						l2:
						int	j	=	0;
						while	(j++	<	10)	{
								if	(j	>	i)	break	l2;
								if	(j	==	i)	{
										counter++;
										continue	l1;
								}
						}
				}
				System.out.println(counter);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	not	terminate	normally.

(c)	The	program	will	print	10	and	terminate	normally.

(d)	The	program	will	print	0	and	terminate	normally.

(e)	The	program	will	print	9	and	terminate	normally.

Q17	Given	the	following	interface	declaration,	which	declaration	is	valid?
interface	I	{
		void	setValue(int	val);
		int	getValue();
}

Select	the	one	correct	answer.

(a)
Click	here	to	view	code	image

class	A	extends	I	{
		int	value;
		void	setValue(int	val)	{	value	=	val;	}
		int	getValue()	{	return	value;	}
}

(b)
interface	B	extends	I	{
		void	increment();
}

(c)
Click	here	to	view	code	image

abstract	class	C	implements	I	{
		int	getValue()	{	return	0;	}
		abstract	void	increment();
}

(d)

interface	D	implements	I	{
		void	increment();
}

(e)
Click	here	to	view	code	image

class	E	implements	I	{
		int	value;
		public	void	setValue(int	val)	{	value	=	val;	}
}

Q18	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	code?
Click	here	to	view	code	image

public	class	Q6b0c	{
		public	static	void	main(String[]	args)	{
				int	i	=	4;
				float	f	=	4.3;
				double	d	=	1.8;
				int	c	=	0;
				if	(i	==	f)	c++;
				if	(((int)	(f	+	d))	==	((int)	f	+	(int)	d))	c	+=	2;
				System.out.println(c);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	print	0.

(c)	The	program	will	print	1.

(d)	The	program	will	print	2.

(e)	The	program	will	print	3.

Q19	Which	operators	will	always	evaluate	all	the	operands?

Select	the	two	correct	answers.

(a)	||

(b)	+

(c)	&&

(d)	?	:

(e)	%

Q20	Which	statement	about	the	switch	construct	is	true?

Select	the	one	correct	answer.

(a)	All	switch	statements	must	have	a	default	label.

(b)	A	statement	within	a	switch	statement	can	have	only	one	case	label.

(c)	The	keyword	continue	can	never	occur	within	the	body	of	a	switch

statement.

(d)	No	case	label	may	follow	a	default	label	in	a	single	switch	statement.

(e)	A	character	literal	can	be	used	as	a	value	for	a	case	label.

Q21	What	will	be	printed	when	the	following	program	is	run?
Click	here	to	view	code	image

public	class	Q03e4	{
		public	static	void	main(String[]	args)	{
				String	space	=	”	“;

				String	composite	=	space	+	“hello”	+	space	+	space;
				composite.concat(“world”);

				String	trimmed	=	composite.trim();

				System.out.println(trimmed.length());
		}
}

Select	the	one	correct	answer.

(a)	5

(b)	6

(c)	7

(d)	12

(e)	13

Q22	Which	method	declarations,	when	inserted	at	(1),	will	correctly	overload	the
method	sum()?

Click	here	to	view	code	image
public	class	Qdd1f	{
		public	long	sum(long	a,	long	b)	{	return	a	+	b;	}

		//	(1)	INSERT	CODE	HERE.

}

Select	the	two	correct	answers.

(a)	public	int	sum(int	a,	int	b)	{	return	a	+	b;	}

(b)	public	int	sum(long	a,	long	b)	{	return	0;	}

(c)	abstract	int	sum();

(d)	private	long	sum(long	a,	long	b)	{	return	a	+	b;	}

(e)	public	long	sum(long	a,	int	b)	{	return	a	+	b;	}

Q23	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

public	class	Q200A80	{

		public	static	void	main(String[]	args)	{
				callType(10);
		}

		private	static	void	callType(Number	num){
				System.out.println(“Number	passed”);
		}

		private	static	void	callType(Object	obj){
				System.out.println(“Object	passed”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	compiles	and	prints:	Object	passed.

(b)	The	program	compiles	and	prints:	Number	passed.

(c)	The	program	fails	to	compile,	because	the	call	to	the	callType()	method	is
ambiguous.

(d)	None	of	the	above.

Q24	Which	of	these	method	declarations	are	valid	declarations	of	the	main()	method
that	would	be	called	by	the	JVM	to	start	the	execution	of	a	Java	application?

Select	the	three	correct	answers.

(a)	static	void	main(String[]	args)	{	/*	...	*/	}

(b)	public	static	int	main(String[]	args)	{	/*	...	*/	}

(c)	public	static	void	main(String	args)	{	/*	...	*/	}

(d)	final	public	static	void	main(String[]	arguments)	{	/*
...	*/	}

(e)	public	int	main(Strings[]	args,	int	argc)	{	/*	...	*/
}

(f)	static	public	void	main(String	args[])	{	/*	...	*/	}

(g)	static	public	void	main(String…	args)	{	/*	...	*/	}

Q25	Given	the	class
Click	here	to	view	code	image

public	class	Args	{
		public	static	void	main(String[]	args)	{
				System.out.println(args[0]	+	”	”	+	args[args.length-1]);
		}
}

what	would	be	the	result	of	executing	the	following	command	line?
Click	here	to	view	code	image

>java	Args	In	politics	stupidity	is	not	a	handicap

Select	the	one	correct	answer.

(a)	The	program	will	throw	an	ArrayIndexOutOfBoundsException.

(b)	The	program	will	print	java	handicap.

(c)	The	program	will	print	Args	handicap.

(d)	The	program	will	print	In	handicap.

(e)	The	program	will	print	Args	a.

(f)	The	program	will	print	In	a.

Q26	Which	statement	about	the	following	program	is	true?
Click	here	to	view	code	image

class	MyClass	{
		public	static	void	main(String[]	args)	{
				String[]	numbers	=	{	“one”,	“two”,	“three”,	“four”	};

				if	(args.length	==	0)	{
						System.out.println(“no	arguments”);
				}	else	{
						System.out.println(numbers[args.length]	+	”	arguments”);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	throw	a	NullPointerException	when	run	with	no
program	arguments.

(c)	The	program	will	print	no	arguments	and	two	arguments	when	called
with	zero	and	three	program	arguments,	respectively.

(d)	The	program	will	print	no	arguments	and	three	arguments	when
called	with	zero	and	three	program	arguments,	respectively.

(e)	The	program	will	print	no	arguments	and	four	arguments	when	called
with	zero	and	three	program	arguments,	respectively.

(f)	The	program	will	print	one	arguments	and	four	arguments	when	called
with	zero	and	three	program	arguments,	respectively.

Q27	Which	statements	are	true	about	the	import	statement?

Select	the	two	correct	answers.

(a)	Static	import	from	a	class	automatically	imports	the	names	of	static	members	of
any	nested	types	declared	in	that	class.

(b)	Static	members	of	the	default	package	cannot	be	imported.

(c)	Static	import	statements	must	be	specified	after	any	type	import	statements.

(d)	In	the	case	of	a	name	conflict,	the	name	in	the	last	static	import	statement	is
chosen.

(e)	A	declaration	of	a	name	in	a	compilation	unit	can	shadow	a	name	that	is
imported.

Q28	What	would	be	the	result	of	compiling	and	running	the	following	program?
Click	here	to	view	code	image

class	MyClass	{
		static	MyClass	ref;
		String[]	arguments;

		public	static	void	main(String[]	args)	{
				ref	=	new	MyClass();
				ref.func(args);
		}

		public	void	func(String[]	args)	{
				ref.arguments	=	args;
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile,	since	the	static	method	main()	cannot	have	a
call	to	the	non-static	method	func().

(b)	The	program	will	fail	to	compile,	since	the	non-static	method	func()	cannot
access	the	static	variable	ref.

(c)	The	program	will	fail	to	compile,	since	the	argument	args	passed	to	the	static
method	main()	cannot	be	passed	to	the	non-static	method	func().

(d)	The	program	will	compile,	but	will	throw	an	exception	when	run.

(e)	The	program	will	compile	and	run	successfully.

Q29	Given	the	following	member	declarations,	which	statement	is	true?
Click	here	to	view	code	image

int	a;																													//	(1)
static	int	a;																						//	(2)
int	f()	{	return	a;	}														//	(3)
static	int	f()	{	return	a;	}							//	(4)

Select	the	one	correct	answer.

(a)	Declarations	(1)	and	(3)	cannot	occur	in	the	same	class	declaration.

(b)	Declarations	(2)	and	(4)	cannot	occur	in	the	same	class	declaration.

(c)	Declarations	(1)	and	(4)	cannot	occur	in	the	same	class	declaration.

(d)	Declarations	(2)	and	(3)	cannot	occur	in	the	same	class	declaration.

Q30	Which	of	these	combinations	of	switch	expression	types	and	case	label	value
types	are	legal	within	a	switch	statement?

Select	the	three	correct	answers.

(a)	switch	expression	of	type	int	and	case	label	value	of	type	char

(b)	switch	expression	of	type	float	and	case	label	value	of	type	int

(c)	switch	expression	of	type	byte	and	case	label	value	of	type	float

(d)	switch	expression	of	type	char	and	case	label	value	of	type	long

(e)	switch	expression	of	type	boolean	and	case	label	value	of	type	boolean

(f)	switch	expression	of	type	Byte	and	case	label	value	of	type	byte

(g)	switch	expression	of	type	byte	and	case	label	value	of	type	Byte

(h)	switch	expression	of	type	String	and	case	label	value	of	type	String

Q31	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	Switcheroo	{
		public	static	void	main(String[]	args)	{
				final	int	iLoc	=	3;
				final	Integer	iFour	=	4;
				Integer	iRef	=	4;
				switch	(iRef)	{
						case	iFour:
								System.out.println(“It’s	OK.”);
						case	1:
						case	iLoc:
						case	2	*	iLoc:
								System.out.println(“I	am	not	OK.”);
						default:
								System.out.println(“You	are	OK.”);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	runtime	exception.

(c)	The	program	will	compile	correctly	and	will	print	the	following	at	runtime:
It’s	OK.
I	am	not	OK.
You	are	OK.

(d)	The	program	will	compile	correctly	and	will	print	the	following	at	runtime:
It’s	OK.
I	am	not	OK.

(e)	The	program	will	compile	correctly	and	will	print	the	following	at	runtime:
It’s	OK.

Q32	Which	of	the	following	implementations	of	a	max()	method	will	correctly	return
the	largest	value?

Click	here	to	view	code	image
//	(1)
int	max(int	x,	int	y)	{
		return	(if	(x	>	y)	{	x;	}	else	{	y;	});

}

//	(2)
int	max(int	x,	int	y)	{
		return	(if	(x	>	y)	{	return	x;	}	else	{	return	y;	});
}

//	(3)
int	max(int	x,	int	y)	{
		switch	(x	<	y)	{
				case	true:
						return	y;
				default:
						return	x;
		};
}

//	(4)
int	max(int	x,	int	y)	{
		if	(x	>	y)	return	x;
		return	y;
}

Select	the	one	correct	answer.

(a)	Implementation	labeled	(1)

(b)	Implementation	labeled	(2)

(c)	Implementation	labeled	(3)

(d)	Implementation	labeled	(4)

Q33	Given	the	following	code,	which	statement	is	true?
Click	here	to	view	code	image

class	MyClass	{
		public	static	void	main(String[]	args)	{
				int	k	=	0;
				int	l	=	0;
				for	(int	i	=	0;	i	<=	3;	i++)	{
						k++;
						if	(i	==	2)	break;
						l++;
				}
				System.out.println(k	+	“,	”	+	l);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	print	3,	3	at	runtime.

(c)	The	program	will	print	4,	3	at	runtime,	if	the	break	statement	is	replaced	by
the	continue	statement.

(d)	The	program	will	fail	to	compile	if	the	break	statement	is	replaced	by	the
return	statement.

(e)	The	program	will	fail	to	compile	if	the	break	statement	is	replaced	by	an	empty

statement.

Q34	Which	statements	are	true?

Select	the	two	correct	answers.

(a)	{{}}	is	a	valid	block	statement.

(b)	{	continue;	}	is	a	valid	block	statement.

(c)	block:	{	break	block;	}	is	a	valid	block	statement.

(d)	block:	{	continue	block;	}	is	a	valid	block	statement.

(e)	The	break	statement	can	be	used	only	in	a	loop	(while,	do-while	or	for)
or	a	switch	statement.

Q35	Given	the	declaration:
Click	here	to	view	code	image

int[][]	nums	=	{{20},	{30},	{40}};

Which	code	will	compile	and	print	90	at	runtime?

Select	the	one	correct	answer.

(a)
{
		int	sum	=	0;
		for	(int[]	row	:	nums[])
				for	(int	val	:	nums[row])
						sum	+=	val;
		System.out.println(sum);
}

(b)
{
		int	sum	=	0;
		for	(int[]	row	:	nums[][])
				for	(int	val	:	nums[row])
						sum	+=	val;
		System.out.println(sum);
}

(c)
{
		int	sum	=	0;
		for	(int[]	row	:	nums)
				for	(int	val	:	nums[row])
						sum	+=	val;
		System.out.println(sum);
}

(d)
{
		int	sum	=	0;
		for	(int[]	row	:	nums)
				for	(int	val	:	row)
						sum	+=	val;

		System.out.println(sum);
}

(e)
{
		int	sum	=	0;
		for	(Integer[]	row	:	nums)
				for	(int	val	:	row)
						sum	+=	val;
		System.out.println(sum);
}

Q36	Which	digits,	and	in	what	order,	will	be	printed	when	the	following	program	is
compiled	and	run?

Click	here	to	view	code	image
public	class	MyClass	{
		public	static	void	main(String[]	args)	{
				try	{
						interruptForLunch();
				}	catch	(InterruptedException	e)	{
						System.out.println(“1”);
						throw	new	RuntimeException();
				}	catch	(RuntimeException	e)	{
						System.out.println(“2”);
						return;
				}	catch	(Exception	e)	{
						System.out.println(“3”);
				}	finally	{
						System.out.println(“4”);
				}
				System.out.println(“5”);
		}

		//	InterruptedException	is	a	direct	subclass	of	Exception.
		static	void	interruptForLunch()	throws	InterruptedException	{
				throw	new	InterruptedException(“Time	for	lunch.”);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	print	5.

(b)	The	program	will	print	1	and	4,	in	that	order.

(c)	The	program	will	print	1,	2,	and	4,	in	that	order.

(d)	The	program	will	print	1,	4,	and	5,	in	that	order.

(e)	The	program	will	print	1,	2,	4,	and	5,	in	that	order.

(f)	The	program	will	print	3	and	5,	in	that	order.

Q37	How	many	objects	are	reachable	when	control	reaches	(1)?
Click	here	to	view	code	image

public	class	Nullify	{

		private	static	void	nullify(Object[]	array)	{	array	=	null;	}

		public	static	void	main(String[]	args)	{
				args	=	null;
				Object[]	array	=	new	Object[4];
				for	(int	i	=	0;	i	<	4;	i++)	{
						array[i]	=	new	Object();
				}
				nullify(array);
				System.gc();																	//	(1);
		}
}

Select	the	one	correct	answer.

(a)	0

(b)	1

(c)	4

(d)	5

(e)	It	is	difficult	to	say.

Q38	Which	statement	describes	the	guaranteed	behavior	of	the	garbage	collection	and
finalization	mechanisms?

Select	the	one	correct	answer.

(a)	Objects	will	not	be	destroyed	until	they	have	no	references	to	them.

(b)	An	object	eligible	for	garbage	collection	will	eventually	be	destroyed	by	the
garbage	collector.

(c)	If	object	A	became	eligible	for	garbage	collection	before	object	B,	then	object	A
will	be	destroyed	before	object	B.

(d)	An	object,	once	eligible	for	garbage	collection,	can	never	become	accessible	by
a	live	thread.

(e)	None	of	the	above.

Q39	Which	of	these	expressions	are	legal?

Select	the	four	correct	answers.

(a)	"co".concat("ol")

(b)	("co"	+	"ol")

(c)	('c'	+	'o'	+	'o'	+	'l')

(d)	("co"	+	new	String('o'	+	'l'))

(e)	("co"	+	new	String("co"))

Q40	Which	statement	about	the	charAt()	method	of	the	String	class	is	true?

Select	the	one	correct	answer.

(a)	The	charAt()	method	takes	a	char	value	as	an	argument.

(b)	The	charAt()	method	returns	a	Character	object.

(c)	The	expression	("abcdef").charAt(3)	is	illegal.

(d)	The	expression	"abcdef".charAt(3)	evaluates	to	the	character	'd'.

(e)	The	index	of	the	first	character	is	1.

Q41	Which	expression	will	evaluate	to	true?

Select	the	one	correct	answer.

(a)	"hello:	there!".equals("hello	there")

(b)	"HELLO	THERE".equals("hello	there")

(c)	("hello".concat("there")).equals("hello	there")

(d)	"Hello	There".compareTo("hello	there")	==	0

(e)	"Hello	there".toLowerCase().equals("hello	there")

Q42	What	will	the	following	program	print	when	run?
Click	here	to	view	code	image

public	class	Search	{
		public	static	void	main(String[]	args)	{
				String	s	=	“Contentment!”;
				int	middle	=	s.length()/2;
				String	nt	=	s.substring(middle-1,	middle+1);
				System.out.println(s.lastIndexOf(nt,	middle));
		}
}

Select	the	one	correct	answer.

(a)	2

(b)	4

(c)	5

(d)	7

(e)	9

(f)	11

(g)	None	of	the	above.

Q43	What	will	be	the	result	of	attempting	to	compile	and	run	the	following	program?
Click	here	to	view	code	image

public	class	StringMethods	{
		public	static	void	main(String[]	args)	{
				String	str	=	new	String(“eeny”);
				str.concat(”	meeny”);
				StringBuilder	strBuilder	=	new	StringBuilder(”	miny”);
				strBuilder.append(”	mo”);
				System.out.println(str	+	strBuilder);
		}

}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	print	eeny	meeny	miny	mo	at	runtime.

