WP Frton

AND PERFORMANCE

BY ALESSANDRO DEL SOLE

SUCCINCTLY E-BOOK SERIES Syncfusion

www . dbooks . org

https://www.dbooks.org/

WPF Debugging and
Performance Succinctly

By
Alessandro Del Sole

Foreword by Daniel Jebaraj

EE.Sgncfusion‘

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway
Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a
registration form.

If you obtained this book from any other source, please register and download a free copy from
www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.
Redistribution in any form is prohibited.
The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other
liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.
Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET
ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: John Elderkin

Acquisitions Coordinator: Hillary Bowling, online marketing coordinator, Syncfusion, Inc.
Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www . dbooks . org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

Table of Contents

The Story Behind the Succinctly Series 0f BOOKS..........vviiiiiiiiiiiiiiin i, 6
ADOUL The AUTNOT oo 8
T Lo X0 [To3 4 Yo] o PP PP PPPPPPPPPPPP 9
Chapter 1 Debugging WPF AppPliCatioNSc.covviiiiiii et 10
Debugging in ViISUAl STUAIOuuiiiieiii e e e e e e e e e e e eeraaa s 10
(O F=T o] (=T gSTU 10 10 T o PSSP 15
Chapter 2 Stepping Through COOEuuuiii i e 16
Introducing breakpoints and data tiPSeueueueeriiiiiiiiiiiiiiiieieib bbb 16
UNderstanding FUNTIME ©ITOISuuuu e eeeeeeeiiiee e e e e ettt ee s e e e e e e e et e e e e e e e e e east b e e e e eeeeeesseaannns 19
Fixing code at runtime with Edit and CONINUEuuuuuiiiiiiiiiiiiiiiiiiiieiiiiieeieneeeeeeeaeees 20
Stepping through COAE ... 21
Debugging USEr COUE ONIYcoiiiiiii it e e e e et e e e e e e e aareaaaas 22
Enabling native code debugging........ccoiiiiiiiiiii i 23
CUuStOMIZING DrE@KPOINTS ... 23
INtrodUCING PerfOrMENCE TIPS, .. uutuueuiititieiitiiiiieieeitieeeeeebeee bbb ssseessbeeessennnnnnes 27
(O{ =T o] (=T g1V 10010 T o PR RSRRP 28
Chapter 3 Working with Debug WIiNAOWS.........oouiiiiiiii e 29
Investigating local variables with the Locals WINAOW................uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeees 29
Investigating current variables with the AutoS WINAOWcoouiiiiiiiiiiiii e, 30
Analyzing method calls: the Call Stack Window ..., 31
Evaluating expressions: Watch and Quick Watch WINdOWScccovveeeviiiiiiiiiiineeeeeeeciiiinnn 32
Debugging threads: the Threads WINAOW ..o 35
Asynchronous debugging: the Tasks WINAOWoouuuiiiiiiiiiiia e 36

ChAPTEI SUMIMAIY ... 37

Chapter 4 Debugger Visualizers and Trace LiStENEerScccooeeiiiieiieieeeeeeeeee e 38

Introducing debUQQEr VISUBIIZETSuuuiiiiiiiiiiiiiiiiiiii e nennnnnee 38
Interaction with the debugger: the Debug and Trace ClasSes..............uuvuuiiiiiiiiiiiiiiiiiiiiiiininens 41
Exporting debugger information with trace liISteNErsccoovvviiiiii e, 43
ChAPLEI SUMIMABIY ... 45
Chapter 5 XAML DEDUGQING ...ttt e et e e e e e e e et e eeae s 46
WP TTACE ...ttt s b s bbb e bbb n e 46
Ul deDUGQING TOOIS ...ttt 48
CRAPTET SUMIMAIY ... 52
Chapter 6 Analyzing the Ul PerformanCesccooooiiiiiiiiieeeeeeeeeeeee e 53
Preparing an @XamPIEoooiiiiiiiii e e 53
The Application TIMelNe tOOL............cooiiiiiiiiiii 56
(O T o (=T gSTU 10 10 T o PSSP 60
Chapter 7 Analyzing the Application PerformancCes..........coooooieieeieeeeeeeeeeeeeeeee e 62
Investigating MemOry AllOCALIONuuuuieiiiiiiiiiiiiiiiiiie bbb beeeeneeenennee 62
ANAIYZING CPU ULIHZATIONeiiiiiiieiiiieiieeiieiie ettt eenenees 69
ANalyzing GPU PEerfOrMANCEScoiiiiiiiieiiiiiee et e e e e et e e e e e e e e e aaraaas 72
Hints about the Performance WiIzZardooooiiiiiiiiiiecceee e 75
ChAPTEI SUMIMABIY ... 79

www . dbooks . org

https://www.dbooks.org/

The Story Behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author has been carefully chosen from a pool of talented experts who share our vision.
The book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on numerous topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and

sell against competing vendors who promise to “enable AJAX support with one click” or “turn the
moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

www . dbooks . org

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.dbooks.org/

About the Author

Alessandro Del Sole has been a Microsoft Most Valuable Professional (MVP) since 2008.
Awarded MVP of the Year in 2009, 2010, 2011, 2012, and 2014, he is internationally known as
a Visual Studio expert and a Visual Basic and .NET authority. Alessandro has authored many
printed books and e-books on programming with Visual Studio, including Visual Studio 2017
Succinctly, Visual Studio Code Succinctly, Visual Basic 2015 Unleashed, and Roslyn Succinctly.
He has written numerous technical articles about .NET, Visual Studio, and other Microsoft
technologies in Italian and English for many developer portals, including MSDN Magazine and
the former Visual Basic Developer Center from Microsoft. He is a frequent speaker at Italian
conferences, and he has released a number of Windows Store apps. He has also produced a
number of instructional videos in both English and Italian. Alessandro works as a senior .NET
developer, trainer, and consultant. You can follow him on Twitter at @progalex.

http://twitter.com/progalex

Introduction

Windows Presentation Foundation (WPF) has been, for many years, the premiere Microsoft
platform for building modern Windows desktop applications. Over the years, both the platform
and the development tools have co-evolved to offer the powerful and optimized development
experience of the latest versions of Visual Studio and Blend, especially with design-time tools,
controls, and the XAML editor.

WPF allows you to build applications based on modern user interfaces, which might include
multimedia, graphics, documents, and various data. All of these features require system
resources, which means two things are important: optimizing your code to consume system
resources in the best possible way and providing optimized performance, including perceived
performance. The latter gives users the perception that the application is quick and responsive,
even though it must access many resources behind the scenes (e.g., disk 1/0, long-running
operations over data or over a network). Moreover, designing the user interface and writing
code is just a part of the job. You will also spend time debugging your code and analyzing the
user interface. Because of its nature, in WPF you might also need to debug XAML data bindings
and analyze the behavior of the user interface when rendering graphics, multimedia, or long lists
of data-bound items.

In this e-book, you will learn how to debug a WPF application by leveraging all the powerful
tools in Visual Studio 2015 and 2017, including the most recent additions that allow you to
investigate the behavior of the user interface at runtime. Also, you will learn how to analyze and
improve an application’s performance in order to provide your customers with the best possible
experience and thereby make them happy. If you are not familiar with designing and coding
WPF applications, make sure you read the free book WPF Succinctly before starting this one.

The only software requirement is Visual Studio 2015 or 2017. You can download the
Community edition for free. For Visual Studio 2015, | also strongly recommend that you install
the latest update (currently Update 3), which includes new tools for XAML debugging that will be
discussed in Chapter 5. Update 3 is already included in the current downloads. If you work with
Visual Studio 2017, make sure you’ve installed the Windows desktop development with .NET
workload. This is required to enable WPF development and all the tools and steps described in
this book.

Note: In this e-book | will use Visual Studio 2015 to reach a broader audience, but
everything discussed here applies to both Visual Studio 2015 and 2017, and to both
C# and Visual Basic, except where explicitly noted.

The companion source code for this e-book is available on GitHub at:
https://github.com/AlessandroDelSole/WpfDebuggingSuccinctly.

www . dbooks . org

https://www.syncfusion.com/resources/techportal/details/ebooks/wpf_succinctly
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
http://go.microsoft.com/fwlink/?LinkId=691129
https://github.com/AlessandroDelSole/WpfDebuggingSuccinctly
https://www.dbooks.org/

Chapter 1 Debugging WPF Applications

Debugging is one of the most important tasks in the application development lifecycle,
representing the process of investigating for errors and of analyzing an application’s execution
flow over an object’s state. Of course, this is true for all development environments and
platforms, not just WPF. In the case of WPF, you use Visual Studio and its powerful debugger
and instrumentation in order to improve your code quality. This short chapter explains what you

will need to debug a WPF application and a number of concepts also follow in the next chapters.

Note: Debugging a WPF application involves using tools that are also available to
other development platforms, such as Windows Forms and ASP.NET. If you already
have experience with debugging in Visual Studio, this chapter (and the next two
chapters) will explain concepts and techniques with which you might already be
familiar. However, I'll describe new debugging features in Visual Studio 2015 and
2017; I will also show how to fully leverage tools and functionalities—so keep an eye
on the first three chapters.

Debugging in Visual Studio

Debugging an application in Visual Studio means starting your project with an instance of the
debugger attached, which you perform simply by pressing F5 or Start on the standard toolbar.
When you do this, Visual Studio compiles your solution and starts the resulting output (an .exe
file in case of WPF) by attaching the debugger.

Tip: You can press Ctrl+F5 to start the application without the debugger attached.

Before you press F5, you must make sure the Debug configuration has been selected for
compilation. This can be done by selecting Debug in either the Solution Configuration combo
box in the toolbar or in the Configuration Manager window (see Figure 1) that you can reach by
selecting Build, Configuration Manager.

10

11

Configuration Manager ? X

Active solution configuration: Active solution platform:

Debug ~ | |Any CPU R
Release deploy):

<New...> Platform Build Deploy

<Edit..>

TATTIETEVYDT TeDuy Any CPU 4

Close

Figure 1: The Configuration Manager Dialog

Without these symbols, the debugger will not be able to collect the necessary information from
your code, and the resulting experience will be very poor. Symbols are not generated when you
select the Release configuration, and this makes sense because it means you have finished
debugging and you are ready to distribute your application. Now, let's prepare an example.

Preparing a sample application

In order to understand how both the debugger and the integrated debugging tools in Visual
Studio work, let's work with a sample application. And because the focus is on the tooling, not
the code, we do not need a complex project. First, in Visual Studio, we select File, New
Project. In the New Project dialog, select the WPF Application template (see Figure 2), name
the new project SampleWpf, and click OK.

www . dbooks . org

https://www.dbooks.org/

New Project ? X

P Recent NET Framework 4.6.1 - Sort by: Default - ;;! = Search Installed Templates (Ctrl+E) P
4 |nstalled Co o Y
nstate B | Blank App (Universal Windows) Visual C# Type: Visual C#
4 Templates - - Windows Presentation Foundation client
4 Visual C# | | Windows Forms Application Visual C# application
4 Windows @
Universal WPF Application Visual C#
b Windows 8 ca
Classic Desktop Console Application Visual C#
Web Fccr))
b Office/SharePoint _-l Shared Project Visual C#
Android (<3
b Cloud g‘i! Class Library (Portable for iOS, Android and Windows) Visual C#
Cross-Platform n C i .
o “Si! Class Library Visual C#
Extensibility 4
b i0s Ci
E“i! Class Library (Portable) Visual C#
LightSwitch =
i cit
Reporting Elgi! Class Library (Universal Windows) Visual C#
Silverlight =
=]
Test - TRL \indue Buntire Camnanont i nivareal Windrud Vicual r#
P Online Click here to go online and find templates.
Name: SampleWpf
Location: c\users\proga\documents\visual studio 2015\Projects -
Solution: Create new solution -~
Solution name: SampleWpf Create directory for solution

[] Add to Source Control

oK | | Cancel

Figure 2: Creating a WPF Project

The goal of the sample application is to open a text file, which allows the user to select the file
name. This much is enough to demonstrate many debugging features. Of course, more specific
examples will be created when necessary. Based on this, the XAML code for the user interface
is shown in Code Listing 1, while the code-behind is shown in Code Listing 2.

Code Listing 1

<Window x:Class="SampleWpf.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:local="clr-namespace:SampleWpf"
mc:Ignorable="d"
Title="MainWindow" Height="350" Width="525">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="40"/>
<RowDefinition/>
</Grid.RowDefinitions>

13

<StackPanel Orientation="Horizontal" VerticalAlignment="Center">
<TextBlock Text="Enter file name: "/>
<TextBox x:Name="FileNameBox" Width="200" />
<Button Width="100" Height="30" Content="Browse"

x:Name="BrowseButton" Click="BrowseButton_Click"/>

<Button Width="100" Height="30" Content="Open"

x :Name="0OpenButton" Click="OpenButton_Click"/>

</StackPanel>
<TextBox x:Name="ContentBox" Grid.Row="1" />

</Grid>
</Window>

Code Listing 2

using Microsoft.Win32;
using System.IO;
using System.Windows;

namespace SampleWpf

{

/// <summary>
/// Interaction logic for MainWindow.xaml.

/// </summary>
public partial class MainWindow : Window

{

public MainWindow()
{

}

InitializeComponent();

private void OpenButton_Click(object sender, RoutedEventArgs e)

{
if (!string.IsNullOrEmpty(this.FileNameBox.Text))

{
this.ContentBox.Text = OpenFile(this.FileNameBox.Text);

}
}
private string OpenFile(string fileName)
{
return File.ReadAllText(fileName);
}

private void BrowseButton_Click(object sender, RoutedEventArgs e)
{

var openDialog = new OpenFileDialog();

openDialog.Title = "Select a .txt file";

openDialog.Filter = "Text files (.txt)|*.txt";

if (openDialog.ShowDialog()==true)

www . dbooks . org

https://www.dbooks.org/

this.FileNameBox.Text = openDialog.FileName;

Quick overview of debugging tools

When you have completed writing the sample code, press F5. This will start the application for
debugging. At this point, a number of debugging and performance-analysis tools for WPF
automatically appear (see Figure 3).

o samplewpf (Running) - Microsoft Visual Studio X & Quick Launch (Cti+Q) P = O X
Flle Edit Wiew Telerik Project Build Debug Team JTools Architecture Test Analyze Window Help Alessandro Del Sole =yl
Q- - - - Q. wove v | B4 G0 m ® HcodeMap | [- B W & [0 P Application insights

Process: [5348) SampleWpfushostexe ~ | (1] Lifiecycle Events =

Live Visual Tree - 0 x

OFO=86& # ¢ £} Select Tools * | & Zoom In & Zaom Out Tk
Saarch Live Visual Tee (Al p Diagnostics session: 125 minutes o Name <o Man
1 " :20mii)
2 © MainWindow] B I Hatar! T:20min HEI Type AdormerLayer
4 B s
4 3 [Border] ':' earch p
4 o [AdomerDecorator] . 4 Local
b I [ContenkPreserier 4 Process Memory (MB) GC_ W Snapshot @ Private Bytes RenderSize 510.666666666667,312.6666
< [AdomerLayer] 62 62 =
b Computed Values
&1 MainWindow - o x i B b Default

4 CPU (% of all processors)
100 100

Enter file name: o (O] s | Open

0 0

Events Memory Usage CPU Usage
Y Fitter - || Search Event p-
Event Time Duration Thiead

ols.Button] 3.86s [12840] «
sited with 62685

Gesture: Clicked “null” (System\

Program Output: The thread (xde0

sanplewpf .vshost.« *
*samplewpf.vshost.exe’ (CLR v4.0.38319: Samplewpf.vshost.:
*samplewpf.vshost.exe’ (CLR v4.0,36319: Samplewpf.vshost..
*samplelpf.vshost.exe' (CLR v4.0.38319: Samplewpf.ushost..
The thread exsen has exited with code @ (exa).

*sanplewpf.vshost.exe’ (CLR v4.9.30319:

4

Call Stack Breakpoints Excaption..

LER) Locals Watch 1 Command... Immediate... Solution Explorer Team Explorer |[ECLLEE LSl

SQL Server Object Explorer

4+ Publish

Figure 3: Debugging and Performance Tools

The black rectangle with three small buttons that overlays the main window of the application
was first introduced in Visual Studio 2015 Update 2, and it allows for quick investigation into the
user interface’s behavior at runtime (this will be discussed further in Chapter 5). This rectangle
can be minimized when not needed. The Visual Studio IDE shows a number of tool windows:

e Live Visual Tree and Live Property Explorer, which allow for investigation of the behavior
of the user interface at runtime.

¢ Diagnostic Tools, which allows for performance analysis and will be discussed later in
Chapter 7 Analyzing the Application Performances.

e Autos, Local, and Watch 1, which allow for variable and expression evaluations.

15

e Breakpoints, which provides information about breakpoints.
e Output, which shows all the information the debugger catches. This includes details
about the entire lifecycle, not just errors or other issues.

These tool windows will be discussed thoroughly in Chapter 3 Working with Debug Windows
(except for Live Visual Tree and Live Property Explorer, which will be discussed in Chapter 5
XAML Debugging). Of course, there are other useful tool windows and commands you can
invoke from the Debug menu. Starting in the next chapter, we will start debugging the sample
application in order to gain a deeper knowledge about the power of both the debugger and the
Visual Studio IDE.

Chapter summary

Debugging WPF applications involves the debugger that ships with Visual Studio and many
integrated tools, such as commands and tool windows. Visual Studio 2015 Update 2 has also
introduced new tools that make it easier to investigate the behavior of the user interface at
runtime. You must be careful about enabling the Debug configuration, which allows the IDE to
generate the proper symbols and makes the debugger capable of collecting all the necessary
information about your code.

www . dbooks . org

https://www.dbooks.org/

Chapter 2 Stepping Through Code

The debugger is one of the most powerful tools in the Visual Studio development experience.
For instance, it allows us to execute single lines of code or small sets of lines and investigate
the behavior of code along with referenced variables. Debugging code starts in the code editor,
so this chapter will address how to work with breakpoints, data tips, and special commands that
execute a limited set of lines of code per time. What you will learn in this chapter applies to any
kind of application you build with Visual Studio, but here we will work with a WPF application.

Introducing breakpoints and data tips

A breakpoint causes the execution of the application to halt at the point where it is placed. When
the application breaks because of a breakpoint, Visual Studio enters into break mode. In break
mode, you can investigate the value of local variables, you can execute code in steps, you can
evaluate expressions with debugging windows, and you can resume the execution when ready.
Placing one or more breakpoints in your code is easy. In fact, you can either press F9 on the
line of code you want to debug or you can click the leftmost column in the code editor window.
You can also select Debug, Toggle Breakpoint. When you add a breakpoint, the line of code is
highlighted in red. For example, in the sample application created in Chapter 1, add a
breakpoint on the following line inside the BrowseButton_Click event handler:

this.FileNameBox.Text = openDialog.FileName;

The line will be highlighted in red, as shown in Figure 4.

16

17

w SampleWpf - Microsaft Visual Studio Y
File Edit View Telerk Project Build Debug Team Tools Architecture Test Apalyze Window Help

f@-o | @2 W9 | Debug - AnycPU b state| g i E] = 2| A -

B Variindonsomis = < L
= [SampleWpf + %z SampleWpf.MainWindow -1 @, BrowseButton_Click({object sender, RoutedEventd ~
5 35 } R
~ 36

g 37 = private string OpenFile(string fileName)

g 38 {

i 39 return File.ReadAllText(fileName);

g 49 }

41

=} 1 reference

] 42 = private void BrowseButton Click(object sender, RoutedEventArgs ¢
g 43 {

ﬁ 44 var openDialog = new OpenFileDialog();

g 45 openDialog.Title = "Select a .txt file";

3 46 openDialog.Filter = "Text files (.txt)|[*.txt";]
5 47 if (openDialog.ShowDialog() == true)

I 48]

his.FileNameBox.Text = openDialog.FileName;

Error List Output Find Symbol Results

Ready
Figure 4: Adding Breakpoints

Notice how the scroll bar in the code editor reports small red squares to help you find
breakpoints in your code. Now, press F5 to start debugging the application. When running, click
Browse and select any file on your PC. When Visual Studio encounters the breakpoint, it
breaks the execution by entering the break mode, and it highlights in yellow the line that is
currently debugged before that line is executed (see Figure 5). If you hover over the
openDialog.FileName object, you will see a small tooltip that shows its current value (see
Figure 5). If you do the same over the this.FileNameBox.Text property, the tooltip will show
that it has no value yet, which is correct because that line of code has not been executed. Such
tooltips go under the name of Data Tips. Now you have many options: you can step through the
code with one of the debugging commands (described shortly), such as Step Into (F11), or you
can resume the application execution with F5.

www . dbooks . org

https://www.dbooks.org/

MainWindowsami.cs = > [
[c#] Samplewpf - *z SampleWpf.MainWindow - '3’9GpenFiIEi:tringfiIEF—JemE: -
46 openDialog.Filter = "Text files (.txt)|*.txt"; F
47 if (openDialog.ShowDialog() == true) 3
48 {
o 19 this.FileNameBox.Text = openDialog.FileName;
5o } |o" openDialog.FileName| G, - "C\\Users\\proga\\Documents\\MIT_License.bd”
51 1
52 |
53 }
54
55 B
-
6% - 4 »

Figure 5: Investigating Variables’ Value with Data Tips

Run-to-click in Visual Studio 2017

Before Visual Studio 2017, you had to introduce temporary breakpoints to continue the
execution from a breakpoint to a certain point in your code. Visual Studio 2017 took a step
forward and introduced a new feature called Run to Click. When the debugger enters in break
mode and you hover over a line of code, a green glyph appears near the line. This glyph
represents the Run to Click button. If you click it, your code will be executed to that line, without
the need of temporary breakpoints. Actually, the line of Run to Click is highlighted and not
executed, exactly as would happen if a breakpoint was set on that line. You can find a more
detailed explanation in my Visual Studio 2017 Succinctly e-book.

Intentionally and unintentionally breaking the application execution

Breakpoints allow you to halt the application execution intentionally at a certain point, so that
you can investigate the behavior of your code. You can also intentionally break the application
execution in code, using the System.Diagnostics.Debugger class and its Break method as
follows:

System.Diagnostics.Debugger.Break();

When this line of code is encountered, the debugger enters the break mode. Of course, there
are situations when the application execution breaks unintentionally—this is typically the case
with unhandled runtime errors.

= Tip: The Debugger class provides a communication channel with the debugger.
The IsAttached property returns true if an instance of the debugger is attached to the
process; the Log method allows sending a message to the debugger; the Launch
method allows launching and attaching the debugger to the application process.

18

https://www.syncfusion.com/resources/techportal/details/ebooks/VS2017_Succinctly

19

Removing breakpoints

Removing breakpoints is as easy as adding them. You can remove a breakpoint using F9, or by
clicking the leftmost column in the code editor, or by selecting Debug, Toggle Breakpoint on the
breakpoint’s current line. You can remove all the breakpoints by pressing Ctrl+Alt+F9 or by
selecting Debug, Delete All Breakpoints.