(c)	The	program	will	print	meeny	miny	mo	at	runtime.

(d)	The	program	will	print	eeny	miny	mo	at	runtime.

(e)	The	program	will	print	eeny	meeny	miny	at	runtime.

Q44	What	will	be	the	result	of	attempting	to	compile	this	code,	contained	in	a	source	file
named	AClass.java?

import	java.util.*;

package	com.acme.toolkit;

public	class	AClass	{
		public	Other	anInstance;
}

class	Other	{
		int	value;
}

Select	the	one	correct	answer.

(a)	The	code	will	fail	to	compile,	since	the	class	Other	has	not	yet	been	declared
when	referenced	in	the	class	AClass.

(b)	The	code	will	fail	to	compile,	since	an	import	statement	cannot	occur	as	the
first	statement	in	a	source	file.

(c)	The	code	will	fail	to	compile,	since	the	package	declaration	cannot	occur	after
an	import	statement.

(d)	The	code	will	fail	to	compile,	since	the	class	Other	must	be	defined	in	a	file
called	Other.java.

(e)	The	code	will	fail	to	compile,	since	the	class	Other	must	be	declared	as
public.

(f)	The	class	will	compile	without	errors.

Q45	Which	code	can	be	inserted	at	(1)	so	that	the	exception	thrown	by	the	program	is
caught	by	the	catch	clause?

Click	here	to	view	code	image
public	class	Q1408a	{
		public	static	void	main(String[]	args)	{
				try	{
						String[][]	trio	=	{null,	{null},	{“Tom”},	{},	{“Dick”,	“Harry”}};
						String	substr	=	trio[3][0].substring(1,	2);
				}	catch	(/*	(1)	INSERT	CODE	HERE	*/)	{
						System.out.println(“Mind	the	index!”);

				}
		}
}

Select	the	two	correct	answers.

(a)	ArrayIndexOutOfBoundsException	e

(b)	IndexOutOfBoundsException	e

(c)	StringIndexOutOfBoundsException	e

(d)	IllegalIndexFoundException	e

(e)	NullPointerException	e

Q46	What	is	the	output	from	running	the	following	program?
Click	here	to	view	code	image

public	class	Q1408b	{
		public	static	void	main(String[]	args)	{
				int	i	=	0;
				while	(++i	==	i)	{
						System.out.println(i++);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	execute	and	terminate	normally,	but	will	not	print	anything.

(b)	The	program	will	execute	indefinitely,	printing	all	numbers	from	1	and	upward.

(c)	The	program	will	execute	indefinitely,	printing	all	numbers	from	2	and	upward.

(d)	The	program	will	execute	indefinitely,	printing	all	even	numbers	from	2	and
upward.

(e)	The	program	will	execute	indefinitely,	printing	all	odd	numbers	from	1	and
upward.

(f)	The	program	will	execute	indefinitely,	printing	all	odd	numbers	from	3	and
upward.

Q47	What	is	the	output	from	running	the	following	program?
Click	here	to	view	code	image

public	class	RemainderFun	{
		public	static	void	main(String[]	args)	{
				int	i	=	24,	k	=	7;
				System.out.print(i	%		k	+	“|”);
				System.out.print(i	%	-k	+	“|”);
				System.out.print(-i	%		k	+	“|”);
				System.out.println(-i	%	-k);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	runtime	exception.

(c)	3|-3|-3|3

(d)	3|3|-3|-3

(e)	3|-3|-3|-3

(f)	3|-3|3|-3

Q48	What	is	the	output	from	running	the	following	program?
Click	here	to	view	code	image

public	class	Thingy	{
		private	String	name;
		public	Thingy(String	name)	{
				this.name	=	name;
		}

		public	static	void	main(String[]	args)	{
				Thingy	thing1	=	new	Thingy(“thing1”);
				Thingy	thing2	=	new	Thingy(“thing2”);
				System.out.print(thing1.equals(thing2)	+	“,”);

				thing2.name	=	“thing1”;
				System.out.print(thing1.equals(thing2)	+	“,”);

				thing2	=	thing1;
				System.out.println(thing1.equals(thing2));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	runtime	exception.

(c)	false,true,true

(d)	false,false,false

(e)	false,false,true

(f)	false,true,false

Q49	Which	statement	is	true	about	the	following	program?
Click	here	to	view	code	image

public	class	Switchy	{
		public	static	void	main(String[]	args)	{
				final	String	s1	=	“January”;
				final	String	yr	=	”	2014”;
				s1.concat(yr);
				switch	(s1)	{
						default:
								System.out.println(“Sorry.”);
						case	“January”	+	yr:	case	s1	+	”	2015”:
								System.out.println(“OK.”);
				}
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	compile.	When	run,	it	will	print:
Sorry.
OK.

(c)	The	program	will	compile.	When	run,	it	will	print:
Sorry.

(d)	The	program	will	compile.	When	run,	it	will	print:
OK.

Q50	Which	statements	will	compile	without	errors?

Select	the	three	correct	answers.

(a)	Integer	iRef	=	0b111_000;

(b)	byte	b							=	0B1111_1111;

(c)	double	d					=	0B1111_1111D;

(d)	Double	dRef		=	3_____141.592_653_589_793e-3;

(e)	int	date1				=	Integer.parseInt("_2014_01_11");

(f)	int	date2				=	_2014_01_11;

(g)	long	date3			=	2014_01_11_L;

Q51	Which	array	declarations	will	not	compile?

Select	the	three	correct	answers.

(a)	int[]			array1			=	new	int[0];

(b)	int[]			array2			=	{};

(c)	int[]			array3			=	new	int[]	{};

(d)	int[]			array4			=	new	int[4]	{};

(e)	int[]			array5			=	new	int[4]	{0,1,2,3};

(f)	int[]			array6			=	new	int[]	{0,1,2,3};

(g)	int[]			arr2d1[]	=	new	int[4][];

(h)	int[][]	arr2d2			=	new	int[4][];

(i)	int[][]	arr2d3			=	new	int[][4];

(j)	int[][]	arr2d4			=	new	int[4][0];

Q52	Which	statements,	when	considered	individually,	are	true	about	the	following	code?
Click	here	to	view	code	image

public	class	Overloading	{

		private	String		xqt(int	i)	{	return	null;	}		//	(1)
		public		void				xqt()						{}																//	(2)
		public		Integer	xqt(int	j)	{	return	1;	}					//	(3)
}

Select	the	two	correct	answers.

(a)	The	methods	at	(1)	and	(2)	are	correctly	overloaded.

(b)	The	methods	at	(1)	and	(3)	are	correctly	overloaded.

(c)	The	methods	at	(2)	and	(3)	are	correctly	overloaded.

(d)	All	methods	are	correctly	overloaded.

Q53	What	is	the	output	from	the	following	program?
Click	here	to	view	code	image

public	class	Gizmo	{
		private	StringBuilder	name;
		private	double	weight;

		public	Gizmo()	{
				name	=	new	StringBuilder(“MyGizmo”);
				weight	=	10.0;
		}

		public	String	toString()	{	return	“Name:	”	+	name	+	“,	Weight:	”	+
weight;	}

		private	static	void	changeName(StringBuilder	sb)	{	sb.append(“2014”);	}
		private	static	void	changeWeight(double	weight)	{	weight	=	2	*	weight;
}

		public	static	void	main(String[]	arguments)	{
				Gizmo	giz	=	new	Gizmo();
				changeName(giz.name);
				changeWeight(giz.weight);
				System.out.println(giz);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	runtime	exception.

(c)	Name:	MyGizmo,	Weight:	10.0

(d)	Name:	MyGizmo2014,	Weight:	10.0

(e)	Name:	MyGizmo,	Weight:	20.0

(f)	Name:	MyGizmo2014,	Weight:	20.0

Q54	Which	code	can	be	inserted	independently	at	(1)	so	that	the	program	prints	the
following:	Free	Meal|Free	Meal|Free	Meal|.

Click	here	to	view	code	image
public	class	LoopDeLoop	{
		public	static	void	main(String[]	args)	{

				StringBuilder	meals[]	=	{
								new	StringBuilder(),	new	StringBuilder(),	new	StringBuilder()
				};
				//	(1)	INSERT	CODE	HERE
				for	(StringBuilder	meal	:	meals)	System.out.print(meal	+	“|”);
		}
}

Select	the	four	correct	answers.

(a)	for	(StringBuilder	meal	:	meals)	meal.insert(0,	"Free
Meal");

(b)	for	(StringBuilder	meal	:	meals)	meal	=	meal.insert(0,
"Free	Meal");

(c)
Click	here	to	view	code	image

StringBuilder	freeMeal	=	new	StringBuilder(“Free	Meal”);
for	(StringBuilder	meal	:	meals)	meal	=	freeMeal;

(d)	for	(StringBuilder	meal	:	meals)	meal	=	new
StringBuilder("Free	Meal");

(e)	for	(StringBuilder	meal	:	meals)	meal.append("Free
Meal");

(f)	for	(StringBuilder	meal	:	meals)	meal	=
meal.append("Free	Meal");

Q55	What	is	the	output	from	the	following	program?
Click	here	to	view	code	image

import	java.util.ArrayList;
public	class	Weekend	{
		public	static	void	main(String[]	args)	{
				ArrayList<String>	longWeekend	=	new	ArrayList<>();
				longWeekend.add(“Friday”);
				longWeekend.add(2,	“Saturday”);
				longWeekend.add(“Sunday”);
				longWeekend.remove(0);
				System.out.println(longWeekend);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	compile.	When	run,	it	will	print	[Saturday,	Sunday].

(c)	The	program	will	compile.	When	run,	it	will	print	[Sunday,	Saturday].

(d)	The	program	will	compile.	When	run,	it	will	throw	a
java.lang.IndexOutOfBoundsException.

Q56	What	is	the	output	from	the	following	program?
Click	here	to	view	code	image

class	Room	{
		static	int	numOfGuests;
}

public	class	Hotel	{
		public	static	void	main(String[]	args)	{
				Room	r1	=	new	Room();
				Room	r2	=	new	Room();
				r1.numOfGuests	=	2;
				r2.numOfGuests	=	3;
				System.out.println(“Number	of	guests:	”	+	r1.numOfGuests	+
r2.numOfGuests);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	fail	to	compile.

(b)	The	program	will	compile,	but	will	throw	a	runtime	exception.

(c)	Number	of	guests:	4

(d)	Number	of	guests:	5

(e)	Number	of	guests:	6

(f)	Number	of	guests:	22

(g)	Number	of	guests:	33

Q57	In	which	scenarios	would	a	do-while	loop	be	preferable	to	a	while	loop?

Select	the	three	correct	answers.

(a)	Admit	one	ticket-holder	at	a	time	into	a	movie	theater	until	there	are	no	more
ticket-holders	to	admit.

(b)	Guess	an	answer	until	the	answer	is	correct.

(c)	Add	a	little	salt	to	the	food	until	the	food	tastes	right.	Assume	the	food	has	too
little	salt	to	start	with.

(d)	Add	candles	to	a	birthday	cake	until	there	are	the	right	number	of	candles.

(e)	Let	the	mice	play	a	little	while	the	cat	is	away.

Q58	What	is	the	output	from	the	following	program?
Click	here	to	view	code	image

public	class	CodeMe	{
		public	static	void	main(String[]	args)	{
				boolean	flag	=	false;
				if	(false)										//	(1)
						flag	=	!flag;
				System.out.println(flag);
		}
}

Select	the	two	correct	answers.

(a)	The	program,	as	it	stands,	does	not	compile.

(b)	The	program	compiles	without	errors.	When	run,	it	will	print	false.

(c)	The	program	compiles	without	errors.	When	run,	it	will	print	true.

(d)	If	the	keyword	if	at	(1)	is	replaced	with	the	keyword	while,	the	program
compiles	without	errors.	When	run,	it	will	print	false.

(e)	If	the	keyword	if	at	(1)	is	replaced	with	the	keyword	while,	the	program
compiles	without	errors.	When	run,	it	will	print	true.

(f)	If	the	keyword	if	at	(1)	is	replaced	with	the	keyword	while,	the	program	will
not	compile.

Q59	What	code	can	be	inserted	independently	at	(1)	so	that	the	program	prints	the	value
2014?

Click	here	to	view	code	image
public	class	CastMe	{
		public	static	void	main(String[]	args)	{
				Number	num	=	2014;
				//	(1)	INSERT	CODE	HERE.
				System.out.println(iRef);
		}
}

Select	the	one	correct	answer.

(a)	Integer	iRef	=	((Integer)num).intValue();

(b)	Integer	iRef	=	(Integer)num.intValue();

(c)	Integer	iRef	=	(Integer)(num.intValue());

(d)	Integer	iRef	=	num.intValue();

(e)	Any	one	of	the	above	statements	can	be	inserted	at	(1)

(f)	None	of	the	above.

Q60	What	is	the	output	from	the	following	program?
Click	here	to	view	code	image

class	Person	{
		public	void	compare(Person	p)	{
				System.out.print(“Persons	are	equal.”);
		}
}

class	Student	extends	Person	{
		public	void	compare(Student	s)	{
				System.out.print(“Students	are	equal.”);
		}
}

public	class	Calling	{
		public	static	void	main(String[]	args)	{
				Person	p1	=	new	Person();
				Student	s1	=	new	Student();
				Student	s2	=	new	Student();
				Person	p2	=	s2;

				p1.compare(s1);	p1.compare(p2);	System.out.println();
				p2.compare(s1);	p2.compare(p1);	System.out.println();
				s1.compare(p1);	s1.compare(p2);	s1.compare(s2);	System.out.println();
		}
}

Select	the	one	correct	answer.

(a)
Click	here	to	view	code	image

Persons	are	equal.Persons	are	equal.
Students	are	equal.Persons	are	equal.
Persons	are	equal.Persons	are	equal.Students	are	equal.

(b)
Click	here	to	view	code	image

Persons	are	equal.Persons	are	equal.
Persons	are	equal.Persons	are	equal.
Persons	are	equal.Persons	are	equal.Students	are	equal.

(c)
Click	here	to	view	code	image

Persons	are	equal.Persons	are	equal.
Students	are	equal.Persons	are	equal.
Persons	are	equal.Students	are	equal.Students	are	equal.

(d)
Click	here	to	view	code	image

Persons	are	equal.Persons	are	equal.
Persons	are	equal.Persons	are	equal.
Persons	are	equal.Students	are	equal.Students	are	equal.

Q61	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A56	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();
				strList.add(0,	“Ada”);
				strList.add(“Alyla”);
				strList.set(strList.size()-1,	“Otto”);
				strList.add(strList.size()-1,	“Anna”);
				System.out.println(strList);																							//	(1)
				int	size	=	strList.size();
				for	(int	i	=	0;	i	<	size;	++i)	{
						strList.add(strList.get(size-1-i));
				}
				System.out.println(strList);																							//	(2)
		}
}

Select	the	two	correct	answers.

(a)	(1)	will	print	[Ada,	Alyla,	Anna].

(b)	(1)	will	print	[Ada,	Anna,	Otto].

(c)	(1)	will	print	[Ada,	Otto,	Alyla].

(d)	(2)	will	print	[Ada,	Alyla,	Anna,	Anna,	Alyla,	Ada].

(e)	(2)	will	print	[Ada,	Anna,	Otto,	Otto,	Anna,	Ada].

(f)	(2)	will	print	[Ada,	Otto,	Alyla,	Alyla,	Otto,	Ada].

Q62	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A70	{
		public	static	void	main(String[]	args)	{
				List<String>	list1	=	new	ArrayList<>(20);
				list1.add(“Ada”);
				List<String>	list2	=	new	ArrayList<>(list1);
				list2.add(null);
				System.out.print(list1.size()	==	list2.size());
				System.out.print(“-”	+	(list1	==	list2));
				System.out.println(“-”	+	list1.equals(list2));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	an	exception.

(c)	The	program	will	print	false-true-true.

(d)	The	program	will	print	true-false-true.

(e)	The	program	will	print	false-false-false.

Q63	Which	lines	will	be	in	the	output	when	the	following	program	is	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A99	{
		public	static	void	main(String[]	args)	{
				List<Integer>	numList	=	new	ArrayList<>();
				numList.add(3);	numList.add(1);	numList.add(1,	4);
				numList.add(null);	numList.add(0);
				System.out.println(“(1)	prints	”	+	numList.get(3));
				System.out.println(“(2)	prints	”	+	numList.set(1,	3));
				System.out.println(“(3)	prints	”	+	numList.lastIndexOf(3));
				System.out.println(“(4)	prints	”	+	numList.contains(3));
				System.out.println(“(5)	prints	”	+	numList.remove(3));
				System.out.println(“(6)	prints	”	+	numList.indexOf(3));
				System.out.println(“(7)	prints	”	+	numList.remove(new	Integer(4)));
		}
}

Select	the	six	correct	answers.

(a)	(1)	prints	null

(b)	(2)	prints	3

(c)	(2)	prints	4

(d)	(3)	prints	2

(e)	(3)	prints	1

(f)	(4)	prints	true

(g)	(5)	prints	null

(h)	(5)	prints	1

(i)	(6)	prints	1

(j)	(7)	prints	true

(k)	(7)	prints	false

Q64	Which	lines	will	result	in	a	compile-time	error?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A80	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>(0);																									//
(1)
				List<Object>	objList	=	strList;																																				//
(2)
				List<Number>	numList	=	new	ArrayList<>();																										//
(3)
				numList.add(1);																																																				//
(4)
				numList.add(1.5);																																																		//
(5)
				List<>	intList	=	new	ArrayList<Integer>();																									//
(6)
				ArrayList<ArrayList<Integer>>	loList1	=	new	ArrayList<Integer>();		//
(7)
				ArrayList<ArrayList<Integer>>	loList2	=	new	ArrayList();											//
(8)
		}
}

Select	the	three	correct	answers.

(a)	Compile-time	error	in	(1)

(b)	Compile-time	error	in	(2)

(c)	Compile-time	error	in	(3)

(d)	Compile-time	error	in	(4)

(e)	Compile-time	error	in	(5)

(f)	Compile-time	error	in	(6)

(g)	Compile-time	error	in	(7)

(h)	Compile-time	error	in	(8)

Q65	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A85	{
		public	static	void	main(String[]	args)	{
				List<String>	list	=	new	ArrayList<>(20);
				list.add(“Taco”);
				for	(int	i	=	0;	i	<	3;	++i)	{
						list.add(””	+	list);
				}
				System.out.println(list);															//	(1)
				System.out.println(list.size());								//	(2)
		}
}

Select	the	two	correct	answers.

(a)	(1)	will	print:
[Taco,	Taco,	Taco,	Taco,	Taco,	Taco,	Taco,	Taco]

(b)	(1)	will	print:
[Taco,	[Taco,	Taco],	[Taco,	Taco,	Taco],	[Taco,	Taco,	Taco,	Taco]]

(c)	(1)	will	print:
[Taco,	[Taco],	Taco,	[Taco],	Taco,	[Taco],	Taco,	[Taco]]

(d)	(1)	will	print:
[Taco,	[Taco],	[Taco,	[Taco]],	[Taco,	[Taco],	[Taco,	[Taco]]]]

(e)	(2)	will	print	4.

(f)	(2)	will	print	8.

Q66	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.util.ArrayList;
import	java.util.List;

public	class	MEQ12A55	{
		public	static	void	main(String[]	args)	{
				List<String>	strList	=	new	ArrayList<>();
				strList.add(strList.size(),	“Anna”);
				strList.add(strList.size()-1,	“Ada”);
				strList.add(strList.size()-1,	“Otto”);
				strList.add(0,	“Alyla”);
				System.out.println(strList);
				int	size	=	strList.size();
				for	(int	i	=	0;	i	<	size/2;	++i)	{
						String	strTemp	=	strList.get(i);
						strList.set(i,	strList.get(size-1-i));
						strList.set(size-1-i,	strTemp);
				}

				System.out.println(strList);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	an	IndexOutOfBoundsException.

(c)	The	program	will	throw	a	NullPointerException.

(d)	The	program	will	print:
[Alyla,	Ada,	Otto,	Anna]
[Anna,	Otto,	Ada,	Alyla]

(e)	The	program	will	print:
[Ada,	Otto,	Alyla,	Anna]
[Anna,	Alyla,	Otto,	Ada]

Q67	Which	statements	are	true	about	lambda	expressions?

Select	the	two	correct	answers.

(a)	A	return	statement	is	mandatory	in	a	lambda	expression	if	the	lambda	body	is
a	statement	block.

(b)	A	return	statement	is	mandatory	in	a	lambda	expression	if	the	lambda	body	is
a	single	expression	that	returns	a	value.

(c)	The	formal	parameters	of	a	lambda	expression	are	local	variables	in	the	block
scope	of	the	lambda	expression.

(d)	A	local	variable	declaration	in	the	block	scope	of	a	lambda	expression	can
shadow	a	class	member	with	the	same	name	in	the	enclosing	class.

(e)	A	local	variable	declaration	in	the	block	scope	of	a	lambda	expression	can
shadow	a	local	variable	with	the	same	name	in	the	enclosing	method.

Q68	Which	statements	are	true	about	the	following	code?
Click	here	to	view	code	image

import	java.util.function.Predicate;

public	class	MEQ12A92	{
		public	static	void	main(String[]	args)	{
				Predicate<String>	p1	=	String	obj	->	obj.equals(“Java”);											//
(1)
				Predicate<String>	p2	=	(final	String	obj)	->	obj.equals(“Java”);			//
(2)
				Predicate<String>	p3	=	(final	obj)	->	obj.equals(“Java”);										//
(3)
				Predicate<String>	p4	=	(String	obj)	->	obj.equals(“Java”);									//
(4)
				Predicate<String>	p5	=	(obj)	->	obj.equals(“Java”);																//
(5)
				Predicate<String>	p6	=	obj	->	obj.equals(“Java”);																		//
(6)
				Predicate<String>	p7	=	obj	->	return	obj.equals(“Java”);											//
(7)

				Predicate<String>	p8	=	obj	->	{	obj.equals(“Java”)	};														//
(8)
				Predicate<String>	p9	=	obj	->	{	obj.equals(“Java”);	};													//
(9)
				Predicate<String>	p10	=	obj	->	{	return	obj.equals(“Java”);	};					//
(10)
				Predicate<Object>	p11	=	obj	->	obj.equals(“Java”);																	//
(11)
		}
}

Select	the	five	correct	answers.

(a)	(1)	will	not	compile.

(b)	(2)	will	not	compile.

(c)	(3)	will	not	compile.

(d)	(4)	will	not	compile.

(e)	(5)	will	not	compile.

(f)	(6)	will	not	compile.

(g)	(7)	will	not	compile.

(h)	(8)	will	not	compile.

(i)	(9)	will	not	compile.

(j)	(10)	will	not	compile.

(k)	(11)	will	not	compile.

Q69	Which	statements	are	true	about	the	following	code?
Click	here	to	view	code	image

import	java.util.function.Predicate;

public	class	MEQ12A95	{

		public	static	void	main(String[]	args)	{
				final	String	lock3	=	“Trio”;
				String	lock4	=	“Chubb”;

				Predicate<Object>	p;
				p	=	lock	->	{	lock	=	lock.toString();	return	lock.equals(“TRIO”);
};					//	(1)
				p	=	lock	->	{	if	(args.length	>	0)	return	lock.equals(args[0]);
};							//	(2)
				p	=	lock	->	{	String	lock3	=	“CHUBB”;	return	lock.equals(lock3);
};						//	(3)
				p	=	lock	->	{	return	lock.equals(lock3);
};																														//	(4)
				p	=	lock	->	{	return	lock.equals(lock4);
};																														//	(5)
				p	=	lock4	->	{	return	lock4.equals(“Chubb”);
};																										//	(6)
		}
}

Select	the	three	correct	answers.

(a)	(1)	will	compile.

(b)	(2)	will	compile.

(c)	(3)	will	compile.

(d)	(4)	will	compile.

(e)	(5)	will	compile.

(f)	(6)	will	compile.

Q70	Given	the	following	program:
Click	here	to	view	code	image

import	java.util.function.Predicate;

public	class	MEQ12A97	{
		public	static	void	main(String[]	args)	{
				int[]	intArray	=	{-12,	12,	-123,	123,	-1234,	1234	};
				filterInt(intArray,	/*	(1)	INSERT	CODE	HERE	*/);
		}

		private	static	void	filterInt(int[]	intArr,	Predicate<Integer>
predicate)	{
				for	(int	i	=	0;	i	<	intArr.length;	++i)	{
						int	intValue	=	intArr[i];
						if	(predicate.test(intValue))	{
								System.out.print(intValue	+	”	“);
						}
				}
				System.out.println();
		}
}

Which	lambda	expressions	can	be	inserted	at	(1)	so	that	the	program	prints	all	odd
numbers	that	have	three	digits	(i.e.,	-123	and	123)?

Select	the	four	correct	answers.

(a)	val	->	val	%	2	!=	0	&&
String.valueOf(Math.abs(val)).length()	==	3

(b)	val	->	return	val	%	2	!=	0	&&
String.valueOf(Math.abs(val)).length()	==	3

(c)	val	->	val	%	2	!=	0	&&	(""	+	Math.abs(val)).length()
==	3

(d)	val	->	{	val	%	2	!=	0	&&	(""	+	Math.abs(val)).length()
==	3;	}

(e)	val	->	val	%	2	!=	0	&&	new
String(Math.abs(val)).length()	==	3

(f)	val	->	{	return	val	%	2	!=	0	&&	new
String(Math.abs(val)).length()	==	3;	}

(g)	val	->	val	%	2	!=	0	&&

Integer.toString(Math.abs(val)).length()	==	3

(h)	val	->	val	%	2	!=	0	&&	new
Integer(Math.abs(val)).toString().length()	==	3

Q71	Which	statement	is	true	about	the	following	interfaces?
Click	here	to	view	code	image

interface	IA												{	boolean	equals(Object	obj);	}
interface	IB	extends	IA	{	boolean	doIt(String	str);	}
interface	IC	extends	IB	{	boolean	doIt(String	str);	}
interface	ID	extends	IC	{	boolean	equals(Object	obj);}

Select	the	one	correct	answer.

(a)	IA	is	a	functional	interface.

(b)	IB	is	a	functional	interface.

(c)	IC	is	not	a	functional	interface.

(d)	ID	is	not	a	functional	interface.

(e)	None	of	the	above.

Q72	Which	statement	is	true	about	the	Date	and	Time	API?

Select	the	one	correct	answer.

(a)	The	isBefore()	and	isAfter()	methods	of	the	LocalTime,
LocalDate,	and	LocalDateTime	classes	always	return	true	when	this
object	is	the	same	as	the	object	passed	as	an	argument.

(b)	The	with	methods	of	the	LocalDate	and	LocalDateTime	classes	will
adjust	the	day	of	the	month	to	the	last	valid	day	of	the	month,	if	the	day	of	month
becomes	invalid	when	their	date-based	values	are	changed.

(c)	The	toTotalDays()	method	of	the	Period	class	returns	the	length	of	the
period	as	the	total	number	of	days.

(d)	The	classes	LocalTime,	LocalDate,	LocalDateTime,	and	Period
implement	the	Comparable	interface,	providing	an	implementation	of	the
compareTo()	method	so	that	two	temporal	objects	of	the	same	type	can	be
compared.

(e)	None	of	the	above.

Q73	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.LocalTime;

public	class	MEQ11A25	{
		public	static	void	main(String[]	args)	{
				LocalTime	time	=	LocalTime.NOON;
				time	=	time.withHour(10).plusMinutes(120);
				System.out.println(time);
		}

}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception.

(c)	The	program	will	print	00:00.

(d)	The	program	will	print	12:00.

(e)	The	program	will	print	24:00.

(f)	None	of	the	above.

Q74	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.LocalDate;

public	class	MEQ11A35	{
		public	static	void	main(String[]	args)	{
				LocalDate	date	=	LocalDate.of(2015,	1,	1);
				date.withYear(5);
				System.out.println(date.plusMonths(12));
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception.

(c)	The	program	will	print	0006-01-01.

(d)	The	program	will	print	2021-01-01.

(e)	The	program	will	print	2015-01-01.

(f)	The	program	will	print	2016-01-01.

(g)	None	of	the	above.

Q75	What	will	the	following	program	print	when	compiled	and	run?
Click	here	to	view	code	image

import	java.time.Period;

public	class	MEQ11A40	{
		public	static	void	main(String[]	args)	{
			Period	period	=	Period.ofYears(10).ofMonths(16);
			System.out.println(period);
		}
}

Select	the	one	correct	answer.

(a)	The	program	will	not	compile.

(b)	The	program	will	throw	a	runtime	exception.

(c)	The	program	will	print	P16M.

(d)	The	program	will	print	P1Y4M.

(e)	The	program	will	print	P11Y4M.

(f)	The	program	will	print	P10Y16M.

(g)	None	of	the	above.

Q76	Which	code,	when	inserted	at	(1),	will	make	the	program	compile	and	execute
normally?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	MEQ11A90	{
		public	static	void	main(String[]	args)	{
				//	(1)	INSERT	CODE	HERE.

				String	timeStr	=	LocalTime.of(12,	5).format(dtf);
				String	dateStr	=	LocalDate.of(2016,	4,	1).format(dtf);
				String	dateTimeStr	=	LocalDateTime.of(2016,	4,	1,	12,	5).format(dtf);
		}
}

Select	the	one	correct	answer.

(a)	DateTimeFormatter	dtf	=
DateTimeFormatter.ISO_LOCAL_TIME;

(b)	DateTimeFormatter	dtf	=
DateTimeFormatter.ISO_LOCAL_DATE;

(c)	DateTimeFormatter	dtf	=
DateTimeFormatter.ISO_LOCAL_DATE_TIME;

(d)	None	of	the	above.

Q77	Which	code,	when	inserted	at	(1),	will	make	the	program	compile	and	execute
normally?

Click	here	to	view	code	image
import	java.time.LocalDate;
import	java.time.LocalDateTime;
import	java.time.LocalTime;
import	java.time.format.DateTimeFormatter;

public	class	MEQ11A95	{
		public	static	void	main(String[]	args)	{
				String	inputStr	=	“The	time	is	15	minutes	past	10PM.”;
				String	pattern	=	“‘The	time	is	‘m’	minutes	past	‘ha.”;
				DateTimeFormatter	dtf	=	DateTimeFormatter.ofPattern(pattern);
				//	(1)	INSERT	CODE	HERE.
		}
}

Select	the	three	correct	answers.

(a)	LocalTime	time	=	LocalTime.parse(inputStr,	dtf);

(b)	LocalDate	date	=	LocalDate.parse(inputStr,	dtf);

(c)	LocalDateTime	dateTime	=	LocalDateTime.parse(inputStr,
dtf);

(d)	String	timeStr	=	LocalTime.of(9,	20).format(dtf);

(e)	String	dateStr	=	LocalDate.of(2015,	12,
24).format(dtf);

(f)	String	dateTimeStr	=	LocalDateTime.of(2015,	12,	24,
22,	15).format(dtf);

Appendix	F.	Annotated	Answers	to	Mock	Exam	I

This	appendix	provides	annotated	answers	to	the	questions	in	the	mock	exam	for	the	Java
SE	8	Programmer	I	certification	found	in	Appendix	E.

Annotated	Answers
Q1	(a),	(b),	(c),	and	(e)

Only	local	variables	need	to	be	explicitly	initialized	before	use.	Fields	are	assigned	a
default	value	if	not	explicitly	initialized.

Q2	(e)

Giving	parameters	(2,	3)	to	the	method	substring()	constructs	a	string
consisting	of	the	characters	from	index	2	(inclusive)	to	index	3	(exclusive)	of	the
original	string;	that	is,	the	string	returned	contains	the	character	at	index	2.	The	first
character	is	at	index	0	and	the	last	character	is	at	index	1	less	than	the	number	of
characters	in	the	string.

Q3	(c)

The	loop	prints	out	the	values	12,	9,	6,	and	3	before	terminating.	The	loop
terminates	when	the	value	in	the	loop	variable	i	becomes	less	than	or	equal	to	0.
This	happens	after	the	value	3	has	been	printed.

Q4	(e)

The	fact	that	a	field	is	static	does	not	mean	that	it	is	not	accessible	from	non-static
methods	and	constructors.	All	fields	are	assigned	a	default	value	if	no	initializer	is
specified.	Static	fields	are	initialized	when	the	class	is	loaded,	and	instance	fields	are
initialized	when	the	class	is	instantiated.	Only	local	variables	must	be	explicitly
initialized	before	use.

Q5	(e)

An	object	of	the	class	Extension	is	created.	The	first	thing	the	constructor	of
Extension	does	is	invoke	the	constructor	of	Base,	using	an	implicit	super()
call.	All	calls	to	the	method	void	add(int)	are	dynamically	bound	to	the
add()	method	in	the	Extension	class,	since	the	actual	object	is	of	type
Extension.	Therefore,	this	method	is	called	by	the	constructor	of	Base,	the
constructor	of	Extension,	and	the	bogo()	method	with	the	parameters	1,	2,	and
8,	respectively.	The	instance	field	i	changes	value	accordingly:	2,	6,	and	22.	The
final	value	of	22	is	printed.

Q6	(d)

At	(1),	a	new	Widget	object	is	constructed	with	the	message	that	is	a	concatenation
of	the	message	"bye"	in	the	Widget	object	denoted	by	b	and	the	string	"!".
After	line	(2),	d	and	b	are	aliases.	After	line	(3),	b	and	a	are	aliases,	but	d	still
denotes	the	Widget	object	with	the	message	"bye"	from	line	(0).	After	line	(4),	d

and	a	are	aliases.	Reference	d	no	longer	denotes	the	Widget	object	created	in	line
(0).	This	Widget	object	has	no	references	that	refer	to	it	and,	therefore,	is	a
candidate	for	garbage	collection.

Q7	(d)	and	(e)

String	objects	are	immutable.	None	of	the	methods	of	the	String	class	modifies
a	String	object.	Methods	toUpperCase()	and	replace()	in	the	String
class	will	return	a	new	String	object	that	contains	the	modified	string.	However,
StringBuilder	objects	are	mutable.	The	charAt()	method	of	the
StringBuilder	class	is	a	get	method,	returning	the	character	at	a	specific	index,
without	modifying	the	contents	of	the	StringBuilder	object.

Q8	(c)

Statement	(a)	will	execute	without	problem,	but	(b),	(d),	and	(e)	will	cause	compile-
time	errors.	Statements	(b)	and	(e)	will	cause	compile-time	errors	because	it	is	not
possible	to	convert	from	the	superclass	A	to	the	subclasses	C	and	B,	respectively.
Statement	(d)	will	cause	compile-time	errors	because	a	cast	from	B	to	C	is	invalid.
Being	an	instance	of	B	excludes	the	possibility	of	being	an	instance	of	C.	Statement
(c)	will	compile,	but	will	throw	a	runtime	exception	because	the	object	that	is	cast	to
B	is	not	an	instance	of	B.