Understanding runtime errors

Runtime errors are unpredictable. They happen while the application is running, and they are
often caused by programming errors that cannot be detected at compile time. As an example,
suppose you give users the option to specify a file name, but then the file is not found on disk. In
real-world scenarios, you would certainly implement try. .catch blocks, predict as many errors
as possible, and handle those errors the proper way. However, while debugging, you might
encounter an unhandled error. For instance, run the sample application again, but instead of
selecting a file name with the Browse button, enter a file name that does not exist in the text
box, then click Open. At this point, the application execution will break because of an unhandled
error, and Visual Studio will enter the break mode, highlighting in yellow the line of code that
caused the exception (see Figure 6).

n SampleWpf (Debugging) - Microsoft Visual Studio Y & | Quicklaunch (Ctrl+Q) Pl - B x
File Edit View Teleik Project Build Debug Team Jools Architecture Test Anshyze Window Help Alessandro Del Sole ~ i
fe-o(B-u@d9-Q - P Coninue = | 20 _5 0 m @ || 4 @t N CodeMap | R iR == A i B

i Process: [9800] SampleWpf.vshost.exe - Lifecycle Events ~ Thread: [636] Main Thread - Y Stack Frame: SampleWpf.MainWindow.OpenFile ~=

MainWindowxaml.cs & X JEETITHEEEET N
[c#] SampleWpf - 2 SampleWpf.MainWindow ~ | B, OpenFile(string fileName)
34
35 }
36

! FileMotFoundException was unhandled

An unhandled exception of type ‘System.I0.FileNotFoundException’ occurred in
mscorlib.dil

37 private string OpenFile(string fileName
38 {
39 return File.ReadAllText(fileName);: Troubleshooting tips:

40 } When using relative paths, make sure the current directory is correct.

41

110)dx3 13lgQ Jamag TOS

Additional information: Could not find file 'C:\Foo',

334] [ensip A

Verify that the file exists in the specified location.

Get general help for this exception.

42 private void BrowseButton_Click(object sen

Search for more Help Online...

43 { Exception settings:
44 var openDialog = new OpenFileDialog(); | [Breskwhen this exception type is thrown

Actions:

View Detail...

Show output frg Copy exception detail to the clipboard
ISR Qpen exception settings [
'Samplekpf. e
'SampleWpf.vshost.exe” (CLR v4.9,38319: SampleWpf.vshost.exe): Loaded 'C:\Win
'SampleWpf.vshost.exe' (CLR v4.0.308319: SampleWpf.vshost.exe): Loaded 'C:\Win
'SamplekWpf.vshost.exe' (CLR v4.8.38319: SampleWpf.vshost.exe): Loaded 'C:\Win
Exception thrown: 'System.IO.FileNotFoundException' in mscorlib.dll

saiojdrg Apadoig aa) saipadorg sasojdrg wea) sauojdig uonnjos sjoo) Jnsoubeig

.
4 »
Autos Locals |JUEIIN Find Symbol Results Package Ma... Call Stack Breskpoints Exception$.. Command.. Immediate.. [OUugig Error List

Ready Col13 Ch13 NS A Publish

Figure 6: Runtime Error Causes Application Execution to Break

www . dbooks . org

https://www.dbooks.org/

In this case, the highlighted line of code is searching for a file that does not exist, but an
appropriate try. .catch block has not been supplied, therefore the debugger broke at this
point. If you fall into this situation, you can see the exception details window (the grey pop-up),
which not only shows information about the error, such as the bad file name (a
FileNotFoundException in this case), but also allows you to get details by clicking the View
Detail hyperlink in the Actions area. This will open the View Details window (see Figure 7),
where you can get information about the stack trace and which will allow you to investigate the
method calls stack. It will also open the InnerException object, which is useful if the current
exception has been caused by another exception. Also, you will get exception-specific
information, such as the FileName property value, which is exposed by the
FileNotFoundException class.

View Detail ? x
Exception details:
v System.|0.FileNotFoundException {"Could not find file 'C:\\Foo'.":"C\\Foe"})
Data {System.Collections.ListDictionarylnternal}
FileMame C:\Foo
FusionLog null
HelpLink null
HResult -2147024394
InnerException null
Message Could not find file "C\Foa',
Source mscorlib
at Systermn.|O.__ErrorWinlQErrar(Int32 errerCode, String maybeFullPath) at Systern.|Q.FileStream.Inif «
v TargetSite {Void WinlOError{Int32, System.String)}
Attributes Assembly | Static | HideBy5ig
CallingCenvention Standard
ContainsGenericParameters false
CustomAttributes Count=1
DeclaringType {Name = "_Error" FullMame = "System.|O.__Error"}
IsAbstract false
IsAssermbly true
IsConstructor false
IsFamily false
IsFamilyAndAssembly false
IsFamilyOrAssembly false
IsFinal false
lsGenericMethod false
IsGenericMethodDefinition false o

Figure 7: Getting Details about Problems Causing an Exception at Runtime
Do not forget to enclose code that might potentially encounter runtime errors inside try. .catch

blocks, especially in the user interface’s code-behind, in order to avoid these situations and also
in order to allow users to make a decision based on the context.

Fixing code at runtime with Edit and Continue

In some situations, you are allowed to change code that has caused an error while in break
mode, then resume the application execution. This feature is known as Edit and Continue and,
starting from Visual Studio 2015, it has been enhanced to support lambda expressions. You can

20

21

also change some code by pausing the application execution (e.g., hot because of an error) by
clicking Pause on the Debug toolbar. In some cases, you will not be able to use Edit and
Continue; for example, if your changes will influence the general application behavior, you will
need to stop, edit, and restart your code. And, by the way, Visual Studio will tell you if Edit and
Continue is available when you are editing your code in break mode.

Stepping through code

Sometimes your code might seem to have no bugs, but at runtime the application will not work
as expected. For cases in which you must find subtle bugs, debugging can be a very
complicated task. For this reason, the powerful debugger in Visual Studio allows you to step
through code, which means executing one line of code, or a limited set of lines of code, and
investigating that behavior. You can step through your code using a number of debugging
commands, all available in both the Debug menu and with keyboard shortcuts, as will be
described in detail in this chapter.

Tip: In most cases, you will step through your code while in break mode. However,
two debugging commands, Step Into and Step Over, allow you to start debugging and
step through code directly. This is useful if you want to investigate the behavior of
your WPF application from startup.

Before continuing, place a breakpoint on any method or event handler in the sample application.
This will help you understand how the following debugging commands work.

Step Into and Step Over

Step Into (F11) and Step Over (F10) both execute one instruction at a time. Here is the
difference between them: if the instruction to be executed is a method, Step Over does not enter
the method body and will complete its execution before going back to the caller. However, Step
Into enters a method body and executes one instruction at a time. Step Over is useful when you
must debug a method that invokes previously tested and debugged methods that you need not
check every time.

Step Out

Step Out (Shift+F11) only works within methods. It executes all the lines of code next to the
current line until the method completes. For example, if you place a breakpoint on the if block
in the OpenButton_Click event handler in the sample application, the debugger will break on
that line. However, when using Step Out, it will execute all the following lines until the event
handler completes.

Run To Cursor

With Run To Cursor, you can place the cursor on any line of code, right-click, then select Run
To Cursor. This will cause the debugger to execute all the lines until the selected one, then it will

www . dbooks . org

https://www.dbooks.org/

break and highlight the current line in yellow. This is useful when you want to debug a specific
portion of code without using breakpoints.

Set Next Statement and Show Next Statement

While in break mode, you have the option to set and show the next statement that will be
executed after resuming the application or after a breakpoint or stop. You can right-click the
next statement you want to execute, thus excluding all the other lines from stepping through
code, then select Set Next Statement. By contrast, with Show Next Statement, you can quickly
move the cursor onto the next executable statement. This can be particularly useful with long
code files where breakpoints are not immediately visible.

Debugging user code only

A WPF application is made of the code you write plus system code. You can decide whether to
debug only your code or to debug system code, too. This feature is known as Just My Code,
and it is enabled by default, which means the debugger will focus on user code only. In order to
change this option and include system code, you must open the debugging options. This can be
accomplished by selecting Tools, Options, then by opening the Debugging node in the
Options window (see Figure 8).

Options ? >
Search Options (Ctrl+E) P General
I Envirenment ~ Ask before deleting all breakpoints ~
I Projects and Solutions Break all processes when one process breaks
I Source Control [J Break when exceptions cross AppDomain or managed/native boundaries (M
I Text Editor Enable address-level debugging
4 Debugging (] Show disassembly if source is not available
General Enable breakpoint filters
Just-In-Time Enable the exception assistant
Output Window Unwind the call stack on unhandled exceptions
B = [Warn if no user code on launch (Managed enly)
b Performance Tools [Enable .MET Framework source stepping
[Azure Data Lake .
b Dats Factory Step over properties Enl:.l operators (MlanagleTj DHM.
b Database Tools Enable property evaluation and other implicit function calls
b F# Tools Call string-conversicn function on chjects in variables windows
b GitHub for Visual Studio (|_| Fnahle snurce server sunnnrt s ¥
[+ Graphics Diagnostics o
Cancel

Figure 8: Changing the Default for Just My Code

22

23

Remember that disabling Just My Code will cause Visual Studio and the debugger to load more
symbols and to monitor additional resources, which means doing so might slow your debugging
experience. Disable it only when strictly required.

Enabling native code debugging

In case your WPF application invokes unmanaged code (such as the Win32 API), you can
enable native code debugging. You can do this by opening the Properties window of a project
and selecting the Enable native code debugging check box in the Debug tab. As for disabling
Just My Code, enable native code debugging only when strictly required.

Customizing breakpoints

Now that you know how to set breakpoints and step through your code in break mode, it’s time
to learn how to get the most out of breakpoints by using some interesting features.
Managing breakpoints with the Breakpoints window

By pressing Ctrl+Alt+B, you enable the Breakpoints window, which is where you can easily

manage all the breakpoints in your solution via a convenient user interface (see Figure 9).
Simply hover over each button in the toolbar to get a description.

Breakpoints v I X

New ~ | X | & | G | = | Columns ~ | Search: * In Colummn: All visible - &
Name Labels = Condition Hit Count

1%l M ~ppxaml.cs, line 16 character 41 (no condition) break always

[~]@ MainWindow.xaml.cs, line 39 character 13 (no condition) break always
[@ MainWindow.xaml.cs, line 49 character 17 (no condition) break always

Error List QEEELGLIel Output Find Symbol Results

Figure 9: Managing Breakpoints in the Breakpoints Window

You can select or unselect the check box for a breakpoint in order to temporarily disable or
enable a breakpoint. The toolbar has buttons to add, remove, and even import and export
breakpoints. In fact, Visual Studio can store the list of breakpoints into an XML file for later use.
You can also click Columns on the toolbar and add additional columns to the window for further
details on each breakpoint. Such a window also shows important information, including labels,
conditions, and hit counts.

Providing breakpoint labels

Though the Breakpoints window provides a convenient way to work with breakpoints, if you
have dozens of breakpoints in your code, it can be very hard to remember what each breakpoint

www . dbooks . org

https://www.dbooks.org/

deals with, and viewing the file and line number where the breakpoint is located might not be
very helpful. Visual Studio allows adding and editing breakpoint labels—a kind of identifier that
will help you categorize, find, and manage breakpoints more easily. In order to provide a label to
a breakpoint, you have several options:

¢ In the Breakpoints window, right-click a breakpoint, then select Edit labels.
¢ In the code editor, right-click the red glyph that identifies a breakpoint, then select Edit
labels.

Whichever option you choose, you will see the Edit breakpoint labels window appear. For
instance, suppose you have a breakpoint on the OpenFile method definition. In the Edit
Breakpoint Labels window, you can type a description as shown in Figure 10.

Edit breakpoint labels *

Type a new label:

OpenFile method definition Add

Or choose amenyg existing labels:

QK Cancel

Figure 10: Assigning a Label to a Breakpoint

Click Add, then click OK. The new label will be immediately visible in the Breakpoints window,
making it easier to remember what a breakpoint is about.

Setting breakpoint conditions

Conditions allow you to specify when the application execution must break as a breakpoint is
hit. In order to understand how conditions work, place a breakpoint inside the body of the
OpenFile method, thus the return statement. Then right-click the breakpoint’s red icon and
select Conditions. At this point, you can specify one or more conditions that will make the
execution break when this breakpoint is encountered.

Note: The user interface for adding conditions and actions has changed starting
with Visual Studio 2015. Now you have a convenient pop-up that allows you to keep
your focus on the active editor window instead of modal dialogs, as with previous
editions.