Q9	(b),	(c),	(d),	and	(g)

In	(a),	a	String	is	neither	an	array	nor	an	Iterable.	The	method
toCharArray()	of	the	String	class	returns	an	array	of	type	char.	A	char
value	is	assignable	to	the	local	variable	of	type	char	in	(b),	and	after	autoboxing,
assignable	to	the	local	variable	of	type	Character	in	(c)	and	(d).	In	(e),	the	local
variable	str	is	redeclared.	In	(f),	the	occurrence	of	the	array	operator	[]	is	not
permitted.	In	(g),	the	array	strs	is	permissible	in	the	for(:)	loop.	In	(h),	the
String	class	does	not	have	a	method	named	toArray,	but	it	has	a	method	named
toCharArray.

Q10	(b)	and	(e)

For	the	expression	matrix[3][2]	to	access	a	valid	element	of	a	two-dimensional
array,	the	array	must	have	at	least	four	rows	and	the	fourth	row	must	have	at	least
three	elements.	(a)	produces	a	2	×	3	array.	(c)	tries	to	initialize	a	two-dimensional
array	as	a	one-dimensional	array.	(d)	tries	to	specify	array	dimensions	in	the	type	of
the	array	reference	declaration.

Q11	(a)

The	expression	arr.length	will	evaluate	to	4.	The	expression	arr[1]	will
access	the	array	{	{	"1",	"2"	},	{	"1",	null,	"3"	}	},	and	arr[1]
[2]	will	try	to	access	the	third	element	of	this	array.	This	results	in	an
ArrayIndexOutOfBoundsException,	since	this	array	has	only	two	elements.

Q12	(c)	and	(d)

String	objects	can	have	identical	sequences	of	characters.	The	==	operator,	when
used	on	String	object	references,	will	return	true	if	and	only	if	both	references
denote	the	same	object	(i.e.,	are	aliases).	The	equals()	method	will	return	true
whenever	the	contents	of	the	String	objects	are	identical.	An	array	of	char	and	a
String	are	two	totally	different	types,	and	when	compared	using	the	equals()
method	of	the	String	class,	the	value	returned	will	be	false.

Q13	(b)	and	(e)

Unlike	local	variables,	all	fields	are	initialized	with	default	initial	values.	All
numeric	fields	are	initialized	to	zero,	boolean	fields	to	false,	char	fields	to
'\u0000',	and	all	reference	fields	to	null.

Q14	(a)

The	main()	method	in	(b)	will	always	throw	and	catch	an
ArrayIndexOutOfBounds-Exception,	since	args.length	is	an	illegal
index	in	the	args	array.	The	main()	method	in	(c)	will	always	throw	an
ArrayIndexOutOfBoundsException	since	it	also	uses	args.length	as
an	index,	but	this	exception	is	never	caught.	The	main()	method	in	(d)	will	fail	to
print	the	argument	if	only	one	program	argument	is	supplied.	The	main()	method
in	(e)	will	throw	an	uncaught	ArrayIndexOutOfBoundsException	if	no
program	arguments	are	specified.

Q15	(e)

Method	g()	modifies	the	field	a.	Method	g()	modifies	the	parameter	b,	not	the
field	b,	since	the	parameter	declaration	shadows	the	field.	Variables	are	passed	by
value,	so	the	change	of	value	in	parameter	b	is	confined	to	the	method	g().	Method
g()	modifies	the	array	whose	reference	value	is	passed	as	a	parameter.	Change	to
the	first	element	is	visible	after	return	from	the	method	g().

Q16	(a)

The	program	will	fail	to	compile	since	the	label	l2	cannot	precede	the	declaration
int	j	=	0.	For	a	label	to	be	associated	with	a	loop,	it	must	immediately	precede
the	loop	construct.	If	label	l2	preceded	the	while	loop	(instead	of	the	declaration
of	j),	the	program	would	compile	and	print	9.

Q17	(b)

Classes	cannot	extend	interfaces;	they	must	implement	them.	Interfaces	can	extend
other	interfaces,	but	cannot	implement	them.	A	class	must	be	declared	as
abstract	if	it	does	not	provide	an	implementation	for	all	abstract	methods	of	the
interfaces	that	it	implements.	Methods	declared	in	interfaces	are	implicitly	public
and	abstract.	Classes	that	implement	these	methods	must	explicitly	declare	these
methods	to	be	public.

Q18	(a)

The	code	will	fail	to	compile	because	the	literal	4.3	has	the	type	double.
Assignment	of	a	double	value	to	a	float	variable	without	an	explicit	cast	is	not
allowed.	The	code	would	compile	and	print	0	at	runtime,	if	the	literal	4.3	was
replaced	with	4.3F.

Q19	(b)	and	(e)

The	&&	and	||	operators	exhibit	short-circuit	behavior.	The	first	operand	of	the
ternary	operator	(?	:)	is	always	evaluated.	Based	on	the	result	of	this	evaluation,
either	the	second	or	third	operand	is	evaluated.

Q20	(e)

No	labels	are	mandatory	(including	the	default	label),	and	labels	can	be	placed	in
any	order	within	the	switch	body.	The	keyword	continue	may	occur	within	the
body	of	a	switch	statement	as	long	as	it	pertains	to	a	loop.	An	enum	constant,	a
non-long	integral	constant	expression,	or	a	string	constant	expression	can	be	used
for	case	labels	as	long	as	the	type	is	compatible	with	the	expression	in	the	switch
expression.

Q21	(a)

Strings	are	immutable,	so	the	concat()	method	has	no	effect	on	the	original
String	object.	The	string	on	which	the	trim()	method	is	called	consists	of	eight
characters,	where	the	first	and	two	last	characters	are	spaces	("	hello	").	The
trim()	method	returns	a	new	String	object	in	which	the	whitespace	characters
at	each	end	have	been	removed.	This	leaves	the	five	characters	of	the	word
"hello".

Q22	(a)	and	(e)

Method	overloading	requires	that	the	method	signatures	are	different,	but	the	method
name	is	the	same.	The	return	type	is	irrelevant	in	this	regard.	The	signature	of	the
existing	method	is	sum(long,	long).

The	signature	of	the	method	in	(a)	is	sum(int,	int).	The	signature	of	the
method	in	(e)	is	sum(long,	int).	Both	signatures	are	different	from	the
signature	of	the	existing	method.

Declarations	(b)	and	(d)	fail,	since	the	method	signature	is	identical	to	the	existing
method.	Declar	ation	(c)	fails,	since	it	declares	an	abstract	method	in	a	non-
abstract	class.

Q23	(b)

The	method	with	the	most	specific	signature	is	chosen.	In	this	case	the	int
argument	10	is	boxed	to	an	Integer,	which	is	passed	to	the	Number	formal
parameter,	as	type	Number	is	more	specific	than	Object.

Q24	(d),	(f),	and	(g)

The	main()	method	must	be	declared	as	public	and	static,	with	return	type

void,	and	takes	a	single	array	of	String	objects	as	argument.	The	order	of	the
static	and	public	keywords	is	irrelevant.	Also,	declaring	the	method	final	is
irrelevant	in	this	respect.

Q25	(d)

The	length	of	the	array	passed	to	the	main()	method	is	equal	to	the	number	of
program	arguments	specified	in	the	command	line.	Unlike	some	other	programming
languages,	the	element	at	index	0	does	not	contain	the	name	of	the	program.	The
first	program	argument	specified	is	retrieved	using	args[0],	and	the	last	program
argument	specified	is	retrieved	using	args[args.length-1],	when
args.length	is	greater	than	0.	A	program	argument	is	a	string,	and	several
arguments	are	separated	by	spaces	on	the	command	line.	To	pass	several	arguments
as	one	argument,	these	must	be	enclosed	in	double	quotes.

Q26	(e)

When	the	program	is	called	with	no	program	arguments,	the	args	array	will	be	of
length	0.	The	program	will	in	this	case	print	no	arguments.	When	the	program	is
called	with	three	arguments,	the	args	array	will	have	length	3.	Using	the	index	3	in
the	numbers	array	will	retrieve	the	string	"four",	because	the	start	index	is	0.

Q27	(b)	and	(e)

Static	import	from	a	class	does	not	automatically	import	static	members	of	any
nested	types	declared	in	that	class.	The	order	of	the	import	statements	is	arbitrary	as
long	as	they	are	declared	after	any	package	statement	and	before	any	type
declaration.	Name	conflicts	must	be	disambiguated	explicitly.

Q28	(e)

An	object	reference	is	needed	to	access	non-static	members.	Static	methods	do	not
have	the	implicit	object	reference	this,	and	must	always	supply	an	explicit	object
reference	when	referring	to	non-static	members.	The	static	method	main()	legally
refers	to	the	non-static	method	func(),	using	the	reference	variable	ref.	Static
members	are	accessible	from	both	static	and	non-static	methods,	using	their	simple
names.	No	NullPointerException	is	thrown,	as	ref	refers	to	an	instance	of
MyClass.

Q29	(c)

Declaration	(4)	defines	a	static	method	that	tries	to	access	a	variable	named	a,	which
is	not	locally	declared.	Since	the	method	is	static,	this	access	will	be	valid	only	if
variable	a	is	declared	as	static	within	the	class.	Therefore,	declarations	(1)	and
(4)	cannot	occur	in	the	same	class	declaration,	while	declarations	(2)	and	(4)	can.

Q30	(a),	(f),	and	(h)

The	type	of	the	switch	expression	must	be	either	an	enum	type	or	String	type
or	one	of	the	following:	byte,	char,	short,	int,	or	the	corresponding	wrapper
type	for	these	primitive	types.	This	excludes	(b)	and	(e).	The	type	of	the	case	labels

must	be	assignable	to	the	type	of	the	switch	expression.	This	excludes	(c)	and	(d).
The	case	label	value	must	be	a	constant	expression,	which	is	not	true	in	(g),	where
the	case	label	value	is	of	type	Byte.

Q31	(a)

The	value	of	the	case	label	iFour	is	not	a	constant	expression	and,	therefore,	the
code	will	not	compile.

Q32	(d)

Implementation	(4)	will	correctly	return	the	largest	value.	The	if	statement	does	not
return	any	value	and,	therefore,	cannot	be	used	as	an	expression	statement	in
implementations	(1)	and	(2).	Implementation	(3)	is	invalid	since	neither	the
switch	expression	nor	the	case	label	values	can	be	of	type	boolean.

Q33	(c)

As	it	stands,	the	program	will	compile	correctly	and	will	print	3,	2	at	runtime.	If
the	break	statement	is	replaced	with	a	continue	statement,	the	loop	will	perform
all	four	iterations	and	will	print	4,	3.	If	the	break	statement	is	replaced	with	a
return	statement,	the	whole	method	will	end	when	i	equals	2,	before	anything	is
printed.	If	the	break	statement	is	simply	removed,	leaving	the	empty	statement	(;),
the	loop	will	complete	all	four	iterations	and	will	print	4,	4.

Q34	(a)	and	(c)

The	block	statement	{}	is	a	compound	statement.	The	compound	statement	can
contain	zero	or	more	arbitrary	statements.	Thus,	{{}}	is	a	legal	compound
statement,	containing	one	statement	that	is	also	a	compound	statement.	This	inner
compound	statement	has	no	statements.	The	block	{	continue;	}	by	itself	is
not	valid,	since	the	continue	statement	cannot	be	used	outside	the	context	of	a
loop.	(c)	is	a	valid	example	of	breaking	out	of	a	labeled	block.	(d)	is	not	valid	for	the
same	reasons	that	(b)	was	not	valid.	The	statement	at	(e)	is	not	true,	since	the
break	statement	can	also	be	used	to	break	out	of	labeled	blocks,	as	illustrated	by
(c).

Q35	(d)

The	type	of	nums	is	int[][].	The	outer	loop	iterates	over	the	rows,	so	the	type	of
the	loop	variable	in	the	outer	loop	must	be	int[],	and	the	loop	expression	is	nums.
The	inner	loop	iterates	over	each	row,	int[].	The	loop	variable	in	the	inner	loop
must	be	int,	and	the	loop	expression	in	the	inner	loop	is	a	row	given	by	the	loop
variable	of	the	outer	loop.	Only	in	the	loop	headers	in	(d)	are	both	element	types
compatible.

Q36	(b)

The	program	will	print	1	and	4,	in	that	order.	An	InterruptedException	is
handled	in	the	first	catch	clause.	Inside	this	clause,	a	new	RuntimeException
is	thrown.	This	exception	was	not	thrown	inside	the	try	block	and	will	not	be

handled	by	the	catch	clauses,	but	will	be	sent	to	the	caller	of	the	main()	method.
Before	this	happens,	the	finally	clause	is	executed.	The	code	to	print	5	is	never
reached,	since	the	RuntimeException	remains	uncaught	after	the	execution	of
the	finally	clause.

Q37	(d)

The	method	nullify()	does	not	affect	the	array	reference	in	the	main()
method.	The	array	referenced	by	args	is	no	longer	reachable	when	control	reaches
(1).	Only	the	array	object	and	its	four	Object	elements	(i.e.,	five	objects)	are
reachable	when	control	reaches	(1).

Q38	(e)

An	object	can	be	eligible	for	garbage	collection	even	if	there	are	references	denoting
the	object,	as	long	as	the	objects	owning	these	references	are	also	eligible	for
garbage	collection.	There	is	no	guarantee	that	the	garbage	collector	will	destroy	an
eligible	object	before	the	program	terminates.	The	order	in	which	the	objects	are
destroyed	is	not	guaranteed.	A	thread	cannot	access	an	object	once	it	becomes
eligible	for	garbage	collection.

Q39	(a),	(b),	(c),	and	(e)

The	expressions	('c'	+	'o'	+	'o'	+	'l')	and	('o'	+	'l')	are	of	type
int	due	to	numeric	promotion.	Their	evaluation	would	result	in	the	values	429	and
219,	respectively.	Expression	(d)	is	illegal,	since	the	String	class	has	no
constructor	taking	a	single	int	parameter.	Expression	(a)	is	legal,	since	string
literals	are	references	that	denote	String	objects.

Q40	(d)

The	expression	"abcdef".charAt(3)	evaluates	to	the	character	'd'.	The
charAt()	method	takes	an	int	value	as	an	argument	and	returns	a	char	value.
The	expression	("abcdef").charAt(3)	is	legal;	it	also	evaluates	to	the
character	'd'.	The	index	of	the	first	character	in	a	string	is	0.

Q41	(e)

The	expression	"Hello	there".toLowerCase().equals("hello
there")	will	evaluate	to	true.	The	equals()	method	in	the	String	class	will
return	true	only	if	the	two	strings	have	the	same	sequence	of	characters.	The
compareTo()	method	in	the	String	class	will	return	0	only	if	the	two	strings
have	the	same	sequence	of	characters.	The	string	comparison	by	these	two	methods
is	case	sensitive,	being	based	on	the	Unicode	value	of	the	characters	in	the	strings.

Q42	(c)

The	variable	middle	is	assigned	the	value	6.	The	variable	nt	is	assigned	the	string
"nt".	The	substring	"nt"	occurs	three	times	in	the	string	"Contentment!",
starting	at	indices	2,	5,	and	9.	The	call	s.lastIndexOf(nt,	middle)	returns
the	start	index	of	the	last	occurrence	of	"nt",	searching	backward	from	position	6.

Q43	(d)

The	program	will	construct	an	immutable	String	object	containing	"eeny"	and	a
mutable	StringBuilder	object	containing	"	miny".	The	concat()	method
returns	a	reference	value	to	a	new	immutable	String	object	containing	"eeny
meeny",	but	the	reference	value	is	not	stored;	consequently,	this	String	object
cannot	be	referenced.	The	append()	method	appends	the	string	"	mo"	to	the
string	builder.

Q44	(c)

The	code	will	fail	to	compile,	since	the	package	declaration	cannot	occur	after	an
import	statement.	The	package	and	import	statements,	if	present,	must	always
precede	any	type	declarations.	If	a	file	contains	both	import	statements	and	a
package	statement,	the	package	statement	must	occur	before	the	import
statements.

Q45	(a)	and	(b)

Note	that	ArrayIndexOutOfBoundsException	and
StringIndexOutOfBoundsException	are	subclasses	of
IndexOutOfBoundsException.	The	elements	of	the	array	are	initialized	as
follows:

Click	here	to	view	code	image
trio[0]	=	null;
trio[1][0]	=	null;
trio[2][0]	=	“Tom”;
trio[3]	=	new	String[0];	//	{},	i.e.,	zero-length	array
trio[4][0]	=	“Dick”;
trio[4][1]	=	“Harry”;

Element	trio[3][0]	does	not	exist	because	the	array	trio[3]	is	of	zero	length,
resulting	in	an	ArrayIndexOutOfBoundsException	being	thrown;	this
exception	is	also	a	subtype	of	IndexOutOfBoundsException.
IllegalIndexFoundException	is	not	defined.

Q46	(e)

The	loop	condition	++i	==	i	is	always	true,	as	we	are	comparing	the	value	of	i	to
itself,	and	the	loop	will	execute	indefinitely.	The	evaluation	of	the	loop	condition
proceeds	as	follows:	((++i)	==	i),	with	the	operands	having	the	same	value.	For
each	iteration,	the	loop	variable	i	is	incremented	twice:	once	in	the	loop	condition
and	a	second	time	in	the	parameter	expression	i++.	However,	the	value	of	i	is
printed	before	it	is	incremented	the	second	time,	resulting	in	odd	numbers	from	1
and	upward	being	printed.	If	the	prefix	operator	is	also	used	in	the	println
statement,	all	even	numbers	from	2	and	upward	would	be	printed.

Q47	(d)

The	expression	i	%	k	evaluates	to	the	remainder	value	3.	The	expression	i	%	-k
also	evaluates	to	the	remainder	value	3.	We	ignore	the	sign	of	the	operands,	and

negate	the	remainder	only	if	the	dividend	(j	in	this	case)	is	negative.

Q48	(e)

The	class	Thingy	does	not	override	the	equals()	method,	so	the	equals()
method	from	the	Object	class	is	executed	each	time.	The	method	in	the	Object
class	compares	the	reference	value	for	equality	with	the	==	operator.	Having	the
same	name	in	the	second	call	to	the	equals()	method	does	not	make	the	Thingy
objects	equal.	In	the	last	call	to	the	equals()	method,	the	two	references	are
aliases;	that	is,	they	have	the	same	reference	value.

Q49	(b)

Strings	are	immutable,	so	the	method	concat()	does	not	change	the	state	of	the
s1	string.	The	default	case	is	executed	in	the	switch	statement.	Because	of	the
fall-through	in	the	switch	statement,	the	last	print	statement	is	also	executed.

Q50	(a),	(d),	and	(e)

In	(b),	the	right-hand	side	int	value	255	requires	a	cast	to	convert	to	a	byte.	In
(c),	only	integer	literals	can	be	specified	in	binary	notation,	not	floating-point	values.
(e)	will	compile,	but	will	throw	a	NumberFormatException	at	runtime.	In	(f),
an	underscore	cannot	occur	at	the	start	of	an	integer	value.	The	compiler	will
interpret	it	as	an	identifier.	In	(g),	an	underscore	cannot	occur	before	or	after	any
type	designator	(L).

Q51	(d),	(e),	and	(i)

In	(d)	and	(e),	either	the	array	length	or	the	initializer	block	can	be	specified,	as	in
(a),	(c),	and	(f).	In	(i),	the	length	of	the	leftmost	dimension	must	be	specified;	the
other	dimensions	are	optional,	as	in	(g)	and	(h).

Q52	(a)	and	(c)

The	methods	at	(1)	and	(3)	differ	only	in	the	return	type,	which	is	not	sufficient	for
correct	overloading.	Method	overloading	requires	that	the	method	signatures	are
different,	but	the	method	name	is	the	same.	The	return	type	is	irrelevant	in	this
regard.	The	code	will	not	compile.

Q53	(d)

StringBuilder	is	mutable.	The	reference	value	in	giz.name	is	copied	to	the
formal	parameter	sb	when	the	method	is	called.	References	giz.name	and	sb	are
aliases	to	the	same	string	builder.	Changes	made	to	the	string	builder	in	the	method
are	apparent	when	the	call	returns.	In	contrast,	the	double	value	in	giz.weight
is	copied	to	the	formal	parameter	weight,	whose	value	is	changed	in	the	method,
but	this	does	not	affect	the	value	in	the	actual	parameter,	which	remains	unchanged.

Q54	(a),	(b),	(e),	and	(f)

StringBuilder	is	mutable.	The	methods	insert()	and	append()	of	the
StringBuilder	return	the	reference	value	of	the	string	builder,	in	addition	to

modifying	it.	The	assignment	in	(b)	and	(f)	is	superfluous.	In	(c)	and	(d),	only	the
local	variable	meal	is	assigned	a	reference	value	of	a	string	builder,	but	it	does	it
not	change	the	string	builder	in	the	array	meals.

Q55	(d)

After	the	first	call	to	the	overloaded	add()	method,	the	size	of	the	array	list	is	1.
Trying	to	insert	an	element	at	index	2	in	the	second	call	to	the	add()	method
results	in	a	java.lang.IndexOutOfBoundsException,	because	index	2	is
strictly	greater	than	the	current	size	of	the	array	list.

Q56	(g)

The	field	numOfGuests	is	static,	meaning	the	field	belongs	to	the	class	Room
and	not	to	any	object	of	the	class.	Such	a	field	can	be	referenced	by	a	reference
whose	type	is	the	same	as	the	class.	The	two	references	r1	and	r2	refer	to	the	same
static	field	numOfGuests,	which	has	the	value	3.	Because	of	string	concatenation,
the	expression	"Number	of	guests:	"	+	r1.numOfGuests	+
r2.numOfGuests	evaluates	to	"Number	of	guests:	33".

Q57	(b),	(c),	and	(d)

In	(a),	the	theater	cannot	admit	anyone	unless	there	is	a	ticket-holder,	so	the	test	to
see	whether	there	is	a	ticket-holder	comes	first.

In	(b),	at	least	one	guess	has	to	be	made,	so	the	test	can	be	done	after	making	the
guess.

In	(c),	some	salt	has	to	be	added,	as	the	food	has	too	little	salt	initially.	The	test	to
see	if	the	food	tastes	right	can	be	done	after	some	salt	has	been	added.

In	(d),	at	least	one	candle	has	to	be	added,	so	the	test	for	the	right	number	of	candles
can	be	done	after	adding	a	candle.

In	(e),	it	a	good	idea	to	check	first	whether	the	cat	is	away	before	letting	the	mice
play	a	little.

Q58	(b)	and	(f)

In	both	cases,	the	code	in	the	if	statement	and	the	while	loop	is	unreachable,	so	it
can	never	be	executed.	In	case	of	the	while	loop,	the	compiler	flags	an	error.	The
if	statement	is	treated	as	a	special	case	by	the	compiler	to	simulate	conditional
compilation,	allowing	code	that	should	not	be	executed.

Q59	(e)

The	value	2014	is	boxed	into	an	Integer.	The	subclass	Integer	overrides	the
abstract	method	intValue()	from	the	superclass	Number,	so	that	no	cast	or
explicit	parentheses	are	necessary.	However,	if	this	was	not	the	case,	only	the	syntax
with	the	cast	in	(a)	would	be	correct.

Q60	(b)

The	thing	to	note	is	that	the	method	compare()	is	overloaded	in	the	subclass

Student,	and	not	overridden.	Thus	objects	of	the	class	Student	have	two
methods	with	the	same	name	compare.	For	overloaded	methods,	the	method	to	be
executed	is	determined	at	compile	time,	depending	on	the	type	of	the	reference	used
to	invoke	the	method,	and	the	type	of	the	actual	parameters.	When	the	type	of	the
reference	is	Person	(as	is	the	case	for	p1	and	p2),	the	method	compare()	in
Person	will	always	be	executed.	The	method	defined	in	the	subclass	Student	is
executed	only	by	the	last	call	s1.compare(s2)	in	the	main()	method.

Q61	(b)	and	(e)

The	add(element)	method	adds	an	element	at	the	end	of	the	list.	The
add(index,	element)	method	adds	the	element	at	the	specified	index	in	the
list,	shifting	elements	to	the	right	from	the	specified	index.	The	index	satisfies
(index	>=	0	&&	index	<=	size()).	The	set(index,	element)
method	replaces	the	element	at	the	specified	index	in	the	list	with	the	specified
element.	The	index	satisfies	(index	>=	0	&&	index	<	size()).	The
for(;;)	loop	adds	the	elements	currently	in	the	list	at	the	end	of	the	list.	The	list
changes	as	follows:

Click	here	to	view	code	image
[Ada]
[Ada,	Alyla]
[Ada,	Otto]
[Ada,	Anna,	Otto]
[Ada,	Anna,	Otto,	Otto,	Anna,	Ada]

Q62	(e)

Elements	with	the	null	value	count	toward	the	size	of	the	list.	The	lists	have
different	sizes.	The	lists	are	two	distinct	lists,	having	unique	reference	values.	The
equals()	test	fails	because	the	lists	have	different	sizes.

Q63	(a),	(c),	(e),	(f),	(g),	and	(k)

The	program	prints	the	following,	where	the	list	contents	are	shown	before	and	after
each	print	statement.	Note	the	return	value	from	the	ArrayList	methods.

[3,	4,	1,	null,	0]
(1)	prints	null
[3,	4,	1,	null,	0]
(2)	prints	4
[3,	3,	1,	null,	0]
(3)	prints	1
[3,	3,	1,	null,	0]
(4)	prints	true
[3,	3,	1,	null,	0]
(5)	prints	null
[3,	3,	1,	0]
(6)	prints	0
[3,	3,	1,	0]
(7)	prints	false
[3,	3,	1,	0]

Q64	(b),	(f),	and	(g)

(1):	The	initial	capacity	can	be	0.	The	capacity	can	change	as	the	list	changes

structurally.

(2):	List<String>	is	not	a	subtype	of	List<Object>.	Assignment	is	not
allowed.

(3),	(4),	(5):	Although	the	Number	class	is	abstract,	we	can	create	an	ArrayList
of	an	abstract	class.	However,	only	reference	values	of	objects	of	its	concrete
subtypes	can	be	stored	in	such	a	list.

(6):	The	diamond	operator	can	be	used	only	with	the	new	operator.

(7):	ArrayList<Integer>	is	not	a	subtype	of
ArrayList<ArrayList<Integer>>.	Assignment	is	not	allowed.	The
ArrayList	creation	expression	must	declare	the	full	element	type	or	use	the
diamond	operator.

(8):	The	declaration	statement	compiles,	but	an	unchecked	conversion	warning	is
issued	by	the	compiler.	All	bets	are	off	regarding	the	type-safety	of	the
ArrayList.

Q65	(d)	and	(e)

Textual	representation	of	the	current	contents	of	the	list	is	added	as	a	string	on	each
iteration	of	the	loop.	The	loop	body	is	executed	3	times.	The	default	textual
representation	of	a	list	is	enclosed	in	brackets	([]),	where	textual	representation	of
each	element	is	separated	by	a	comma	(,).

Q66	(d)

The	add(index,	element)	method	accepts	an	index	that	satisfies	the
condition	(index	>=	0	&&	index	<=	size()).	The	for(;;)	loop	swaps
elements	to	reverse	the	elements	in	the	list.

Q67	(c)	and	(d)

(a):	The	return	statement	is	mandatory	in	a	lambda	expression	only	if	the	lambda
body	is	a	statement	block	that	has	a	non-void	return.

(b):	A	return	statement	is	illegal	in	a	lambda	expression	if	the	lambda	body	is	a
single	expression.

(e):	A	local	variable	declaration	in	the	block	scope	of	a	lambda	expression	cannot
shadow	or	redeclare	a	local	variable	with	the	same	name	in	the	enclosing	method.

Q68	(a),	(c),	(g),	(h),	and	(i)

The	declarations	at	(1),	(3),	(7),	(8),	and	(9)	will	not	compile.	In	(1),	the	declared-
type	parameter	must	be	in	parentheses.	In	(3),	the	final	modifier	can	be	applied
only	to	declared-type	parameters.	In	(7),	the	return	keyword	cannot	be	used	when
the	lambda	body	is	a	single	expression.	In	(8)	and	(9),	the	return	keyword	is
required	for	a	non-void	return	from	a	lambda	expression	with	a	statement	block.	In
(8),	the	statement	terminator	(;)	is	also	missing.

Q69	(a),	(d),	and	(e)

The	declarations	at	(1),	(4),	and	(5)	will	compile.	In	(1),	the	parameter	lock	is	local
in	the	block	scope	of	the	lambda	expression.	In	(2),	the	lambda	expression	must
explicitly	return	a	value,	regardless	of	whether	the	if	statement	is	executed.	In	(3),
the	local	final	variable	lock3	in	the	enclosing	scope	cannot	be	redeclared.	In	(4)
and	(5),	local	variables	lock3	and	lock4	in	the	enclosing	scope	can	be	accessed
in	the	lambda	expression,	as	they	are	both	final	and	effectively	final,	respectively.
In	(6),	the	local	variable	lock4	in	the	enclosing	scope	cannot	be	redeclared	as
parameter.

Q70	(a),	(c),	(g),	and	(h)

In	(b),	the	return	keyword	cannot	be	used	in	a	lambda	expression	with	a	single
expression	body.	In	(d),	the	return	keyword	must	be	used	in	a	lambda	expression
with	a	non-void	statement	block	body.	In	(e)	and	(f),	the	class	String	does	not
have	a	constructor	that	takes	an	integer	value.

Q71	(b)

A	functional	interface	is	an	interface	that	has	only	one	abstract	method,	aside	from
the	abstract	method	declarations	of	public	methods	from	the	Object	class.	This
single	abstract	method	declaration	can	be	the	result	of	inheriting	multiple
declarations	of	the	abstract	method	from	superinterfaces.

All	except	IA	are	functional	interfaces.	IA	does	not	define	an	abstract	method,	as	it
provides	only	an	abstract	method	declaration	of	the	concrete	public	method
equals()	from	the	Object	class.	IB	defines	a	single	abstract	method,	doIt().
IC	overrides	the	abstract	method	from	IB,	so	effectively	it	has	only	one	abstract
method.	IC	inherits	the	abstract	method	doIt()	from	IB	and	overrides	the
equals()	method	from	IA,	so	effectively	it	also	has	only	one	abstract	method.

Q72	(e)

(a):	The	isBefore()	and	isAfter()	methods	are	strict	in	their	comparison.

(b):	The	withYear()	and	withMonth()	methods	will	adjust	the	day.	The
withDayOfMonth()	and	withDayOfYear()	methods	will	throw	a
DateTimeException	if	the	argument	value	will	result	in	an	invalid	date.

(c):	The	Period	class	does	not	have	the	method	toTotalDays(),	but	it	does
have	the	method	toTotalMonths()	that	considers	only	the	years	and	the
months.	The	Period	class	has	no	notion	of	time	of	day	or	date	in	the	year.

(d):	The	Period	class	does	not	implement	the	Comparable	interface.

Q73	(d)

The	calculation	of	time.withHour(10).plusMinutes(120)	proceeds	as
follows:

Click	here	to	view	code	image

12:00	with	10	hour	==>	10:00	+	120	min	(i.e.,	2	hours)	==>	12:00

Q74	(f)

The	date	value	2015-01-01	in	the	date	reference	never	changes.	The
withYear()	method	returns	a	new	LocalDate	object	(with	the	date	value
0005-01-01)	that	is	ignored.	The	plusMonths()	method	also	returns	a	new
LocalDate	object	whose	value	is	printed.	The	calculation	of
date.plusMonths(12)	proceeds	as	follows:

Click	here	to	view	code	image
2015-01-01	+	12	months	(i.e.,	1	year)	==>	2016-01-01

Q75	(c)

The	static	method	call	Period.ofYears(10)	returns	a	Period	with	the	value
P10Y.	This	Period	object	is	used	to	invoke	the	static	method	ofMonths()	with
the	argument	value	of	16	months,	resulting	in	a	new	Period	object	with	the	period
value	P16M.	Its	reference	value	is	assigned	to	the	period	reference.	The	of()
methods	do	not	normalize	the	date-based	values	of	a	Period.

Q76	(d)

(a):	The	formatter	will	format	a	LocalTime	object	and	the	time	part	of	a
LocalDateTime	object,	but	not	a	LocalDate	object,	as	it	knows	nothing	about
formatting	the	date	part.	It	will	use	the	ISO	standard.

(b):	The	formatter	will	format	a	LocalDate	object	and	the	date	part	of	a
LocalDateTime	object,	but	not	a	LocalTime	object,	as	it	knows	nothing	about
formatting	the	time	part.	It	will	use	the	ISO	standard.

(c):	The	formatter	will	format	a	LocalDateTime	object,	but	neither	a
LocalDate	object	nor	a	LocalTime	object,	as	it	requires	both	the	date	and	the
time	parts.	It	will	use	the	ISO	standard.

Q77	(a),	(d),	and	(f)

The	input	string	matches	the	pattern.	The	input	string	specifies	the	time-based	values
that	can	be	used	to	construct	a	LocalTime	object	in	(a)	by	a	formatter,	based	on
the	time-related	pattern	letters	in	the	pattern.	No	date-based	values	can	be	interpreted
from	the	input	string,	as	this	pattern	has	only	time-related	pattern	letters.	(b)	and	(c),
which	require	a	date	part,	will	throw	a	DateTimeParseException.

To	use	the	pattern	for	formatting,	the	temporal	object	must	provide	values	for	the
parts	corresponding	to	the	pattern	letters	in	the	pattern.	The	LocalTime	object	in
(d)	has	the	time	part	required	by	the	pattern.	The	LocalDate	object	in	(e)	does	not
have	the	time	part	required	by	the	pattern,	so	an
UnsupportedTemporalTypeException	will	be	thrown.	The
LocalDateTime	object	in	(f)	has	the	time	part	required	by	the	pattern.	In	(f),	only
the	time	part	of	the	LocalDateTime	object	is	formatted.