24

25

Imagine you want that breakpoint to cause the application execution break only if the supplied
string is null. This kind of condition requires an expression to be evaluated; that is, the supplied
string is equal to null. The Conditional Expression option allows evaluating conditions that must
be true in order to break the application execution when the breakpoint is encountered. In this
case, you can specify the condition shown in Figure 11.

m SampleWpf - Microsoft Visual Studio -

File Edit View Telerik Project Build Debug Team Tools Architecture Test Apalyze Window Help

i0-0|w-2 | - O | pebug - AnycPu - b oSt v | g7 _E | | -

{{ App.xaml.cs MainWindow.xaml.cs & > T WEET] -

:__ SampleWpf = “z SampleWpf.MainWindow - @, OpenFile(string fileMName) -

7 T ¥ S

& ¥

5 35 } -
36

¢

o 37 = private string OpenFile(string fileName)

38 {

o [+ 39 File.ReadAllText(fileName);

ETI— Breakpoint Settings X

o] Location: MainWindow.xaml.cs, Line: 39, Character: 13, Must match source

E Conditions ;_._

S ! Conditional Expression v lstrue ~ fileName==null X Saved i

2 i Add condition

; [] Actions

7 A

o

a0 }

g a1 v

= 196 % ~| 4 4

Figure 11: Specifying a Breakpoint Condition

It is worth mentioning the availability of IntelliSense, which dramatically simplifies the way you
write the expression to be evaluated. Now, let’s talk about other conditions—Hit Count and
Filter. Hit Count allows you to debug code from a certain point forward. Suppose you have a
for loop with a breakpoint inside but you do not want the application execution to break at
every iteration. With Hit Count, you can specify at which iteration the breakpoint must be hit and,
consequently, the application execution must break. For example, if you enter Hit Count = 2, the
breakpoint will be hit at the second iteration. Possible options are = (equal to), is a multiple of,
and >= (greater than or equal to). With Filter, you can break the application execution only if the
breakpoint is hit on the specified process, thread, or machine name.

Sending messages to the Output window with Actions

The Actions feature allows you to send log messages to the Output window using a built-in
function.

www . dbooks . org

https://www.dbooks.org/

|"
Q Note: In previous editions of Visual Studio, this feature was known as Trace
Points. It is now called Actions and is included in the new user interface for

breakpoint

settings.

To add an action, right-click the breakpoint’s red icon and select Actions. You will see the same
interactive pop-up described for conditions. In the Actions area, you can provide the name of a
built-in function writing the $ symbol, then pick up the function name from the contextualized
IntelliSense (see Figure 12).

w SampleWpf - Microsoft Visual Studic X]
File Edit View Telerik Preject Build Debug Team XML Design Format Tools Architecture Test Apalyze Window Help
ie-o0|m-2 |9 - | pebug - AnycPU - P St~ | g1 | | -
{{ Appxaml.cs MainWindow.xaml.cs = > [ETATIRIEETR] i
:_ SampleWpf - *iz SampleWpf.MainWindow MR OpenFile(string fileMame) -
= ~TF T s
g el
) 36
»
@
o 37 - private string OpenFile(string fileName)
38 {
e 3 return File.ReadAllText(fileName) ;|
ETI— Breakpoint Settings X
6 Location: MainWindow.xaml.cs, Line: 39, Character: 13, Must match source
% D Conditions i 1
Q_ Actions
=)
r—,g Log a message to Output Window: S
; Continue execution SADDRESS
= SCALLER
7 SCALLSTACK
= SFUMCTION
i L] »
m SPID
B 40 } SPNAME
i STID
4l STNAME -
S EXIE »

Figure 12: Specifying an Action

For example, the $CALLSTACK function will send the call stack information to the Output window.
Table 1 shows the supported functions.

Table 1: Supported Functions in the Actions Configuration

Breakpoint Actions

$ADDRESS The current instruction
$CALLER The name of the caller function
$CALLSTACK The method call stack

26

27

Breakpoint Actions

$FUNCTION The name of the current function
$PID The process ID

$PNAME The process name

$TID The thread ID

$TNAME The thread name

Custom expressions are also supported and documented at
https://blogs.msdn.microsoft.com/visualstudioalm/2013/10/10/tracepoints/.

Introducing Performance Tips

Visual Studio 2015 introduced an interesting new feature to your debugging experience called
Performance Tips (also referred to as PerfTips). With this feature, you can measure how long it

takes to execute a section of code in break mode. In order to understand how it works, place

two breakpoints in the sample application, one on the line of code that invokes the OpenFile
method and assigns its result to the text box, and one on the return statement in the OpenFile
method. Now start the application, select an existing file name with Browse, then click Open. At

this point, the first breakpoint is hit. Press F5 to resume the execution. When the second

breakpoint is hit, you will see a small tooltip near the highlighted line showing the number of
milliseconds it took to execute the code between the two breakpoints, as shown in Figure 13.

w SampleWpf (Debugging] - Microsoft Visual Studio ' & | Quick Launch (Ctrl+Q) P

File Edit View Telerik Project Build Debug Team Tools Architecture Test Analyze Window Help

: | - & Hl.'l"'|'9' '| P Continue = | 59 _ l0| |-) i+ ‘:?;CodeMapP%;gig:;;
Process: [7380] SampleWpfushost.exe - Lifecycle Events = Thread: | [13888] Main Thread - v

MainWindowaxaml.cs +
SampleWpf

29 =
30
31
32
® 33
34
35
36

Jsauojdig 1230 BEs 05

331] |ensip A0

196% - 4

| SampleWpf MainWindow - fi’a OpenFile(string fileName)

private void OpenButton Click(object sender, RoutedEventArgs e)

{
if (!string.IsNullOrEmpty(.FileNameBox.Text))

his.ContentBox.Text = OpenFile(this.FileNameBox.Text);

private string OpenFile(string fileName)

{
return File.ReadAllText(fileName);

¥

private void BrowseButton Click(object sender, RoutedEventArgs e)

a

Figure 13: Measuring Code Execution Time with PerfTips

x

Alessandro Del Sole = .‘

www . dbooks . org

https://blogs.msdn.microsoft.com/visualstudioalm/2013/10/10/tracepoints/
https://www.dbooks.org/

Note: PerfTips time values are approximate because they include debugging
overhead. However, they are useful for establishing a good idea about the behavior of
your code.

Chapter summary

Visual Studio 2015 and 2017 provide powerful debugging tools that you can use with any kind of
.NET application and that you saw in action against a WPF project. With breakpoints, you
highlight the lines of code you want to investigate, then you can step through your code by
executing one line or a small set of lines at a time with commands such as Step Into, Step Over,
and Step Out. But breakpoints offer more—you can specify conditions and actions to control
when the application execution must break and what information you want to log to the Output
window. The tools described in this chapter are typically available within the code editor, but the
debugging experience in VS 2015 offers much more. In the next chapter, you will work with
windows that allow deeper investigations into and evaluations of your code.

28

Chapter 3 Working with Debug Windows

A WPF application is made of many building blocks, including the user interface, view models,
and data, just to mention a few. For each, you might have methods, variables, expressions, and
even multithreaded code. For this reason, debugging a WPF application can be difficult outside
of an appropriate environment. Fortunately, Visual Studio provides you with many integrated
tool windows that simplify debugging and cover a huge number of scenarios. This chapter will
provide guidance about the most commonly used debugging windows you will need with a WPF
application, and it will offer information about writing better code.

Investigating local variables with the Locals window

The Locals window is a useful debugging window because it allows you to show the active local
variables and their values. If the local variable represents a composite type, such as a class,
you will be also able to see the type’s property and field values. In order to see it in action,
consider the sample application created in Chapter 1 and place a breakpoint on the following
line, inside the OpenButton_Click event handler:

this.ContentBox.Text = fileContent;

Run the application, browse for a file name, then click Open. When the breakpoint is hit and
Visual Studio enters the break mode, select the Locals window, which should be enabled by
default. If not, select Debug, Windows, Locals. As you can see in Figure 14, the Locals window
shows a list of active local variables. For each variable, it shows the value and the type.

Locals v X
Mame Value Type
b & this {SampleWpf.MainWindow} 4, ~ SampleWpf.MainWindow
I & sender {System. Windows.Controls.Button: Open} 9, - object {System.Windows.Controls.Button}
y
& Handled false bool
I A& OriginalSource {System. Windows.Centrols.Button: Open} Q - object {System.Windows.Controls.Button}
I & RoutedEvent {ButtonBase.Click} System.Windows.RoutedEvent
I & Source {System Windows.Centrols,Button: Open} Q, - object {System.Windows.Controls.Button}
I+ #3 Static members
I @ Non-Public members
@ fileContent "The MIT License (MIT)\rAn\rinCopyright (c) 2015 Alessandro D G, ~ string

Autos QLN Watch 1 Find Symbol Results

Figure 14: Investigating Local Variables with the Locals Window

www . dbooks . org

https://www.dbooks.org/

If the variable type is a primitive type, such as a string, the Value column immediately shows the
variable’s value, as for the fileContent local variable, of type string. If the variable type is a
composite type, such as the e variable of type System.Windows.RoutedEventArgs, you can
expand the variable and see its members. For each member, you will be able to see the type
and current value; again, you can expand the member if it is a composite type—for example,
expanding the e variable will cause the Locals window to show all the properties and fields (with
values) exposed by the System.Windows .RoutedEventArgs type. The Locals window can be a
real lifesaver when you need to check if a variable stores an expected (or unexpected) value.

Investigating current variables with the Autos window

You can also investigate variables with the Autos window, which shows the variables in three
forms: used by the current statement, used by the previous three statements, and used by
following three statements. You can also change a variable’s value with a simple double-click. In
Figure 15, you can see how a variable is presented in red if it is related to a current breakpoint.

w SampleWpf (Debugging) - Microsoft Visual Studio YH & | Quick Launch (Ctrl+Q) Pl - o x
File Edit View Telerkk Project Build Debug Team Jools Architecture Test Apalyze Window Help Aleszandro Del Sole = ﬂ
i -o|a-amd|9-C- P Continue - | 51 _5 10 m | T[> ¥ @ 1 m CodeMap | % T = E
% Process: [12964] SampleWpf.vshost.exe - Lifecycle Events = Thread: [8336] Main Thread - X :

MainWindowaxaml.cs + X

SampleWpf ~ ¥z SampleWpf.MainWindow - | @, BrowseButton_Click(object sender, RoutedEventArgs -
40 return File.ReadAllText(fileName); +
a1 -
42

sjoo] ansoubeig

12101dx3 2[00 12A035 TOS

43 private void BrowseButton Click(object sender, RoutedEventArgs e)
44 {

45 var openDialog = new OpenFileDialog();

46 openDialog.Title = "Select a .txt file";

47 openDialog.Filter = "Text files (.txt)|*.txt";

48 if (openDialog.ShowDialog() == true)

321] |ensip A

49 {
50 khis.FileNameBox.Text = openDialog.FileName;

51

saipadoly Jsai0|dig wea) saso0dxg uonnjos

Autos
MName Value Type
I» {Microsoft.Win32.0penFileDialog: Title: Select a .bet file, FileName: C:\Users\proga\, l
& openDialog.FileName “Ch\\Users\\progatiDocuments\\MIT_License.tet” Q, - string
I @ this {SampleWpf.MainWindow} A - SampleWpf.MainWindow
I & this.FileMameBox {System. Windows.Controls, TextBox} A - System.Windows.Controls. TextBox
F this FileNameBox. Text O ~ string

sa10)dx3 Apadoig ann

LG | ocals Watch 1 Find Symbol Results Package Manager C... Call Stack Breakpoints Exception Settings Command Window |Immediate Window Output Error List

1 Publish

Figure 15: Investigating Variables with the Autos Window

30

31

Analyzing method calls: the Call Stack window

The Call Stack window shows how method calls run in the stack, and it is useful for
understanding the method call hierarchy.