Index

Symbols
-	169

--	176

^	184,	189

^=	185

_	32

;	50

:	110

!	184

!=	181,	342

?:	194

.	7,	72,	97,	108

...	81,	85

‘	32,	33

"	34

[]	59,	61,	195

{}	50,	60,	117

@FunctionalInterface	442,	443

@Override	270

@param	49,	56

@return	225

@throws	253

*	100,	163,	167

*=	172

/	167

/*	and	*/	35

/**	and	*/	36

//	35

/=	172

\	33

&	184,	189

&&	186

&=	185

%	167,	168

%=	172

+	169,	174

+	concatenation	364

++	176

+=	172

<	180

<=	180

<>	414,	415,	416

-=	172

=	158

==	181,	342,	351,	359

>	195,	439,	444

>	180

>=	180

|	184,	189

|=	185

||	186

~	189

A
ability	interfaces

see	marker	interfaces

abrupt	method	completion	232

absolute	adjusters	470

abstract

classes	120

interfaces	290

methods	136,	291,	442

abstract	120,	136,	290,	291,	442

abstract	method	declarations	442

in	interfaces	290,	291

abstraction	2,	10

accessibility	7,	17,	114

default	118,	127

members	114,	120,	123

modifiers	118

package	118

private	128

protected	126

public	124

UML	notation	124

accessibility	modifiers	48,	53

activation	frame	384

see	method	execution	230

actual	parameter	72

actual	parameter	list	72,	315

adding	to	class	264

additive	operators	169

aggregation	10,	12,	267

hierarchy	267

versus	inheritance	331

aliases	6,	75,	182,	183

see	also	references

ambiguous	call	316

analyzing	program	code	512

and	operator	189

annotations

@Override	270

anonymous	arrays	63,	66

[]	63

anonymous	classes	436

anonymous	functions	439

API	(application	programming	interface)	22

apostrophe	33

application	16

architecture	neutral	23

argument

see	actual	parameter

arguments	to	main	method	85

arithmetic	compound	assignment	operators	172

ArithmeticException	236

arity	81

array	creation	expression	59,	63

array	initializer	60,	63,	66

array	store	check	311

array	types

see	arrays

ArrayIndexOutOfBoundsException	61,	236

ArrayList	366,	414

add	collection	419

add	element	417,	419

autoboxing	421

capacity	416

clear	list	420

comparison	with	arrays	425

constructing	415

constructors	418

converting	to	array	424

element	search	423

element	type	415

filtering	434

import	415

inheritance	hierarchy	415

initial	capacity	417

insertion	order	414

list	of	lists	417

membership	test	422

modifying	419

nested	lists	417

object	value	equality	422

open	range-view	operations	414

ordered	414

position-based	access	415

positional	index	422

positional	order	414

positional	retrieve	422

querying	422

references	415

remove	collection	420

remove	element	419

replace	element	419

size	416,	422

sorting	425

subtype	relationship	418

textual	representation	417

traversing	423

trim	to	size	420

type-safety	416,	417,	418

unchecked	conversion	warning	416

zero-based	index	414

arrays	58,	342

[]	59,	61

{}	60

anonymous	63,	66

array	creation	expression	59

array	initialize	list	60,	63

array	initializer	60,	66

array	name	59

array	size	60

array	store	check	311

ArrayIndexOutOfBoundsException	61

bounds	61

construction	59

declarations	59

default	initialization	59,	60

dynamic	415

element	access	expression	61

element	default	value	310

element	type	59

elements	58,	61

index	58

index	expression	61

initialization	60,	65

iterating	over	217

length	58

multidimensional	63,	65

objects	342

ragged	65

reference	59,	62,	311

searching	69

sorting	68

subtype	covariance	309

traverse	an	array	62

using	61

arrays	of	arrays	59,	65

multidimensional	65

ArrayStoreException	311,	418,	424

arrow	>	195,	439,	444

ASCII	32,	38

AssertionError	237

assignable	147,	314

assignment	compatible	148,	314,	416

assignment	conversions	147

assignment	operator	5

assignments

arithmetic	compound	operators	172

bitwise	192

cascading	159

compound	operators	185,	192

expression	statement	159

implicit	narrowing	160

multiple	159

numeric	conversions	160

operator	151,	158

primitive	values	159

references	159

widening	reference	conversions	267

association	12

aggregation	267

composition	267

realization	296

associativity	152

atomic	values	13

attributes	see	properties

autoboxing	68,	348

for(:)	statement	218

AutoCloseable	387

automatic	garbage	collection	6,	384

automatic	variables	see	local	variables

B
backslash	33

backspace	33

base	30,	349,	352

base	class	264

basic	for	statement	215

Before	Current	Era	(BCE)	464

behavior	433

behavior	parameterization	434,	441

binary

numeric	promotion	150

operators	151

binary	search

arrays	69

bit	mask	190

bit	patterns	154

bitwise

and	operator	189

assignment	192

complement	189

compound	assignment	192

operators	189

or	operator	189

xor	189

bitwise	AND

&	189

bitwise	complement

~	189

bitwise	exclusive	OR

^	189

bitwise	OR

|	189

bitwise	XOR

^	189

blank	final	variable	80,	134

blocks	49,	50,	117

scope	117,	448

try	240

boilerplate	code	436
Boolean

condition	200

Boolean	wrapper	class	355

booleans	37,	39

casting	149

expressions	180

literals	32

boxing	conversions	145,	146

break	statement	205,	206,	221

BS	see	backspace

building	abstractions	10

byte	30,	38

bytecode	16,	23

C
C	137

C++	23,	137

cache	139

call	by	reference	77

call	by	value	77

call	chaining	72

call	signature	316

call	stack

see	JVM	stack	230

callee	72

caller	72,	224

capacity	416

carriage	return	33,	35

cascading	assignments	159

cascading	if-else	statements	203

case	labels	203,	205

case	sensitivity	28

cast	operator	145,	148,	151,	162,	172,	182,	320

casting	147,	148,	149

see	also	conversions

catch	clause	240

uni-	239

catching	exceptions	230

catch-or-declare	251

CertView	509

chaining	406

constructors	287,	406

finalizers	391

char	38

character	case	364

character	sequences

see	strings	and	string	builders

character	set

ASCII	32,	38

ISO	Latin-1	32,	38

Unicode	32,	38

Character	wrapper	class	354

characters	38

literals	32

searching	for	367

CharSequence	interface	360,	365,	369

checked	exceptions	237

child	class	264

choosing	between	String	and	StringBuilder	class	374

Class	class	343

class	file	16

class	hierarchy

see	inheritance	hierarchy

class	inheritance

see	implementation	inheritance

class	method	10

class	modifiers	48

class	path	107

absolute	pathnames	110

entries	order	110

entry-separator	character	110

fully	qualified	package	name	109

path-separator	character	110

relative	pathnames	110

search	in	a	named	package	109

searching	for	classes	107

whitespace	110

class	search	path

see	class	path

class	variable	10

ClassCastException	236,	321

classes

abstract	120

accessibility	118

adding	to	264

base	264

body	48

child	264

cohesion	335

concrete	121,	122,	436

constructors	53,	282

coupling	336

declarations	48,	96

definitions	2,	5

derived	264

diagram	8,	9

encapsulation	335

extending	122,	264

final	122

final	vs.	abstract	122

fully	qualified	name	107

fully	qualified	package	name	98

generalized	266

grouping	97

header	48

implementing	interfaces	291

initialization	409

instance	members	48

instances	4

members	7

methods	132

modifiers	120

name	97

normal	121

Object	342

parent	264

runtime	343

scope	114

searching	for	107

specialized	266

static	members	48

subclass	10,	264

superclass	10,	264

variables	132

wrappers	342,	346

ClassLoader	class	342

ClassNotFoundException	235

CLASSPATH	environment	variable

see	class	path

-classpath	option

see	class	path

clauses

catch	240

extends	264

finally	240,	245

implements	291

throws	251

cleaning	up	386

clean-up	code	245

client	7,	16

Cloneable	interface	343

CloneNotSupportedException	343

cloning	objects	343

code	optimizations	134

code	reuse	23,	264,	334

CodeRanch	508

cohesion	335

coincidental	335

functional	335

high	335

coincidental	cohesion	335

Collection	414

collections	414

as	single	entity	414

elements	414

ordered	414

sorting	414

command	17

java	17

javac	17

command	line	17,	86

command	prompt	17

comments	35

communication	7,	72

Comparable	interface	350,	363,	376,	425

comparing	objects	342

comparing	strings	363

comparison	180

compilation	unit	98

compiling	Java	source	code	17

complement

~	189

completes	abruptly

see	exception	propagation	232

composite	object	10

composition	12,	267

compound	statement	50

concatenation	of	strings	364

concatenation	operator	174

concrete	classes	436

concrete	method	134

ConcurrentModificationException	424

condition

Boolean	200

expressions	200

conditional	180

and	186

operators	186,	194

or	186

statements	200

conditional	expressions	194

associativity	195

nested	195

precedence	194

short-circuit	evaluation	194

side	effects	194

conditions	180

connecting	punctuation	character	28

const	29

constant	declarations	290

constant	expression	147,	160,	161,	176

constant	field	values

case	labels	208

constant	string	expressions	208

constant	values	30,	133

constant	variable	161

constants	302

constituent	objects	10

constituents	12

constructing	array	59

constructor	chaining	283,	287,	406

constructors	3,	53,	282

accessibility	124

accessibility	modifier	53

body	53

chaining	283,	287

class	name	53

declaration	48

default	54

header	53

implicit	default	54

local	declarations	53

no-argument	53,	54,	283,	287

non-zero	argument	55,	287,	288

overloading	56

superclass	constructor	54

constructs	28

high-level	28

loops	see	iteration	statements

container

see	collections

contains	characters	368

continue	statement	223

contract	2,	291,	293,	334,	335

control	flow

break	205,	221

continue	223

do-while	214

for(;;)	215

for(:)	217

if	200

if-else	201

iteration	see	iteration	statements

loops	see	iteration	statements

return	224

statements	50,	200

switch	203

throw	249

transfer	statements	219

while	213

control	transfer	219

conversion	categories	147

conversion	contexts	147

conversions	144,	311

assignment	147

contexts	147

identity	172

implicit	narrowing	173

method	invocation	148

narrowing	reference	320

number	systems	157

numeric	promotions	149

parameters	73

reference	casting	320

string	concatenation	175

to	strings	369

truncation	161

type-safe	315

unsafe	casts	321

widening	reference	267,	320

converting	number	systems	157

converting	values	348,	349,	350,	352,	353,	355,	369

counter-controlled	loops	215

coupling	336

loose	336

covariant	return	269,	273

-cp	option

see	class	path

CR	see	carriage	return

crab	217

creating

objects	195

criteria	object	436

currency	symbol	28

current	directory

.	108

Current	Era	(CE)	464

current	object	50

D
-d	option	106

dangling	references	384

data	structures	414

data	types	see	types

date

see	temporal	objects

date	units	474

date/time	formatters

customized	486,	495

format	styles	490

formatting	487

immutability	487

ISO-based	default	486,	487

ISO-based	predefined	486,	488

letter	pattern	495

localized	486,	490

parsing	487

pattern	letters	495,	496

thread-safety	487

date-based	values	462

date-time

see	temporal	objects

DateTimeException	463

DateTimeFormatter	class

see	date/time	formatters

DateTimeParseException	477,	491

DayOfWeek	enum	type	468

declaration	statement	4,	41,	171,	177,	187,	216

declarations

arrays	59,	196

classes	48,	96

interfaces	96

local	50

main	method	85

methods	49

multidimensional	arrays	63

packages	96,	98

statements	50

variable	arity	method	81

declared	type	268,	274,	275,	315

declared-type	parameters	445

declaring	see	declarations

decoupling	330

decrement	operator	176

deep	copying	343

default

accessibility	118,	124,	127

constructor	54

exception	handler	232

method	297

values	42,	400,	406

default	297

label	204

method	297

default	constructor	54

default	method	297,	442,	443

multiple	inheritance	298

overriding	298

default	package	98

deferred	execution	451

definitions

inheritance	296

interfaces	290

delegating	requests	334

derived	class	264

destination	directory	106

destination	stream	18

destroying	objects	390

diagrams

class	3

object	5

see	also	UML

diamond	operator	(<>)	416

dictionary	order	363

distributed	23

divide-and-conquer	algorithm	69

dividend	168

division

floating-point	167

integer	167

division	operator

/	167

divisor	168

documentation	35

documentation	comment	35,	36

tags	36

documenting	see	documentation

dot	97

double	31,	39

double	quote	33

do-while	statement	214

downcasting	145

duplicating	objects	343

Duration	class	476

time-based	476

dynamic	23

dynamic	arrays	415

dynamic	binding

see	dynamic	method	lookup

dynamic	method	lookup	277,	329,	330

dynamic	type	268,	274,	275

E
effectively	final	448

element	type	59,	415

elements	58,	414

eligible	for	garbage	collection	385

ellipsis	81

else	clause	matching	203

embedded	applications	22

empty	statement	50

empty	string	358

encapsulation	22,	97,	335

encapsulation	of	implementation	334

ends	with	characters	368

enhanced	for	loop	213

enterprise	applications	22

enum	constant	87

symbolic	names	87

values	87

enum	types	87,	103,	209,	303

declaring	87

finalization	391

named	constants	87

natural	order	90

ordinal	value	90,	209

switch	expression	204

using	88

enumerated	types

see	enum	types

EOFException	235

equality	181,	342

equals	method	183,	342

object	value	183

objects	183

primitive	values	181

reference	values	182

equals	method	183,	342

Error	237

escape	sequences	33

evaluation	order	152,	187

arithmetic	expressions	164

evaluation	short-circuits	187

exam	507

multiple-choice	513

program	510

questions	511

registration	508

result	511

testing	locations	510

voucher	509

exam	objectives

OCAJP8	515

Exception	class	236

exception	handler	230

see	also	exceptions

exception	handling

advantages	254

exceptions	230,	239

customized	238

default	handler	232

handler	230

ignored	390

propagation	230

situations	235

throw	249

throwing	see	throwing	exceptions

thrown	by	JVM	235

thrown	by	method	49

thrown	programmatically	235

throws	251

types	233

uncaught	232

unchecked	237

exchanging	information	72

explicit

garbage	collection	393

explicit	traversal	452

exponent	31

expression	statements	50,	159,	177,	216,	217,	446

expressions	205

actual	parameters	72

boolean	180

case	labels	205

conditional	194

deterministic	evaluation	150

label	205

return	224

statements	50

throw	249

extending

classes	264

interfaces	294

extends	clause

see	extending

extensions

.class	16

.java	16

external	libraries	403

extracting	substrings	369

F
fall-through	204,	205

false	literal	32

FF	see	form	feed

field	declarations	48

field	hiding	275

field	initialization	406

fields	2

file	name	96

file	path	105

separator	character	105

filtering	434

final

classes	122

members	133

parameters	80

finalization	385

finalization	mechanism	385

finalize	method	343,	390

finalizer	chaining	391

finalizer	see	finalize	method

finally	clause	240,	245

fixed	arity	method	81

fixed	arity	method	call	84

float	31,	39

floating-point	37

double	39

float	39

literals	31

floating-point	arithmetic	165

strictfp	166

floating-point	data	types	31

floating-point	division	167

floating-point	remainder	169

flow	control	see	control	flow

for(;;)	statement	215

backward	216

forward	215

traverse	array	62

for(:)	statement	217

traverse	array	62

for-each	loop	213

form	feed	33,	35

formal	parameters	49,	53,	72,	117,	315

modifier	49

name	49

type	49

formal	type	parameter	290

format	specifications	18,	370

format	specifier	19

format	styles	486,	490

FormatStyle	enum	type	486,	490

formatted	output	18

format	specifier	19

formatted	string	370

formatting	35,	462,	486

forward	reference	400,	401,	403,	405,	406

fractional	signed	numbers	37

fully	qualified	class	name	107

fully	qualified	package	name	97,	98,	100

fully	qualified	type	name	97,	101

function	451

function	type	450

functional	cohesion	335

functional	interface	438

@FunctionalInterface	442,	443

abstract	method	442

function	type	450

functional	method	442

general-purpose	443

generic	441

Predicate<T>	440,	451

primitive	values	444

target	type	450

see	also	lambda	expressions

functional	method	442

functional	programming	24

functionality	433

functional-style	programming	433

G
garbage	collection	387,	389,	390,	393

automatic	384

facilitate	387

general	abstractions	266

general	loops	215

generalization	10

generalized	classes	266

generic	method	423

generic	type	414

goto	29,	220

grammar	rules	28

grouping	97

H
handles	see	references

has-a	relationship	267

hash	code	52,	343

hash	tables	52

heap	384

hiding	internals	335

high	cohesion	335

high-performance	24

horizontal	tab	33

hotspots	24

HT	see	horizontal	tab

I
IDE	(integrated	development	environment)	508

identifiers	28

predefined	29

reserved	29

variable	40

identity	conversion	146,	172

identity	of	object	5

IEEE	754-1985	38

if	block	200

if-else	statement	201

ignored	exceptions	390

IllegalArgumentException	236,	495

immediate	superclass	285

immutable	462

immutable	objects	346,	357

immutable	strings	357

implementation	inheritance	264

implementations	2,	266,	335

inheritance	hierarchy	122

implementing

interfaces	291

implements	clause	291

implicit

inheritance	264

narrowing	conversions	173

implicit	default	constructor	54
import

declaration	100

see	also	static	import

single-type-import	declaration	100

statement	96

type-import-on-demand	declaration	100

importing

enum	constants	103

reference	types	99

static	members	101

increment	operator	176

index	58

index	expression	61

IndexOutOfBoundsException	361,	369,	375,	376,	419,	422

individual	array	elements	61

inequality	181

see	also	equality

inferred-type	parameters	445

infinite	loop	217

infinity	165,	349

negative	165

positive	165

information	hiding	335

inheritance	10,	267

hierarchy	266

supertype–subtype	relationship	267

initial	capacity	417

initial	state	of	object	406

initialization

arrays	60,	65

code	60

default	values	42

for	statement	215

objects	5

references	41

variables	41

initializer	399

declaration-before-reading	rule	401

static	400,	401,	405,	409

initializer	block

instance	404

static	402

initializer	expression	400

initializers

non-static	block	48

non-static	field	48

static	block	48

static	field	48

initializing	see	initialization

insertion	order	414

insertion	point	69

instance

members	9,	48

methods	9,	49,	50

variable	initialization	42

variables	9,	44

see	also	object

instance	initializer	block	404

instance	methods	6

instance	variables	6,	406

instanceof	operator	195,	320,	321

instantiation	4

int	30,	38

integer	arithmetic	165

integer	bitwise	operators	189

integer	constant	expressions	148

integer	data	types	30

integer	division	167

integer	remainder	operation	168

integers	38

and	operator	189

byte	38

complement	189

data	types	38

int	38

literals	30

long	38

or	operator	189

representation	154

short	38

types	38

xor	189

integral	types	37,	38,	144

interface	constant	antipattern	102

interfaces	290

abstract	290

abstract	methods	291

accessibility	118

body	290

constants	302

declarations	96

default	methods	297

extending	294

header	290

implementing	291

initialization	409

marker	291

realization	296

references	296

static	methods	300

subinterfaces	294

superinterfaces	294

UML	295

variables	302

internal	traversal	452

interned	strings	358,	359

interned	values	351

interpackage	accessibility	335

interpreter	17

intraclass	dependencies	336

invocation	stack

see	JVM	stack

invoker	224

invoking	garbage	collection	393

IOException	235

is-a	relationship	266,	267,	334

ISO	Latin-1	32,	38

ISO	standard	486,	487,	488

Iterable	interface	366,	424

iteration	215

iteration	statements	213

next	iteration	223

termination	213,	222

iterators	414,	424

J
Java

Native	Interface	see	JNI

java	17

Java	bytecode	16

Java	Collections	Framework	414

Java	compiler	17

Java	Development	Kit	(JDK)	21

Java	ecosystem	21

Java	EE	(Enterprise	Edition)	22

Java	ME	(Micro	Edition)	22

Java	Native	Interface	see	JNI

Java	Platforms	22

Java	Runtime	Environment	(JRE)	22

Java	SE	(Standard	Edition)	22

Java	Virtual	Machine	see	JVM

java.time	package	462

java.time.format	package	462

java.util	package	414

java.util.function<T>	package	444

javac	17

Javadoc	comment	35

@param	tag	49,	56

@return	tag	225

@throws	tag	253

javadoc	utility	36

JDK	17,	508

JNI	137

just-in-time	(JIT)	23

JVM	17,	22,	384,	393

JVM	stack	230,	384

K
key	69

keywords	29

abstract	120,	136,	291,	442

boolean	39

break	statement	221

byte	38

case	203

catch	240

char	38

class	48,	290

const	29

continue	223

default	204,	297

do	214

double	39

else	201

extends	264

final	80,	122,	133

finally	245

float	39

for	215,	217

if	200

implements	291

import	100

instanceof	195,	320,	321

int	38

interface	290

long	38

native	137

new	see	new	operator

null	149,	183,	320

package	98

private	128

protected	126

public	124

reserved	words	29

return	224

short	38

static	17,	101,	132,	300,	402

strictfp	166

super	54,	272,	276,	285,	299

switch	203

synchronized	136

this	50

throw	249

throws	251

transient	138

try	240

unused	words	29

void	17,	347

volatile	139

while	213,	214

L
labeled	break	statement	222

labels	220,	222

break	222

case	203

default	204

expressions	205

labeled	statement	220

switch	statement	203

lambda	body	439,	444,	445

lambda	expressions	433,	438,	444

access	class	members	446

anonymous	functions	439

arrow	>	439,	444

as	values	439

blocks

scope	448

declared-type	parameters	445

deferred	execution	451

expression	445

expression	statements	446

function	451

inferred-type	parameters	445

lambda	body	439,	444,	445

lambda	parameters	445

non-void	return	445

parameter	list	439,	444

single	expression	439,	445

statement	block	439,	446

target	type	450

target	typing	451

type	checking	450

variable	capture	449

void	return	445

lambda	parameters	445

late	binding

see	dynamic	method	lookup

least	significant	bit	155

left	associativity	152

legal	assignments	314

length	method	361

letter	pattern	495

lexical	scope

see	blocks:	scope

lexical	tokens	28

lexicographical	ordering	363,	425

LF	see	linefeed

libraries	403

lifetime	385

see	scope	44

line	separator	19

line	terminator	35

linear	implementation	inheritance	266

linefeed	33

LinkageError	237

LinkedList	417

List	414

lists

see	ArrayList

literals	30

boolean	32

character	32

default	type	30,	31

double	31

escape	sequences	33

false	32

float	31

floating-point	31

integer	30

null	30

predefined	29

prefix	30

quoting	32

scientific	notation	31

string	34

suffix	30,	31

true	32

litmus	test

design	by	inheritance	266

local	43

chaining	of	constructors	283,	406

variables	44,	117

local	declarations	49,	50

local	variables	53

blocks

scope	448

LocalDate	class

see	temporal	objects

LocalDateTime	class

see	temporal	objects

locale	364,	490,	492

localizing	information	335

LocalTime	class

see	temporal	objects

locations

see	class	path

logical	AND

&	184

logical	complement

!	184

logical	exclusive	OR

^	184

logical	inclusive	OR

|	184

logical	XOR

^	184

long	30,	38

suffix	30

loop	body	213,	215

loop	condition	213,	215

loops	see	iteration	statements

loose	coupling	336

loss	of	precision	144

M
magnitude	144

main	method	17,	18,	85

arguments	86

modifiers	85

manifest	constant	134

marker	interfaces	291

Math	class	52

MAX_VALUE	constant	351

member	declarations	48,	290

members	3,	114

access	50

accessibility	120,	123

default	values	42

final	133

inheritance	264

instance	48

modified	264

modifiers	131

of	objects	7

scope	114

short-hand	51

static	7,	48,	132

terminology	9

variables	see	fields

memory	management	384

memory	organization	384

message

receiver	7

method	call	7,	49,	72

chaining	376,	378

fixed	arity	84

variable	arity	84

method	chaining	471,	474,	479

method	declaration	48

method	header	136,	137

method	invocation	conversions	148,	315

method	modifiers	49

method	overloading	52,	273

method	overriding	268,	273,	407

method	signature	49,	269

method	type	450

methods	3

@Override	270

abstract	136,	291,	442

abstract	method	declarations	291

accessibility	49

ambiguous	call	316

automatic	variables	see	local	variables

behavior	433

blocks	49

body	49,	117

call	chaining	72

call	see	method	call

calling	variable	arity	method	82

chained	365

clone	343

concrete	134

declaration	49,	72

default	297

dynamic	lookup	330

equals	183,	342

exceptions	49

final	134

finalize	343,	390

fixed	arity	81

functional	442

getClass	343

header	49

implementation	136

invocation	see	method	call

local	declarations	49

local	variables

main	see	main	method

method	invocation	conversions	315

method	type	450

modifiers	49

most	specific	316,	422

name	72

native	137,	251

objects	50

overloaded	resolution	316

overloading	see	method	overloading

overriding	see	method	overriding

overriding	vs.	overloading	273

parameters	49

recursive	237

return	224

return	value	49

signature	49,	52,	273

static	132,	300

synchronized	136

termination	224

throws	clause	251

toString	343

variable	arity	81

MIN_VALUE	constant	351

minimizing	overhead	386

mobile	applications	22

modifiers

abstract	120,	136,	291

accessibility	118,	123

classes	120

default	297

final	133

members	131

native	137

static	132,	300

strictfp	166

synchronized	136

transient	138

volatile	139

Month	enum	type	465

most	specific	method	316,	422

multicore	441

multicore	architectures	24

multidimensional	arrays	63,	65

multiple	assignments	159

multiple	catch	clauses	239

multiple	implementation	inheritance	290

multiple	inheritance	298

multiple	interface	inheritance	290

multiple-line	comment	35

multiplication	operator

*	167

multiplicative	operators	167

multithreaded	24

mutable	character	sequences	374

mutually	comparable	68,	69

mutually	exclusive

actions	202

MVC	335

N
name	28

named	constants	134

namespaces	53

NaN	166,	349

narrower	range	144

narrowing	conversions

primitive	144

reference	145

narrowing	reference	conversions	320

native	libraries	403

native	methods	137,	251

header	137

natural	ordering	68,	69,	425

negative	zero	165

nested	lists	417

nested	loops	66

new	operator	5,	53,	59,	195,	406

newline	see	linefeed

NL	see	newline

no-argument	constructor	53,	54,	283,	287

non-associativity	151

non-static	code	48

see	non-static	context	48

non-static	context	48

non-static	field	9

non-static	field	initializers	48

non-static	initializer	block	48

non-varargs	call

see	fixed	arity	call

non-void	return	445

non-zero	argument	constructor	55,	287,	288

normal	class	121

normal	execution	232

notifying	threads	344

null	reference	30

casting	320

null	reference	literal

casting	149

equality	comparison	183

nulling	references	387

NullPointerException	236

Number	class	351

number	systems

base	30

converting	157

decimal	30

hexadecimal	30

octal	30

radix	30

NumberFormatException	236,	347,	348

numeric	promotions	149

assignment	160

binary	150

unary	149

numeric	wrapper	classes	351

numerical	literals

using	underscore	32

O
object	4

Object	class	266,	342

object	hierarchy	267

object	references	4,	40

object	state	6,	53,	77,	406

object-oriented	design	334

cohesion	335

object-oriented	paradigm	22

object-oriented	programming	2

objects	13

aggregate	12

alive	385

arrays	58

callee	72

caller	72

Class	class	343

cleaning	up	386

cloning	343

communication	72

comparing	342

composite	385

constituent	12,	385

constructing	406

contract	335

decoupling	330

destroying	390

eligible	387

equality	183,	342

exchanging	information	72

finalization	385

garbage	collection	384

identity	5

immutable	346

implementation	335

initial	state	406

initialization	5,	53

initializer	block	404

internals	335

lifetime	385

members	7

methods	50

Object	class	342

persistence	138

reachable	384,	385

resurrection	385

services	335

state	133

see	object	state

value	equality	183

OCAJP8	507

exam	objectives	515

exam	question	assumptions	511

OCPJP8	507

one-dimensional	arrays	59

operands	148

evaluation	order	152

operations	2

operators	150

-	163,	169

--	176

^	184,	189

^=	185,	192

!	184

!=	181,	182

?	:	194

.	7,	97

[]	61,	195

*	163,	167

*=	172

/	163,	167

/=	172

&	184,	189

&&	186

&=	185,	192

%	163,	167,	168

%=	172

+	163,	169,	174

++	176

+=	172

<	180

<=	180

-=	172

=	158

==	181,	182

>	195

>	180

>=	180

|	184,	189

|=	185,	192

||	186

~	189

arithmetic	compound	assignment	172

assignment	151,	158

associativity	150

binary	151

bitwise	189

boolean	180,	181,	184

cast	151

comparisons	180

compound	assignment	185,	192

conditional	186,	194

decrement	176

dot	7

equality	181

execution	order	152

floating-point	165

floating-point	division	167

floating-point	remainder	169

increment	176

instanceof	195,	320,	321

integer	189

integer	arithmetic	165

integer	division	167

integer	remainder	168

logical	184

multiplicative	167

new	see	new	operator

overflow	165

overloaded	164,	167

postfix	151

precedence	150

relational	180

short-circuited	186

string	concatenation	174

ternary	151

unary	150,	151,	167

unary	-	167

unary	+	167

optimizations	24

or	operator	189

Oracle	University	509

ordinal	value	90,	209

OutOfMemoryException	395

output	18

overflow	155,	165

overloaded	164

overloaded	method	resolution	316

overloading

constructors	56

method	resolution	316

methods	52,	273

overloading	vs.	overriding	273

overriding	253

equals	183

finalizers	390

methods	268,	273

toString	175

overriding	methods

covariant	return	273

overriding	vs.	overloading	273

ownership	12

P
package	accessibility	118,	124

package	directory	106

package	statement	96,	98

packages	97

accessibility	see	package	accessibility

declaration	96

definition	98

destination	directory	106

hierarchy	97

java.lang	342

members	97

naming	scheme	98

package	directory	106

running	code	from	106

short-hand	100

statement	see	package	statement

subpackages	97

unnamed	98

using	99

palindromes	382,	434

parallel	code	441

parameter

variable	arity	81

parameter	list	439,	444

parameter	list	see	formal	parameters

parameter	passing

by	value	72

variable	arity	81

parameters	49

actual	72

array	elements	78

final	80

fixed	arity	81

formal	see	formal	parameters

implicit	50

main	method	86

passing	72

primitives	73

program	86

references	75

this	50

variable	arity	81

parent	class	264

parentheses	150

parseType	method	352

parsing	462,	486

parsing	numeric	values	352

partial	implementation	293

pass	by	value	72

passing

parameters	72

references	75

variable	arity	parameter	81

paths

see	class	path

path-separator	character	110

pattern	letters	486,	495,	496

Pearson	VUE	509

performance	24

period	462,	476

creating	476

date-based	476

equality	478

get	methods	478

immutable	476

normalization	479

parsing	477

period-based	loop	481

plus/minus	methods	479

querying	478

temporal	arithmetic	479

textual	representation	477

thread-safe	476

with	methods	479

Period	class

see	period

persistent	objects	138

polymorphism	311,	329,	334

portability	23

positional	order	414

positive	zero	165

postfix	operators	151

precedence	rules	151

precision	160

predefined	identifiers	29

predefined	literals	29

predicate	436

Predicate<T>	440,	451

prefix	30

0	30

0x	30

primitive	data	types

see	primitive	types

primitive	types	13,	144

autoboxing	348

unboxing	350

see	also	primitive	values

primitive	values

assignment	159

equality	181

passing	73

printing	values	18

private	11

private	members	128

process	of	elimination	510

program

application	16

arguments	86

command	line	86

compiling	17

formatting	35

running	17

program	arguments	86

program	output	18

programming	to	an	interface	417

proleptic	year	464

promotion	149

properties	2

see	also	class	members

protected	11

protected	members	126

public	17

public	members	124

punctuators	29

Q
quotation	mark	33,	34

quotient	168

R
radix

prefix	30

see	base	349

ragged	arrays	65

range

character	values	38

floating-point	values	39

integer	values	38

range	of	date-based	values	464

range	of	time-based	values	464

ranking	criteria	414

realization	296

reclaiming	memory	384

reducing	complexity	335

reference	types	41,	267

classes	48

enum	types	87

reference	values	4

reference	variables	40

references	4,	9,	40,	41,	72

abstract	types	121

aliases	75,	183

array	59,	62,	311

assignment	159

casting	149,	320

dangling	384

declared	type	268

downcasting	145

dynamic	type	268

equality	182

field	385

interface	type	296

local	384

narrowing	conversions	145

null	see	null	reference

passing	75

reachable	384,	385

super	276

this	50

upcasting	145

widening	conversions	145

relational	operators	180

relative	adjusters	474

reliability	24

remainder	168

remainder	operator

%	168

remove	whitespace	369

replacing	characters	367

reserved	identifiers	29

reserved	keywords	29

const	29

goto	220

reserved	literals

false	32

null	see	null	reference

true	32

resources	387

resurrecting	objects	385,	391

return	statement	224

@return	tag	225

return	type

covariant

return	value	7

reuse	of	code	264,	334

right	associativity	152

rightmost	bit	155

ripple	effect	334

robustness	24,	254

role	relationship	334

root

see	inheritance	hierarchy

running	a	Java	application	17

runtime

bounds	checking	61

runtime	checks	148,	418

Runtime	class	342,	393

runtime	class	343

runtime	environment	384

runtime	stack

see	JVM	stack

RuntimeException	236

S
scientific	notation	31

scope	114

block	117

catch	clause	244

class	114

disjoint	118

searching

arrays	69

searching	in	string	367

secure	24

SecurityManager	class	342

selection	statements	200

semantic	definition	28

semicolon	50

separators	29,	151

serialization	138

services	335

shadowing	446

shallow	copying	343

short	30,	38

short-circuit	186

evaluation	187

signature	52,	273

simple

assignment	operator	158

if	200

statement	50

simple	type	name	97

simplicity	23

single	expression	439

single	implementation	inheritance	266,	290,	296

single	quote	(‘)	32,	33

single	static	import	101

single-line	comment	3,	35

skeletal	source	file	96

sorting	arrays	68

source

file	15,	98

file	name	96

file	structure	96

spaces	35

special	character	values	33

specialization	10

specialized	classes	266

stack	3

stack	frame

see	method	execution

stack	trace	232,	235

see	method	execution

StackOverflowError	237

standard	error	stream	235

standard	out	18

starts	with	characters	368

state	see	object	state

statement	block	439,	446

statements	50

break	221

compound	50

conditional	200

continue	223

control	flow	50,	200

control	transfer	219

declaration	171,	177,	187

declarations	50

do-while	214

empty	50

expression	50,	177

for(;;)	215

for(:)	217

if	200

if-else	201

iteration	213

labeled	220

return	224

selection	200

simple	50

simple	if	200

switch	203

throw	249

transfer	219

try	240

while	213

static

members	see	static	members

methods	7,	10,	49

variable	initialization	42

variables	see	static	variables

static	101,	132,	300

static	code

see	static	context	48

static	context	48

static	field	10

static	field	initializers	48

static	import	101

conflicts	104

on	demand	101

shadow	static	members	103

single	static	import	101

static	initializer	block	48,	137,	402

static	keyword	402

static	members	7,	9,	10,	48

static	type

see	declared	type

static	variables	7,	10,	44

storing	objects	138

strictfp	166

string	builders	176

appending	376

capacity	374,	378

constructing	374

deleting	376

differences	with	strings	376

individual	characters	375

inserting	376

joining	366

length	375

thread-safety	374

String	class

see	strings

string	conversion	146,	175

string	conversions	370

string	literal	pool	358

interned	358

string	literals	357

case	labels	208

hash	value	208

interned	358

StringBuffer	class	374

see	string	builders

thread-safe	374

StringBuilder	class	374,	434

see	string	builders

strings

appending	376