= Tip: If Just My Code is enabled, the Call Stack window shows a limited set of
information. For a better understanding of Call Stack, disable Just My Code. You can
then decide to re-enable it after reading about Call Stack.

Call Stack goes live when you debug your code—for example, when you press F11. Figure 16
shows the window in action.

Call Stack * 0 x
Mame Language

In SampleWpf.exe!SampleWpf.App.InitializeComponent() Line 48

SampleWpf.exe!SampleWpf.App.Main() cz

[Mative to Managed Transition]

[Managed to Mative Transition]

mscorlib.dll!System. AppDomain.Executedssembly(string assemblyFile, Systern.Security.Policy.Evidence assemblySecurity, string[] Unknown
Microsoft.VisualStudio.HostingProcess. Utilities. dll!Microsoft.VisualStudio. HostingProcess.HostProc.RunUsersAssembly() Unknown
mscorlib.dll!System. Threading. ThreadHelper. ThreadStart_Context(object state) Unknown
mscorlib.dll!System. Threading.ExecutionContext.Runinternal (System. Threading.ExecutionContext executionContext, System.Thre: Unknown
mscorlib.dll!System. Threading.ExecutionContext.Run(Systemn. Threading.ExecutionContext executionContext, System. Threading.Ci Unknown
mscorlib.dll!System. Threading.ExecutionContext.Run(System. Threading.ExecutionContext executionContext, System. Threading.Ci Unknown
mscorlib.dll!System. Threading. ThreadHelper. ThreadStart() Unknown

Package Manager Console JE:IRSEIS Breakpoints Exception Settings Command Window Immediate Window Output Error List

Figure 16: Investigating Method Calls with Call Stack
Call Stack shows:

e The list of method names being executed and the programming language with which
each is written.

e The list of calls to .NET system methods.
Method calls to/from other threads.

If the source code for a given method is not available, you can still view the assembly code by
right-clicking a method name, then selecting Go to Disassembly. Figure 17 shows an example.

www . dbooks . org

https://www.dbooks.org/

Disassembly + X

Address: System.Windows.RoutedEventHandlerlnfo.InvokeHandler(object, System. Windows.RoutedEventArgs)
@ Viewing Options

86284811 jne 86284815 -
86284813 jmp 86284821

86284815 mov ecx, 6388EBBh

B62B481A call B6219E28

B628481F mov edx, eax

86284821 mov ecx, edx

96284823 push edi

86284824 mov edx,esi

06284826 mov eax,dword ptr [ecx+8Ch]
96284829 mov ecx,dword ptr [ecx+4]
B628482C call eax

6284826 pop esi

P628482F pop edi

86284838 pop ebp

86284831 ret 4

B6284834 int
B6284835 int
B62B4836 int
B6284837 int
B6284838 int
B6284839 int
B628483A int
96284838 int

DWW W W W

Figure 17: Disassembling a Method Call

Notice how the Disassembly window shows not only the disassembled method call, but also the
address in memory of each instruction. You can also customize the appearance of Call Stack by
right-clicking a column header and selecting the available options from the context menu, such
as (but not limited to) parameter values and hexadecimal display. Call Stack is particularly
useful when you get into an issue that is not apparently caused by the current piece of code and
that needs further investigation through the entire stack of method calls.

Evaluating expressions: Watch and Quick Watch windows

You can track a variable by monitoring an object or expression using the Watch and Quick
Watch windows. The difference is that Watch can monitor multiple variables, whereas Quick
Watch can monitor one variable per time. There are four Watch windows available, which
means you can monitor a large number of variables. In order to understand how they work, let's
make a slight modification to the OpenButton_Click event handler in the sample application,
as shown in Code Listing 3.

Code Listing 3

private void OpenButton Click(object sender, RoutedEventArgs e)
{
// Adding a variable to check if the string is not null.
bool stringCheck =
string.IsNullOrEmpty(this.FileNameBox.Text);
if (!stringCheck)
{
string fileContent= OpenFile(this.FileNameBox.Text);
this.ContentBox.Text = fileContent;

32

Our goal is to monitor the behavior of the stringCheck variable, which we do in break mode.
Next, press F11 to start the application instead of F5. Then we locate the stringCheck variable,
right-click, and select Add Watch. At this point, the Watch 1 window will show the variable and
display a message saying it does not exist in the current context, which is to be expected
because the debugger has not yet been entered into the event handler.

= Tip: Generally speaking, selecting Add Watch will open the first Watch window
available among the four VS offers.

If you step into the code and enter into the OpenButton_Click handler, the Watch window will
show the current evaluation for the expression assigned to the variable, which is False, as you
can see in Figure 18.

w SampleWpf (Debugging) - Microsoft Visual Studio Y &' | Quick Launch (Cirl+0) P - B x
File Edit View Telerik Project Build Debug Team Tools Architecture Test Apalyze Window Help Aleszandro Del Sole = i

io-o|f-uMe|D-C-| P Continue - | F1 i1l m O[> ¥ 3t IiE|"
rocess: [6352] SampleWpf.vshost.exe - Lifecycle Events = Thread: | [8496] Main Thread - X .

App.g.cs MainWindowxamles = X
[# SampleWpf = *z SampleWpf.MainWindow -, OpenButton_Click(ohject sender, RoutedEvent? -

26 { =
27 InitializeComponent(); .
28
29

s|oo] ansoubelq

30 -] private void OpenButton Click(object sender, RoutedEventArgs e)

31 {

32 // adding a variable to check if the string is not null

33 har stringCheck = string.IsNullOrEmpty(this.FileNameBox.Text);
34 if (!stringCheck)

321 |ensip aa Jau0)dxg PRlgE 2nes oS R

35 {
36 string fileContent= OpenFile(.FileNameBox.Text);
.ContentBox.Text = fileContent;

saipadory sauojdig wea) Jsau0jdx3 uonnjos

@ stringCheck

1210|dx3 Apadoag aan

Autos Locals RUEHGBE Find Symbol R... Package Mana.. Call Stack Breakpoints Exception Setti.. Command Wi.. |mmediate Wi.. Output Error List

Ready Col 13 Ch13 INS 4 Publish

Figure 18: Monitoring an Expression with the Watch Window

As you continue stepping through the code, you'll see how the Watch window will show the
result of the evaluation of the expression assigned to the stringCheck variable, which might or
might not be true. The Quick Watch window works similarly, but it works on a single variable
and is offered through a modal dialog.

www . dbooks . org

https://www.dbooks.org/

Debugging lambda expressions

Visual Studio 2015 has introduced an important feature that allows for debugging lambda
expressions and LINQ queries inside the Watch window. In order to understand how to leverage
this new tool, let's make a couple modifications to the sample project. First, we’ll add a new
button to the user interface as follows:

<Button Width="100" Height="30" Content="Feeling lucky"
x:Name="FeelingLuckyButton" Click="FeelingLuckyButton_Click"/>

This new button’s purpose is to launch a method that will open the first .txt document inside a
given folder, then add the event handler and method shown in Code Listing 4.

Code Listing 4

private IEnumerable<string>
EnumerateTextFiles(string directoryName)
{
// Using a lambda for demonstration purposes only.
// You might want to use a search pattern instead.
var list = Directory.EnumerateFiles(directoryName);
var filteredList = list.Where(f =>
f.ToLower().Contains(".txt"));

return filteredList;

}

private void FeelinglLuckyButton Click(object sender,
RoutedEventArgs e)
{
this.FileNameBox.Text =
OpenFile(EnumerateTextFiles("C:\\temp").FirstOrDefault());

The EnumerateTextFiles method is using a lambda expression to filter the list of files in the
specified folder. In your real code, you might prefer specifying the search pattern parameter for
the Directory.EnumerateFiles method, but using a lambda is necessary in order to
demonstrate how to use the new debugging features. At this point, place a breakpoint on the
EnumerateTextFiles method, then start debugging. When the debugger enters this method,
right-click the filteredList variable, then select Add Watch. When you press F11 over this
variable, the Watch window will evaluate the expression, which includes expanding the Results
View element that shows the result of the lambda. Figure 19 demonstrates this.

34

35

w SampleWpf (Debugging) - Microsoft Visual Studic Y &7 | Quick Launch (Ctrl+0Q) Pl - o

File Edit View Telerik Project Build Debug Team Tools Architecture Test Apalyze Window Help Alessandro Del Sol
i@-o|B-a P2~ P Continue - | 51 i m O[> ¥ 2t
= Process: [13400] SampleWpf.vshost.exe - Lifecycle Events ~ Thread: [12316] Main Thread - X :

MainWindow.xaml| & App.g.cs MainWindowxaml.cs A X Appxaml| & i X
SampleWpf = %z SampleWpf.MainWindow « | @, EnumerateTextFiles(string directoryMame)
72 // Using a lambda for demonstration purposes only

73 // You might want to use a search pattern instead

74 var list = Directory.EnumerateFiles(directoryName);

75 var filteredlList = list.Where(f => f.ToLower().Contains(".
76

77 return filteredlList; <= 2mselapsec

78

79
-4

321) |ensip a1 Jauoidxg pRlgo 25 TOS

Watch 1 * ox
MName Value Type
4 @ filteredlist {5ystem.Ling.Enumerable WhereEnumerab System.Cellections.Generic.l[Enumerable<string> {System.Ling.Enum
& Current null string
Kz Systermn.Collections.|[Enumerator.Curre null object
W& current null string
& enumerator null Systern. Collections.Generic.[Enumerator<string >
& predicate {Method = {Boolean <EnumerateTextFiles> System.Func<string, bool>
& source {5ystern.|O.FileSystemEnumerablelterator<: System.Collections.Generic.lEnumerable<string> {Systern.|O.FileSyste
i state 0 int
& threadld 8 int
@ Results View Expanding the Results View will enumerate

"C\temp\\Apache Licenseot” @claing

@ [1] "C\\temp\\MIT_License.tdt”

ssipadold sauojdxg wea)] ssiojdyg uognjog sjoo) onsoubeig

1210(dx3 Apadoag aan

Locals QUEGEE Find Symbol Re.. Package Mana... Call Stack Breakpoints Exception Setti.. Command Win... Immediate Win... Output Error List

4 Publish

Figure 19: Debugging a Lambda Expression

In this way, you can investigate the expression result and see if it is working as expected.

Debugging threads: the Threads window

More often than not, a .NET application can run multiple threads. Sometimes multiple threads

are run in order to suit how the system manages an application or because we have

programmatically created new threads for delegating tasks to separate units of execution. Visual
Studio offers the Threads window (Ctrl+Alt+H), in which you can see the list of running threads

(see Figure 20).

www . dbooks . org

https://www.dbooks.org/

Threads > B x
Search: - X SearchCallStack | W ~ Group by: | Process ID -~ Columns~ [B & | @ & [11 P
1D Managed ID Category MName Location
~ Process ID: 6552 (10 threads)
4 0 0 ? Unknown Thread [Thread Destroyed] <not available>
4 8760 0 & Worker Thread <No Name> <not available>
' 8736 3 & Worker Thread «No Mame> <not available>
4 13364 6 &% Worker Thread <No Name> <not available>
4 15736 7 ¥ Worker Thread vshost.RunParkingWindow v Microsoft.VisualStudio.HostingProcess.Utilities.d!Microsoft.VisualStudie.HostingProcess.HostProc.
4 17424 8 ;;;‘3‘ Worker Thread MET SystemEvents v System.dll!Microsoft. Win32.5ystemEvents. WindowThreadProc
¥ = 84% 9 ¥4 Main Thread Main Thread v SampleWpf.exe!SampleWpf.MainWindow.OpenButton_Click
4 12080 10 & Worker Thread Stylus Input v PresentationCore.dll!System.Windows.Input.PenThreadWorker. ThreadProc
4 18276 1 o Worker Thread <No Names <not available>
4 6324 12 ¥ Worker Thread Microsoft VisualStudio.Xaml.NotifyVisualChanges + WpfXamiDiagnosticsTap.dil!Microsoft XamiDiagnostics.WpfTap. WpfVisual TreeService VisualTree Vis
4 »

Figure 20: Watching the List of Running Threads

For each thread, you can see the name, the ID, the category, and the location. With the
category, you can see how the main thread corresponds to the user interface thread in the
application. This is demonstrated in the Location column, where you not only find the name of
the module, but also the method that is currently being executed. In the case of threads created
programmatically, they will be listed in the window and you will be able to get information about
them. The most interesting feature of the Threads window is that you can also select a thread,
then click Search Call Stack. This action will open the Call Stack window, thereby showing the
method calls in the specified thread.

Asynchronous debugging: the Tasks window

Visual Studio offers the Tasks window, a convenient way of investigating tasks that the runtime
creates when you code asynchronous methods using the Async/Await pattern. In order to
understand how this works, let’'s add a new asynchronous method to the sample application that
opens a text file based on the Async/Await pattern. This is shown in Code Listing 5.

Code Listing 5

private async Task<string> OpenFileAsync(string fileName)

{
string result = null;
using (var fs = new FileStream(fileName, FileMode.Open))
{
using (var reader = new StreamReader(fs))
{
result = await reader.ReadToEndAsync();
}
}
return result;
}

In order to use this method, you will need to mark the OpenButton_Click event handler with
the async modifier, and you will need to change the assignment of the fileContent variable as
follows:

36

37

string fileContent = await OpenFileAsync(this.FileNameBox.Text);

If you place a breakpoint on the OpenFileAsync method and enable the Tasks window
(Ctrl+Shift+D, K) while in break mode, you will see the status of a task, its time of execution, and

its location (see Figure 21).

w SampleWpf (Debugging) - Microsoft Visual Studio YHE & Quick Launch (Ctrl+Q) Pl - O x

File Edit View Telerik Project Build

Debug Team Tools Architecture Test Analyze Window Help AIessandroD‘eISoIe'ﬂ
™

- | -2 N | - - P Continue v| F ; [o] | | 3 ¢ 2t B CodeMap | ';
i Process: [16484] SampleWpf.vshost.exe - Lifecycle Events ~ Thread: [13932] Main Thread - Y :

w 2
(ol Tasks v i x ki
& A
2 g
m =
.T'r:,‘_- D : Start Time (sec) Duration (sec) Location Task ;_‘.'
E Y 1029 @Awaiting 20,919 234,850 SampleW SampleWpf.MainWindow.OpenButton_Click(sender, €) E—:
g ¥ oo 1024 © Active 20,918 234,851 SampleW Async: <OpenFileAsync>d_2 I
- App.g.cs MainWindow.xaml.cs + X Appxaml| & dm X g
Ei_ SampleWpf = %z SampleWpf.MainWindow ~ | @, OpenFileAsync(string fileName) ~B
7 . N °
§ 43 string result = null; =
= . . - . B -
7 44 using (var fs = new FileStream(fileName, FileMode.Open)) 5
e
a5 { £
46 using (var reader = new StreamReader(fs)) g
47 { ~H
® 43 result = await reader.ReadToEndAsync(); 2
m
D 49 8
rn hl } h ;'_
146 % ~ 4 » zv

Figure 21: Monitoring Asynchronous Tasks

Q Note: The Tasks window can also be used with parallel programming based on
the Task Parallel Library (TPL) for investigating the execution of parallel tasks.

Chapter summary

The more complex the WPF application, the more you will need sophisticated debugging tools.
Visual Studio offers everything you need in order to perform complex debugging over your apps.
In fact, the IDE provides many debugging windows that you can use to inspect variables (Locals
and Autos windows), evaluate expressions (Watch windows), investigate method calls (Call
Stack window), and analyze threads and tasks (Threads and Tasks windows). All of these
windows are nonmodal, they work docked inside the IDE and, therefore, you can always keep
an eye on your code, which means you can be more productive.

www . dbooks . org

https://www.dbooks.org/

Chapter 4 Debugger Visualizers and Trace
Listeners

Debugging not only means searching for and fixing errors, it also means collecting diagnostic
information that helps developers understand how the application behaves at specific points
during its lifetime. This is even more important in WPF applications because they can work with
a large range of resources, such as graphics, media, and data. This chapter will explain how to
collect information using debugger visualizers and trace listeners.

Introducing debugger visualizers

In some situations, you might have objects, controls, or variables that store data in a particular
format. For example, you might have a string representing XML or JSON data. While
debugging, you might need a way to investigate this kind of information with an appropriate
view. Visual Studio makes this possible with debugger visualizers. For a better understanding,
in the sample application place a breakpoint on the following line, which is located in the
OpenButton_Click event handler:

this.ContentBox.Text = fileContent;
When the breakpoint is hit, if you hover over the fileContent variable you will see a data tip

that shows the variable’s value. The data tip also provides a small magnifying glass icon that
you can click to pick one of the available visualizers (see Figure 22).

M SampleWpf (Debugging) - Microsoft Visual Studio YH & | Quicklaunch (Ctrl+Q) R - O

File Edit View Telerik Project Build Debug Team Tools Architecture Test Analyze Window Help Alessandro Del Sole -

Bl < | e Hd"| - - bContinuev|p : [] °| |-) ¢ 2t B Code Map |: ='
i Process: [8456] SampleWpf.vshost.exe - Lifecycle Events = Thread: [12096] Main Thread - Y :

MainWindow.xaml App.g.cs MainWindow.xaml.cs & X

AML Visualizer
HTML Visualizer
JSON Visualizer g1

334] [ENSIp BAIT

6 =
] &
? SampleWpf - 2 SampleWpf.MainWindow ~ | @, OpenfFileAsync(string fileName) - E
= 33 var stringCheck = string.IsNullOrEmpty(.FileNameBox.Te+ E
= . . -
& 34 if (!stringCheck) =
£ 35 { 'y
T £
3 36 string fileContent= await OpenFileAsync(.FileNameB [
o 37 |0 fileContent Q4 = "The MIT License (MIT)\r\n\rinCopyright (c) 2013 Alessandro Del Sole\rin\rinPermission is hereby granted, free of charge.. = ;1

" Text Visualizer } -E;

m

g

=

_ES"

Figure 22: Selecting a Debugger Visualizer

Depending on the format of your information, you can pick the most appropriate visualizer. In
this case, the string contains plain text, which means that selecting the Text Visualizer is the
proper choice. Figure 23 shows the Text Visualizer in action.

38

Text Visualizer O >

Expressicn: |fHECDntent
Value:
The MIT License (MIT) -

Copyright (c) 2815 Alessandro Del Sole

Permission is hereby granted, free of charge,
to any person obtaining a copy

of this software and associated documentation
files (the "Software"), to deal

in the Software without restriction, including
without limitation the rights

to use, copy, modify, merge, publish,
distribute, sublicense, andfor sell

copies of the Software, and to permit persons
to whom the Software is

furnished to do so, subject to the following
conditions:

The abowve copyright notice and this permission
notice shall be included in

all copies or substantial portions of the
software.

[v] Wrap Close Help

Figure 23: Text Visualizer Allows Viewing Plain Text

Now suppose your variable contains XML data. You could select the XML Visualizer to get a
structured view of your file instead of plain text. Figure 24 shows an example.

www . dbooks . org

https://www.dbooks.org/

¥ML Visualizer O *

Expression: fileContent

Value:

<?xml version="1.0" encoding="UTF-8"?>
- <CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/ 2005/ CodeSn
- «=CodeSnippet Format="1.0.0">=
- <Header=
=Title=Convert to ObservableCollection</Title=
<Author=Alessandro Del Sole</Author=
< Description=ToObservableCollection </Description
<HelpUrl/ =
- «<SnippetTypes=
<SnippetType=Expansion</SnippetType=
</SnippetTypes=
- <Keywordss
<Kayword/»
< /Keywords>
<Shortcut=observable < /Shortcut=
< /Header>
- =Snippet=
<References/=
<Imports/>
<Declarations/=
- =Code Delimiter="%" Kind="method body" W
Language="CSharp"=>

Close Help

Figure 24: XML Visualizer Allows Viewing Structured XML Contents
As with the XML Visualizer, the JSON and HTML Visualizers help you investigate formatted

contents. Debugger visualizers are very useful, especially when you have long and complex
information you need to view and the data tips are not enough.

The WPF Tree Visualizer

WPF has a special debugger visualizer called WPF Tree Visualizer, which allows you to inspect
values of controls’ properties at runtime.

Q Note: This visualizer is discussed for consistency with the WPF platform, but you
might prefer the Live Property Explorer and Live Visual Tree windows described in
Chapter 5 XAML Debugging.

40

41

This visualizer’s goal is to provide a hierarchical view of the visual tree of the current window or
user control. You enable it by hovering over a control’s name in the code editor while in break
mode, then clicking the magnifier icon that appears on the data tip. Figure 25 shows an example
based on the FileNameBox control in the sample application.

WPF Visualizer O X
Visual Tree Properties of FileNameBox : TextBox
- MainWindow] Name - Walue Source Style Value Declared Type
4 : Border AcceptsRetum False Default System.Windows.Input KeyboardMavigation
4 : AdomerDecorator AcceptsTab False Default System.Windows.Controls. Primitives. TextBe
4 COH‘E!T\[P[ESEI‘IIE[ActualHeight 30 Local <not set> System.Windows. FrameworkElement
4 Grid Actualwfidth 200 Local <not set> System Windows. FrameworkElement
4 :Sta.ckF'anel AllowDrop True DefaultStyle True System.Windows. UIElement
! m_:e I)d AnnotaticnAlternates 1] Default System Windows. Documents. Typography
| BrowseButton - Bution ArelnyTouchesCaptured False Default System.Windows. UIElement
| OpenButton - Button ArelnyTouchesCapturedivithin Falze Default System. Windows.U|Element
| FeslingLuckyButton - Button ArelAnyTouchesDirectlyOver False Default System.Windows. U|Element
|+ ContentBox - TexiBox ArelnyTouchesOver Falze Default System. Windows.U|Element
AdomerLayer Auto\wordSelection False Default System. Windows.Controls. Pimitives. TextBe
Background White DefaultStyle ‘White System. Windows.Controls. Panel
BetweenShowDelay 100 Default System. Windows. Controls. ToolTipService
BindingGroup null Default System Windows. FrameworkElement
BitmapEffect null Default System Windows.U|Element
BitmapEffectinput null Default System. Windows.U|Element
BitmapScalingMode Unspecified Default System Windows.Media.RenderOptions
BorderBrush #FFABADE3 DefaultStyle #FFABADB3 System.Windows. Controls. Border
BorderThickness 1.1.11 DefaultStyle 1.1.1.1 System Windows.Controls. Border
CacheMode null Default System.Windows. UIElement
CanRedo False Unknown System Windows. Controls. TextBox
Rendering of FileNameBax : TextBox CanUndo True Unknown System Windows Controls TextBox
Capitals Mormal Default System Windows. Documents. Typography
CapitalSpacing False Default System Windows. Documents. Typography
CaretBrush null Default System Windows.Controls. Primitives. TextBe
Caretindex o Unknown System Windows.Controls. TextBox
CATemp\MIT_License.txt CaseSensitveForms Falze Default System Windows. Documents. Typography
CharacterCasing Mormal Default System Windows.Controls. TextBox
ClearTypeHint Auto Default System Windows. Media.RenderOptions
Clip null Default System Windows.U|Element
ClicToBounds False Default Svstem.Windows. U|Element
Close

Figure 25: WPF Tree Visualizer Showing a Control’s Property Values

As you can see in Figure 25, the left side the WPF Tree Visualizer shows the visual tree of the
user interface and a preview of how the selected control is rendered at runtime. On the right
side, the tool shows the full list of properties for the selected control and their values. You can
also filter the property list using the text box at the top of the window. The WPF Tree Visualizer
does not allow you to change property values at runtime, but in Chapter 5 you will discover how
to accomplish this with more flexible tools.