buffers	374

builders	374

capacity	378

changing	case	364

compareTo	363

comparing	363

concatenation	174,	364

concatenation	operator	+	176

constructing	374

contains	368

conversions	370

convert	to	character	array	361

copying	characters	361

creating	357

deleting	376

differences	with	string	builders	376

empty	358

ends	with	368

equals	363

extracting	substrings	369

finding	index	367

formatted	370

ignoring	case	in	comparison	363

immutable	357

individual	characters	361,	375

initializing	357

inserting	376

interned	358

joining	365,	366

length	361,	375

lexicographical	ordering	363

literals	34,	357

mutable	374

read	character	at	index	361

replacing	367

searching	367

starts	with	368

string	literal	pool	358

substrings	369

trimming	369

strongly	typed	language	148

subclass	10,	11,	264

subinterface	294

subpackages	97

subsequence	361

substring	searching	367

substrings	367,	369

subtype	covariance	309,	310

subtype	relationship	418

subtypes	293

subtype–supertype	relationship	145

suffix

D	31

F	31

L	30

super	299

construct	285

keyword	272,	276

reference	276

superclass	10,	11,	264

superclass	constructor	54

superclass–subclass	relationship	266

superinterfaces	294

supertypes	293

supertype–subtype	relationship	267

supplementary	characters	357

suppressed	exceptions	235

switch	statement	203

break	205,	206

default	clause	204

enum	types	209

using	strings	208
synchronized

methods	136

syntactically	legal	28
System

out	18

System	class	342

system	clock	466

T
TAB	see	horizontal	tab

tabs	35

tabulators	35

tags	36

target	type	450

target	typing	451

telephone	directory	order	363

temporal	arithmetic	474,	479

temporal	objects

before/after	methods	469

combining	date	and	time	466

common	method	prefix	463

comparing	470

creating	with	factory	methods	464

date	462

date	units	474

date-based	values	462

date-time	462

formatting	486

get	methods	468

immutable	462

method	naming	convention	463

parsing	486

plus/minus	methods	474

querying	468

range	of	date-based	values	464

range	of	time-based	values	464

temporal	arithmetic	474,	479,	480

temporal	values	464

thread-safe	462

time	462

time	units	474

time-based	values	462

with	methods	470

temporal	values	464

TemporalAmount	interface	479

terminating	loops	221

ternary	conditional	expressions

see	also	conditional	expressions	194

ternary	conditional	operator	151,	194

textual	representation	343
this

reference	50

this()	constructor	call	282,	406

ThreadDeath	237

threads	24,	342,	384

death	232

exception	propagation	232

JVM	stack	385

live	384

notifying	344

synchronization	136

waiting	344

thread-safe	357,	374,	415,	462

throw	statement	249

Throwable	233,	342

throw-and-catch	paradigm	230

throwing	exceptions	230

throws	clause	251

time

see	temporal	objects

time	units	474

time-based	values	462

tokens	28

toString	method	343,	349

transfer	statements	219

transient	variables	138

transitive	relation	267

trim	method	369

true	literal	32

truth-values	32,	39

try	block	240

try-catch-finally	construct	238

two’s	complement	154

type

declared	274

dynamic	274

type	cast	148

type	cast	expression	320

type	checking	450

type	declarations	96

type	hierarchy	145,	267

type	import

see	import

type	parameter	290,	414,	441

types

boolean	37,	39

byte	30,	38

casting	148

char	38

classes	see	classes

comparing	321

compatibility	148

double	39

exceptions	233

float	39

floating-point	37,	38

int	30,	38

integers	38

integral	types	37

interface	290

long	30,	38

parsing	352

short	30,	38

wrappers	346

see	also	classes

type-safe	315

type-safety	416,	417,	418

typeValue	method	350,	352

U
UML	2

accessibility	124

aggregation	12

associations	12

classes	3

composition	12

inheritance	10

see	also	diagrams

unary	arithmetic	operators	167

unary	numeric	promotion	149

unary	operators	150,	151

unboxing	350

do-while	statement	214

for(;;)	statement	215

for(:)	statement	218

if	statement	200

if-else	statement	202

switch	statement	204

while	statement	213

unboxing	conversions	145,	146

uncaught	exceptions	232

unchangeable	variables	134

unchecked	conversion	warning	416

unchecked	conversions	146

unchecked	exceptions	237

unchecked	warnings	145

underflow	155,	165

uni-catch	clause	239

Unicode	32,	38,	354,	357,	363,	434

Unified	Modeling	Language	see	UML

unreachable	code	244

unsafe	casts	321

unsigned	integer	353

UnsupportedTemporalTypeException	480,	490

unused	keywords	29

upcasting	145

update	expression	215

using	arrays	61

using	packages	99

using	variables	41

UTF-16	357

supplementary	characters	357

V
valueOf	method	348,	349,	369

values	155

constants	30

overflow	155

underflow	155

wrap-around	155

see	also	variables

varargs	81

variable	arity	call	84

variable	arity	method	81

variable	arity	parameter	81

variable	capture	449

variable	declarations	41,	117

variable	initialization	8,	43

variables	4,	41

blank	final	80,	134

constant	values	133

default	values	42

effectively	final	448

final	133

identifiers	40

in	interfaces	302

initialization	see	variable	initialization

lifetime	44

local	117

parameters	49,	72

reference	variable	41

references	41

static	7

storing	138

transient	138

volatile	139

virtual	method	invocation

see	dynamic	method	lookup

VirtualMachineError	237

void	17,	224,	347

void	return	445

Void	wrapper	class	346

volatile	variables	139

voucher	509

W
waiting	threads	344

while	statement	213

whitespace	35,	369

whole–part	relationship	267

widening	conversions

primitive	144

references	145

widening	reference	conversions	267,	320

wider	range	144

withers	470

wrapper	classes	38,	342,	343,	346,	347

interned	values	351

wrapper	type	146,	164,	177

X
xor	189

Z
zero

negative	165

positive	165

zero-based	index	414

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents Overview
	Contents
	Figures
	Tables
	Examples
	Foreword
	Preface
	Writing This Book
	About This Book
	Using This Book
	Review Questions
	Chapter Summary
	Programming Exercises
	Mock Exam
	Java SE Platform API Documentation

	Book Website
	Request for Feedback
	About the Authors
	Khalid A. Mughal
	Rolf W. Rasmussen

	Acknowledgments

	1. Basics of Java Programming
	1.1 Introduction
	1.2 Classes
	Declaring Members: Fields and Methods

	1.3 Objects
	Class Instantiation, Reference Values, and References
	Object Aliases

	1.4 Instance Members
	Invoking Methods

	1.5 Static Members
	1.6 Inheritance
	1.7 Associations: Aggregation and Composition
	1.8 Tenets of Java
	Review Questions
	1.9 Java Programs
	1.10 Sample Java Application
	Essential Elements of a Java Application
	Compiling and Running an Application

	1.11 Program Output
	Formatted Output

	1.12 The Java Ecosystem
	Object-Oriented Paradigm
	Interpreted: The JVM
	Architecture-Neutral and Portable Bytecode
	Simplicity
	Dynamic and Distributed
	Robust and Secure
	High Performance and Multithreaded

	Review Questions
	Chapter Summary
	Programming Exercise

	2. Language Fundamentals
	2.1 Basic Language Elements
	Lexical Tokens
	Identifiers
	Keywords
	Separators
	Literals
	Integer Literals
	Floating-Point Literals
	Underscores in Numerical Literals
	Boolean Literals
	Character Literals
	String Literals
	Whitespace
	Comments

	Review Questions
	2.2 Primitive Data Types
	The Integer Types
	The char Type
	The Floating-Point Types
	The boolean Type

	Review Questions
	2.3 Variable Declarations
	Declaring and Initializing Variables
	Reference Variables

	2.4 Initial Values for Variables
	Default Values for Fields
	Initializing Local Variables of Primitive Data Types
	Initializing Local Reference Variables
	Lifetime of Variables

	Review Questions
	Chapter Summary
	Programming Exercise

	3. Declarations
	3.1 Class Declarations
	3.2 Method Declarations
	Statements
	Instance Methods and the Object Reference this
	Method Overloading

	3.3 Constructors
	The Default Constructor
	Overloaded Constructors

	Review Questions
	3.4 Arrays
	Declaring Array Variables
	Constructing an Array
	Initializing an Array
	Using an Array
	Anonymous Arrays
	Multidimensional Arrays
	Sorting Arrays
	Searching Arrays

	Review Questions
	3.5 Parameter Passing
	Passing Primitive Data Values
	Passing Reference Values
	Passing Arrays
	Array Elements as Actual Parameters
	final Parameters

	3.6 Variable Arity Methods
	Calling a Variable Arity Method
	Variable Arity and Fixed Arity Method Calls

	3.7 The main() Method
	Program Arguments

	3.8 Enumerated Types
	Declaring Type-safe Enums
	Using Type-safe Enums
	Selected Methods for Enum Types

	Review Questions
	Chapter Summary
	Programming Exercise

	4. Access Control
	4.1 Java Source File Structure
	4.2 Packages
	Defining Packages
	Using Packages
	Compiling Code into Packages
	Running Code from Packages

	4.3 Searching for Classes
	Review Questions
	4.4 Scope Rules
	Class Scope for Members
	Block Scope for Local Variables

	4.5 Accessibility Modifiers for Top-Level Type Declarations
	4.6 Non-Accessibility Modifiers for Classes
	abstract Classes
	final Classes

	Review Questions
	4.7 Member Accessibility Modifiers
	public Members
	protected Members
	Default Accessibility for Members
	private Members

	Review Questions
	4.8 Non-Accessibility Modifiers for Members
	static Members
	final Members
	abstract Methods
	synchronized Methods
	native Methods
	transient Fields
	volatile Fields

	Review Questions
	Chapter Summary
	Programming Exercise

	5. Operators and Expressions
	5.1 Conversions
	Widening and Narrowing Primitive Conversions
	Widening and Narrowing Reference Conversions
	Boxing and Unboxing Conversions
	Other Conversions

	5.2 Type Conversion Contexts
	Assignment Context
	Method Invocation Context
	Casting Context of the Unary Type Cast Operator: (type)
	Numeric Promotion Context

	5.3 Precedence and Associativity Rules for Operators
	5.4 Evaluation Order of Operands
	Left-Hand Operand Evaluation First
	Operand Evaluation before Operation Execution
	Left-to-Right Evaluation of Argument Lists

	5.5 Representing Integers
	Calculating Two’s Complement
	Converting Binary Numbers to Decimals
	Converting Decimals to Binary Numbers
	Relationships among Binary, Octal, and Hexadecimal Numbers

	5.6 The Simple Assignment Operator =
	Assigning Primitive Values
	Assigning References
	Multiple Assignments
	Type Conversions in an Assignment Context

	Review Questions
	5.7 Arithmetic Operators: *, /, %, +, -
	Arithmetic Operator Precedence and Associativity
	Evaluation Order in Arithmetic Expressions
	Range of Numeric Values
	Unary Arithmetic Operators: -, +
	Multiplicative Binary Operators: *, /, %
	Additive Binary Operators: +, -
	Numeric Promotions in Arithmetic Expressions
	Arithmetic Compound Assignment Operators: *=, /=, %=, +=, -=

	Review Questions
	5.8 The Binary String Concatenation Operator +
	5.9 Variable Increment and Decrement Operators: ++, --
	The Increment Operator ++
	The Decrement Operator --

	Review Questions
	5.10 Boolean Expressions
	5.11 Relational Operators: <, <=, >, >=
	5.12 Equality
	Primitive Data Value Equality: ==, !=
	Object Reference Equality: ==, !=
	Object Value Equality

	5.13 Boolean Logical Operators: !, ^, &, |
	Operand Evaluation for Boolean Logical Operators
	Boolean Logical Compound Assignment Operators: &=, ^=, |=

	5.14 Conditional Operators: &&, ||
	Short-Circuit Evaluation

	5.15 Integer Bitwise Operators: ~, &, |, ^
	Bitwise Compound Assignment Operators: &=, ^=, |=

	Review Questions
	5.16 The Conditional Operator: ?:
	5.17 Other Operators: new, [], instanceof, ->
	Review Questions
	Chapter Summary
	Programming Exercise

	6. Control Flow
	6.1 Overview of Control Flow Statements
	6.2 Selection Statements
	The Simple if Statement
	The if-else Statement
	The switch Statement

	Review Questions
	6.3 Iteration Statements
	The while Statement
	The do-while Statement
	The for(;;) Statement
	The for(:) Statement

	6.4 Transfer Statements
	Labeled Statements
	The break Statement
	The continue Statement
	The return Statement

	Review Questions
	6.5 Stack-Based Execution and Exception Propagation
	6.6 Exception Types
	The Exception Class
	The RuntimeException Class
	The Error Class
	Checked and Unchecked Exceptions
	Defining Customized Exceptions

	6.7 Exception Handling: try, catch, and finally
	The try Block
	The catch Clause
	The finally Clause

	6.8 The throw Statement
	6.9 The throws Clause
	Overriding the throws Clause

	6.10 Advantages of Exception Handling
	Review Questions
	Chapter Summary
	Programming Exercises

	7. Object-Oriented Programming
	7.1 Single Implementation Inheritance
	Relationships: is-a and has-a
	The Supertype–Subtype Relationship

	7.2 Overriding Methods
	Instance Method Overriding
	Covariant return in Overriding Methods
	Overriding versus Overloading

	7.3 Hiding Members
	Field Hiding
	Static Method Hiding

	7.4 The Object Reference super
	Review Questions
	7.5 Chaining Constructors Using this() and super()
	The this() Constructor Call
	The super() Constructor Call

	Review Questions
	7.6 Interfaces
	Defining Interfaces
	Abstract Methods in Interfaces
	Implementing Interfaces
	Extending Interfaces
	Interface References
	Default Methods in Interfaces
	Static Methods in Interfaces
	Constants in Interfaces

	Review Questions
	7.7 Arrays and Subtyping
	Arrays and Subtype Covariance
	Array Store Check

	7.8 Reference Values and Conversions
	7.9 Reference Value Assignment Conversions
	7.10 Method Invocation Conversions Involving References
	Overloaded Method Resolution

	7.11 Reference Casting and the instanceof Operator
	The Cast Operator
	The instanceof Operator

	Review Questions
	7.12 Polymorphism and Dynamic Method Lookup
	7.13 Inheritance versus Aggregation
	7.14 Basic Concepts in Object-Oriented Design
	Encapsulation
	Cohesion
	Coupling

	Review Questions
	Chapter Summary
	Programming Exercises

	8. Fundamental Classes
	8.1 Overview of the java.lang Package
	8.2 The Object Class
	Review Questions
	8.3 The Wrapper Classes
	Common Wrapper Class Constructors
	Common Wrapper Class Utility Methods
	Numeric Wrapper Classes
	The Character Class
	The Boolean Class

	Review Questions
	8.4 The String Class
	Immutability
	Creating and Initializing Strings
	The CharSequence Interface
	Reading Characters from a String
	Comparing Strings
	Character Case in a String
	Concatenation of Strings
	Joining of CharSequence Objects
	Searching for Characters and Substrings
	Extracting Substrings
	Converting Primitive Values and Objects to Strings
	Formatted Strings

	Review Questions
	8.5 The StringBuilder and StringBuffer Classes
	Thread-Safety
	Mutability
	Constructing String Builders
	Reading and Changing Characters in String Builders
	Constructing Strings from String Builders
	Appending, Inserting, and Deleting Characters in String Builders
	Controlling String Builder Capacity

	Review Questions
	Chapter Summary
	Programming Exercises

	9. Object Lifetime
	9.1 Garbage Collection
	9.2 Reachable Objects
	9.3 Facilitating Garbage Collection
	9.4 Object Finalization
	9.5 Finalizer Chaining
	9.6 Invoking Garbage Collection Programmatically
	Review Questions
	9.7 Initializers
	9.8 Field Initializer Expressions
	Declaration Order of Initializer Expressions

	9.9 Static Initializer Blocks
	Declaration Order of Static Initializers

	9.10 Instance Initializer Blocks
	Declaration Order of Instance Initializers

	9.11 Constructing Initial Object State
	Review Questions
	Chapter Summary

	10. The ArrayList<E> Class and Lambda Expressions
	10.1 The ArrayList<E> Class
	Lists
	Declaring References and Constructing ArrayLists
	Modifying an ArrayList
	Querying an ArrayList
	Traversing an ArrayList
	Converting an ArrayList to an Array
	Sorting an ArrayList
	Arrays versus ArrayList

	Review Questions
	10.2 Lambda Expressions
	Behavior Parameterization
	Functional Interfaces
	Defining Lambda Expressions
	Type Checking and Execution of Lambda Expressions
	Filtering Revisited: The Predicate<T> Functional Interface

	Review Questions
	Chapter Summary
	Programming Exercise

	11. Date and Time
	11.1 Basic Date and Time Concepts
	11.2 Working with Temporal Classes
	Creating Temporal Objects
	Querying Temporal Objects
	Comparing Temporal Objects
	Creating Modified Copies of Temporal Objects
	Temporal Arithmetic

	11.3 Working with Periods
	Creating Periods
	Querying Periods
	Creating Modified Copies of Periods
	More Temporal Arithmetic

	Review Questions
	11.4 Formatting and Parsing
	Default Formatters
	Predefined Formatters
	Localized Formatters
	Customized Formatters

	Review Questions
	Chapter Summary
	Programming Exercise

	Appendix A. Taking the Java SE 8 Programmer I Exam
	A.1 Preparing for the Exam
	A.2 Registering for the Exam
	Contact Information
	Obtaining an Exam Voucher
	Signing Up for the Test
	After Taking the Exam

	A.3 How the Exam Is Conducted
	The Testing Locations
	Utilizing the Allotted Time
	The Exam Program
	The Exam Result

	A.4 The Questions
	Assumptions about the Exam Questions
	Types of Questions Asked
	Types of Answers Expected
	Topics Covered by the Questions

	Appendix B. Exam Topics: Java SE 8 Programmer I
	Appendix C. Annotated Answers to Review Questions
	1 Basics of Java Programming
	2 Language Fundamentals
	3 Declarations
	4 Access Control
	5 Operators and Expressions
	6 Control Flow
	7 Object-Oriented Programming
	8 Fundamental Classes
	9 Object Lifetime
	10 The ArrayList<E> Class and Lambda Expressions
	11 Date and Time

	Appendix D. Solutions to Programming Exercises
	1 Basics of Java Programming
	2 Language Fundamentals
	3 Declarations
	4 Access Control
	5 Operators and Expressions
	6 Control Flow
	7 Object-Oriented Programming
	8 Fundamental Classes
	9 Object Lifetime
	10 The ArrayList<E> Class and Lambda Expressions
	11 Date and Time

	Appendix E. Mock Exam: Java SE 8 Programmer I
	Questions

	Appendix F. Annotated Answers to Mock Exam I
	Annotated Answers

	Index
	Code Snippets