Interaction with the debugger: the Debug and Trace classes

There are situations in which you do not need (or you do not want) to step through the code in
break mode in order to understand what’s happening with your application during the execution,
yet you will still need to retrieve some information—for example, a variable’s value. Visual
Studio and the .NET Framework provide the Debug and Trace classes, both from the
System.Diagnostics namespace, that allow interacting with the debugger in managed code
and that also allow you to show information in the Output window. These classes are essentially
identical, which means you can use them interchangeably, and both are static, exposing only
static members. They evaluate conditions at a certain point of your code, then they can display
contents in the Output window. For example, if you place the following line at the end of the

www . dbooks . org

https://www.dbooks.org/

OpenFileAsync method described in the previous chapter, you will see the content of the
resulting string in the Output window:

System.Diagnostics.Debug.WriteLine(result);
Table 2 shows the list of methods exposed by Debug and Trace classes.

Table 2: Methods Exposed by Debug and Trace Classes

Assert Evaluates a condition and shows a message if it is false.

Fail Shows an error message.

Indent Increases text indentation when writing to the Output
window.

Print Prints the specified message with support for formatting.

Unindent Decreases indentation when writing to the Output window.

Write Writes the specified message without a line terminator.

WriteIf Writes the specified message without a line terminator if the
specified condition is true.

WriteLine Writes the specified message with a line terminator.

WriteLineIf Writes the specified message with a line terminator if the
specified condition is true.

Actually, Debug and Trace not only allow writing diagnostic information to the Output window,
but they also allow redirecting output from the debugger to the so-called trace listeners, which
are described in the next section. In this case, both classes also offer the Close and Flush
methods that empty the debugger’s buffer immediately and cause data to be written to the
underlying listeners.

Controlling trace information

By default, when you build a project with the Debug configuration, the output of both Debug and
Trace classes is included in the build output. This happens because the Debug configuration
defines two constants, DEBUG and TRACE, which influence what output must be included. In
order to change this behavior, you need to open the project’s Properties window, select the
Build tab, and change the selection for the Define DEBUG Constant and Define TRACE
Constant options. Figure 26 shows where these options can be found.

42

M SampleWpf - Microsoft Visual Studic YE &' QuickLaunch (Cirl+Q) P - O x

File Edit View Telerik Project Build Debug Team Tools Architecture Test Apalyze Alessandro Del Scle = ﬂ
Window Help
S O-0 | @-2 @0 -0 | Debug - AnyCPU - b Stat~| 5

SampleWpf + X LUETANTT TSET) App.g.cs MainWindow.xaml.cs*

Application

m Configuration: | Active (Debug) ~ Platform: | Active (Any CPU)

Build Events General

Debug . _
Cenditional compilation symbols:

Resources
Define DEBUG constant
Services

; Define TRACE constant
Settings
Reference Paths Platform target:

Signing Prefer 32-hit

%4
-
=]
=
=]
=
-
c
w
=
m
1]
LA
o
<
fi]
=
=
=3
=
m
=
=
o
=]
=
=]

|dx3 uonnjos saipadoud s|oo) aisoubeig

Security [] Allow unsafe code
Publish [] Optimize code

MAIN S5ED

Code Analysi
ode Analysis Errors and warninas

<

dx3 y3gQ 120038 TOS

uea|

Error List Breakpoints Output Find Symbol Results Package Manager Console

Ready A Publish
Figure 26: Controlling Whether DEBUG and TRACE Constants Should Be Defined

The Release configuration automatically includes the TRACE constant definition.

Exporting debugger information with trace listeners

By default, the Debug and Trace classes allow us to send information to the Output window.
Actually, the Output window is one of the so-called trace listeners, special objects that can
listen to the debugger and collect information in various forms. This means that you are not
limited to sending information to the Output window. In fact, you can collect debugger
information in the form of text files, XML files, and more. Both classes expose a Listeners
property that can contain one or more built-in listeners. For example, the code shown in Code
Listing 6 will redirect the debugger output to a text file instead of the Output window. This is
accomplished by instantiating a listener called TextWriterTraceListener.

Code Listing 6

Trace.Listeners.Clear(); // Remove any listener.
// Redirect the output to a text file.
Trace.Listeners.Add(

new TextWriterTracelListener("Diagnostics.txt"));
// Ensure the output file is closed when
// the debugger shuts down.

www . dbooks . org

https://www.dbooks.org/

Trace.AutoFlush = true;

// Write the message only if the specified condition is true.
Trace.WriteLineIf(!string.IsNullOrEmpty(result), "Valid file");

Notice that listeners do not overwrite existing files, they append information. If you want a hew
file every time, you must first remove the previous file. Table 3 shows the list of available trace
listeners in the .NET Framework.

Table 3: Built-in Trace Listeners in the .NET Framework

DefaultTraceListener Sends the debugger output to the Output window.
ConsoleTraceListener Sends the debugger output to the Console window.
DelimitedListTracelListener Sends the debugger output to a text file with

information delimited by a symbol.

EventLogTraceListener Sends the debugger output to the Windows OS
events log (requires administrator privileges).

EventSchemaTraceListener Sends the debugger output to an XML file that will be
generated on an XML schema formed on the supplied
parameters.

TextWriterTracelListener Sends the debugger output to a text file.

XmlWriterTraceListener Sends the debugger output to an XML file.

Each listener is used in similar fashion, and, as usual, IntelliSense will help you pass the proper
arguments to the constructor.

Working with trace listeners at configuration level

You are not limited to using trace listeners in C# or Visual Basic code. In fact, you can add
listeners to a configuration file (App.config), which will make it easy to collect diagnostic
information for a system administrator. Adding listeners to a configuration file must be done
inside a node called system.diagnostics. For example, Code Listing 7 shows how to
implement a trace listener that redirects the debugger output to a text file.

Code Listing 7

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup>
<supportedRuntime version="v4.0"
sku=".NETFramework,Version=v4.6.1" />

44

45

</startup>
<system.diagnostics>
<trace autoflush="true">
<listeners>
<add name="DiagnosticTextWriter"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="Diagnostics.txt"/>

<!-- If you want to disable the DefaultTraceListener-->
<remove name="Default"/>
</listeners>
</trace>
</system.diagnostics>
</configuration>

You will be able to use other trace listeners in similar ways. If you do this in code instead of the
configuration file, you will have more control over these objects. Further information about trace
and debug settings in the configuration file can be found in the MSDN documentation.

Chapter summary

Visual Studio offers additional useful tools for investigating objects and values. With debugger
visualizers, you have an option to visualize objects and members that are supplied in particular
formats, such as text, XML, or JSON. With WPF, the WPF Tree Visualizer allows you to inspect
the visual tree for a window or user control at runtime and examine its property values. If you do
not need to break the execution and inspect an object’s value in break mode, you can also
leverage the Debug and Trace classes to send the evaluation of an expression or an object’s
value to the Output window. Sometimes you do not want to send information to the Output
window, so you can work with trace listeners and redirect the debugger output to text files, XML
files, or the Windows’ event log.

www . dbooks . org

https://msdn.microsoft.com/en-us/library/76dt1k3h(v=vs.110).aspx
https://www.dbooks.org/

Chapter 5 XAML Debugging

Without a doubt, the most important part of the WPF development platform is the user interface.
With WPF, you can create powerful, beautiful, and dynamic applications with a modern user
interface. While designing, developing, and testing your apps’ user interface, you might need to
inspect the behavior of controls, styles, and templates at runtime, or you might need to discover
subtle bugs, especially with data-binding. Before Visual Studio 2015, every time you needed to
make an edit to your XAML, you had to break the application execution. Investigating the visual
tree at runtime was impossible unless you used external tools. Because investigating XAML and
the visual tree at runtime can be very important, Microsoft improved the debugging experience
in Visual Studio 2015, offering tools that make it easier to understand if the Ul is behaving as
expected and also easier to make changes while the app is running.

Note: This chapter requires at least Visual Studio 2015 Update 2. As of writing
this, Microsoft has released Update 3, which you can download at
https://go.microsoft.com/fwlink/?Linkld=691129.

WPF Trace

WPF Trace is a very useful but often forgotten tool. At debugging time, WPF Trace sends
diagnostic information to the Output window based on varying verbosity levels. For example, if
your XAML has invalid data-bindings, these are reported in the Output window, which makes
investigating (and solving) problems easier. WPF Trace is not limited to XAML and data-binding;
it actually includes some tracing scenarios related to XAML, but it offers more. WPF Trace can
be enabled by selecting Tools, Options, Debugging, Output Window, then scrolling to the
WPF Trace Settings section, as you can see in Figure 27.

46

https://go.microsoft.com/fwlink/?LinkId=691129

a7

Options .
Search Qptions (Ctri+E) Process Exit Messages On ~
Startup Step Filtering Messages On
Synchronized Settings Thread Exit Messages On
Tabs and Windows WPF Trace Settings
Task List Animation Off
Web Browser Data Binding Warning
I Projects and Solutions Dependency Properties Off
I Source Control Documents Off
[Text Editor Freezable Off
4 Debugging HWMD hosting Off
General Markup Off
Just-In-Time Mame Scope OFF
Output Window Resource Dictionaries Off
Symbols Routed Events Off -
[- IntelliTrace
[+ Performance Tools All debug output
I Analysis Services Tabular Designers Determines whether debug DLItFIUt .is written to the cutput window. Turning this off
b Azure Data Lake . affects all tracing from the application.
Cancel

Figure 27: Displaying WPF Trace Settings

By default, tracing is disabled for all scenarios except for Data Binding, whose default level is
Warning. This means that warning messages will be shown in the Output window if data-binding
is not working properly. To understand how tracing works, let's consider an invalid data-binding,
which is probably the most common situation for using the tool. Suppose, for example, you have
the ListBox control shown in Code Listing 8, which is used to display a list of active processes
on your machine.

Code Listing 8

<ListBox Name="FilelListBox" ItemsSource="{Binding}">
<ListBox.ItemTemplate>

<DataTemplate>
<!-- Binding target name is intentionally wrong -->
<TextBlock Text="{Binding ProcesName}"/>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

As you can see, the binding target name is wrong (which is intentional for demonstration
purposes); in fact, it should be ProcessName, not ProcesName. The data source for the ListBox
could be assigned as follows:

FileListBox.ItemsSource =
System.Diagnostics.Process.GetProcesses().AsEnumerable();

www . dbooks . org

https://www.dbooks.org/

When you run this code, the Output window will show a warning message (see Figure 28)
explaining that there is a data-binding error because a property called ProcesName was not
found on the bound object called Process.

Output =
Show output from: Debug - | | | = | ta

'WpfTracingDemo.vshost.exe' (CLR v4.8.38319: WpfTracingDemo.vshost.exe): Loaded 'C:\Windows\assembly\GAC\Microsoft.Vis.a
'WpfTracingDemo.vshost.exe' (CLR v4.8.38319: WpfTracingDemo.vshost.exe): Loaded 'C:\Windows'Microsoft.Net\assembly'\GA(
'WpfTracinghemo.vshost.exe' (CLR v4.8.38319: WpfTracingDemo.vshost.exe): Loaded 'C:\Windows'\Microsoft.Net\assembly\GA(
Eystem.Windows.Data Error: 4@ : BindingExpression path error: 'ProcesName’ property not found on 'object' ''Process' |

-
>
Autos Locals Watch 1 Find Symbol R... Package Mana... Call Stack Breakpoints Exception Setti.. Command Wi... Immediate Wi... Output

Figure 28: Displaying WPF Trace Settings

= Tip: Scroll the Output window horizontally to see the full diagnostic message.

WPF Trace tells you that the supplied binding source (the property name) has not been found
on the bound object (Process, in this case). This will help you detect and fix the problem
immediately. You can get even more detailed information by changing the trace level from
Warning to Verbose.

|“
Q Note: You might expect that setting the trace level to Error would break the
application execution. Actually, setting the trace level to Error will only change the
way the diagnostic information is presented—it will not break the execution.

Though WPF Trace can be used in a number of scenarios, without a doubt it is particularly
useful with invalid data-binding and animation bindings.

Ul debugging tools

Visual Studio 2015 has dramatically improved the debugging experience for WPF (and
Universal Windows Platform, as well) by introducing a number of tools that make it easy to
investigate and change the behavior of the user interface at runtime. This section describes new
tool windows introduced with Visual Studio 2015, Live Visual Tree and Live Property Explorer,
and the In-App Menu, available with Visual Studio 2015 Update 2 and higher.

Live Visual Tree and Live Property Explorer

|“
Q Note: In order to fully discuss the Ul debugging tools, make sure you go to Tools,
Options, Debugging, then select an option called “Preview selected elements in Live
Visual Tree.”

48

49

Visual Studio 2015 introduced two new tool windows to the WPF debugging experience: Live
Visual Tree and Live Property Explorer. Live Visual Tree shows the full visual tree of the user
interface; when you select an element in the visual tree view, Live Property Explorer shows the
full list of property values for the selected item and allows changing property values at runtime
(if supported), so that you can immediately see how the user interface changes. Both windows
should be automatically visible when you begin debugging a WPF application. If not, you can
pick them up from Debug, Windows. Figure 29 shows Live Visual Tree and Live Property
Explorer over the SampleWpf application we previously created.

w SampleWpf (Running) - Microsoft Visual Studic ¥ & | QuickLaunch (Ctrl+Q) L - o X
File Edit View Telerik Project Build Debug Team Datalake Tools Architecture Test Analyze Window Help Alessandro Del Sole
ie-o|F-uM|?-C | Continve - | M im0 m O] T | ¥ JEIE
Process: [7420] SampleWpf.vshost.exe - Lifecycle Events ~ Thread: :
Live Visual Tree > I x Live Property Explorer > o x E
OFOR=ad %¢ e
=3
Search Live Visual Tree (Alt+a) P Name | BrowseButton ’-—"
4 ¢ [MainWindow] B 41) - Type Button &
4 H [Border] (40) Search Properties (Alt+d) pe)
4 © [AdornerDecorator] (39) b Accessibility "
4 IF [ContentPresenter] 37 &~
J— Fs
2 # [Grd] B (36) 4 Local MainWindow.xaml
4 B [StackPanel] B (24) Content |Browse |
[T [TextBlock] B
[] - Height [30 |
i = FileMNameBox [TextBox] B (10) IE
b O BrowseButton [Button] Eh (3) o Rendersize |1DD'30 |
© O OpenButton [Button] E @ = | Width |1DD |
b O FeelingluckyButton [Button] Bl (3) s New
a ContentBox [TextBox] B (10) 4 Style (ButtonBase Default)
4 H border [Border] (9) " I Background SolidColorBrush
4 EE PART_ContentHost [ScrollViewer] 8 - I BorderBrush SolidColorBrush
A E [Grid (7
[Grid] o BorderThickness 11,1
O [Rectangle]
b © [ScrollContentPresenter] @ FocusVisualStyle System.Windows.Style
2 [ScrollBar] P Foreground DynamicResourceExtension
=
S [ScrollBar] i HerizontalContentAlignm... -
[RUQUETEIRIESY SOL Server Object Explorer SN N ST LI (R ST RN Live Property Explorer

1 Publish «

Figure 29: Live Visual Tree and Live Property Explorer

As you can see, selecting an item in the visual tree will cause Live Property Explorer to display
properties and their values in that exact moment of the application lifecycle. Notice that some
property values can be changed at runtime so that you can immediately see how the user
interface reflects those changes. For instance, Figure 29 shows how you can change the value
for the button’s Content property with a new string, and you will immediately see the new value
in the user interface while running. When you select an element in the Live Visual Tree, the
corresponding line of code is selected in the XAML editor (you can also achieve this by right-
clicking the element, then selecting View Source). Before Visual Studio 2015 Update 2,
interacting with Live Visual Tree and Live Property Explorer required you to move your focus
from the active window to Visual Studio. As we’ll see in the next section, this situation has been
improved.

www . dbooks . org

https://www.dbooks.org/

XAML In-App Menu

Visual Studio 2015 Update 2 introduced the In-App Menu, a tool that makes it easier to inspect
the behavior of your XAML at runtime. This tool consists of a pane that appears over a window
at debugging time and provides a number of buttons that will be discussed shortly. Figure 30
shows the In-App Menu.

Tip: The In-App Menu is enabled by default in XAML-based platforms such as WPF
and Universal Windows Platform. If you want to disable it, go to Tools, Options,
Debugging, then unselect the “Show runtime tools in application” option.

B " MainWindow — O *

Enter file name: E:} K_I @ [l_.ﬂ

Browse Open

Figure 30: The In-App Menu Expanded
The In-App Menu can certainly be minimized, which helps us avoid overlaying parts of the Ul,
but for now leave it open. The menu has four buttons (described from left to right in the next
paragraphs).
Go to Live Visual Tree

As the name implies, this button simply opens the Live Visual Tree tool window. | suggest you
dock the Live Visual Tree window so that you will immediately see the result of the next buttons.

Enable Selection
This button allows you to select controls on the user interface. When you select a control, this is

surrounded with a red border, and the Live Visual Tree window automatically shows the
selected control within the visual tree. Figure 31 shows an example.

50

51

Breakpoints Exception Settings Command Window

Ready

Immediate Window

Dq SampleWpf (Running) - Microsoft Visual Studio
File Edit View Telerk Project Build Debug Team Tools Arc
- S N ‘ o =
: Process: [12108] SampleWpf.vshost.exe - Lifecycle Events ~ Thread!
Live Visual Tree ARl MainWindow.xam
OFORE =8 #¢ [€¥] Samplewpf
Search Live Visual Tree (Alt+d) L 29
4 [F [ContentPresenter] (
4 g (Grid) @ (32) 30
b B [StackPanel] B (20) 31
4 @& ContentBox [TextBox] Bl (10) 32
2 H border [Border] (9) 33
4 BB PART_ContentHost [Scroll (8)
- perell @ 34
4 [Grid] G
35
=] [Rectangle] 36
2 ¥ [ScrollContentPrese (3)
b <> [TextBoxView] (1) 37
<» [AdornerLayer]
e 38
4 3
) 20
(NTRVCIEIRIEEN SO Server Object Explorer 165% ~ 4

Qutput

hitecture Test

Continue ~ | & ;:

MainWindow v

B! MainWindow

Enter file name:

Analyze

Window

nmd|

Y & | Quick Launch (Ctrl+ ()
Help
| %, Code Map |7%=:

Stack Frame:

P - 0

Alessandro Del Sole

‘ "

o # lect sender, Re ~

1l e

T

Browse Open -

bject

his.Fi

OpenFi

Watch 1

Autos Locals

Privatc SUrinng VPl 1oy sl .'Lllg“ -FileNa

!

Find Results 1

Find Symbol Results

Figure 31: Enabling Selection in the In-App Menu

Display Layout Adornments

E:
B
» z
T Publish =

x

=
=
o)
=
>
-
X
o)

This button allows you to highlight the surface of a control. If combined with Enable Selection, a
control is both highlighted and selected. This is useful for understanding the delimiters of a
control. Figure 32 shows an example based on the combination of both buttons.

Dd SampleWpf (Running) - Microsoft Visual Studio
File Edit Telerik Project Build Debug
- - W u’i = -

% Process: |[12108] SampleWpf.vshost.exe -

View

Team

Lifecycle Events ~ Thread:

Tools

Live Visual Tree
OFO& =08 5¢
Search Live Visual Tree (Alt+0)
2 [ScrollBar]
8 [ScrollBar]
b &3 BrowseButton [Button] E} 3)
b & OpenButton [Button] Bl 3)
4 @ ContentBox [TextBox] Bl (10)
2 H border [Border] 9)
4 [PART_ContentHost [Scroll (8)
4 [Grid] m
O [Rectangle]
4 4 [ScrollContentPrese (3)

b < [TextBoxView] (1)

4 b

[MERYETETRIEEY SOL Server Object Explorer

Breakpoints Exception Settings Command Window

Ready

Immediate Window

SampleWpf
29

30
31
32
33
34
35
36
37

Architecture Test

Continue ~ | & =:

Enter file name:

38

Analyze

Window

nmed

Y &2 | Quick Launch (Ctr+Q)
Help
‘ %% Code Map ‘ 5 _g

Stack Frame:

P - 0O

Alessandro Del Sole

bject
his.Fi

OpenFi

20
4

QOutput

Autos Locals Watch 1

PrIvacte SCT I UPSTIT IIT(SCr g

I

Find Results 1

Find Symbol Results

Figure 32: Displaying Layout Adornments

4 Publish

Jasojdx3 uc

1210]dx7 wWeaj

1a10/dx3 Apadoud aan

www . dbooks . org

https://www.dbooks.org/

Track Focused Element

The Track Focused Element is similar to Enable Selection in that it allows selecting a control
and reflects the selection in Live Visual Tree, but it only allows selecting controls that can
receive focus (for instance, TextBox controls).

XAML Edit and Continue

The new release of Visual Studio includes a new feature known as XAML Edit and Continue.
This feature allows editing some property values in your XAML at debugging time, with changes
immediately reflected in the user interface of your application. For instance, you might want to
see how changing a style or control template affects the user interface while running.

Chapter summary

With WPF, debugging means not only investigating code for bugs and checking for errors. It
also means checking if the user interface is designed and behaves as expected, which involves
analyzing controls and XAML at debugging time. Visual Studio 2015 and 2017 have specific
tools that make this task a comfortable experience. With the WPF Trace tool, you can easily
detect errors in your XAML code, especially for data-binding. The Live Visual Tree and Live
Property Explorer tool windows represent the visual tree and change Ul elements’ property
values, where supported. An easier interaction with both windows is possible through the new
In-App Menu, which provides buttons that easily map controls to XAML code and to visual tree
elements.

52

53

Chapter 6 Analyzing the Ul Performances

WPF has support for multimedia, animations, and documents. It also provides a very powerful
data-binding engine with built-in virtualization for long lists of data. If your application works with
hundreds of Ul elements, including animations, multimedia, and data-bound controls, you must
be aware of possible performance issues. The Ul might slow down, and perceived
performances might become tedious. Fortunately, Visual Studio has an interesting tool called
Application Timeline that allows you to analyze the user interface performances, thereby making
it easier to improve the user experience.

Preparing an example

Our previous sample application is very simple, and its user interface cannot have significant
performance issues. For this reason, it's a good idea to prepare a window that does more
intensive work. First, in Solution Explorer, right-click the project name and select Add, Window.
When the Add New Item dialog appears, enter ImageRenderingWindow.xaml as the name. This
window’s goal is to display 1000 images inside a ListBox in order to analyze how the WPF
rendering engine works. You need only this control with a simple data template that shows the
image and its file name. Code Listing 9 shows the full XAML for the new window.

Code Listing 9

<Window x:Class="SampleWpf.ImageRenderingWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:local="clr-namespace:SampleWpf"
mc:Ignorable="d"
Title="ImageRenderingWindow" Height="300" Width="300">
<Grid>
<ListBox Name="ImagelListBox" ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Vertical">
<Image Width="320" Height="240"
Source="{Binding ImagePath}"/>
<TextBlock Text="{Binding ImageName}" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>
</Window>

www . dbooks . org

https://www.dbooks.org/

The data template for the ListBox expects a class with two properties—one for the image path
and one for the image file name. The class is called ImageFile and is defined in Code Listing
10 together with a collection called ImageFileCollection.

Code Listing 10

public class ImageFile

{
public Uri ImagePath { get; set; }

public string ImageName { get; set; }
}

public class ImageFileCollection: ObservableCollection<ImageFile>

{
public ImageFileCollection()

{
for (int i=0; i <= 1000; i++)
{
// Replace with a file you have on your pc.
this.Add(new ImageFile { ImageName="Beach.jpg",
ImagePath = new Uri("Beach.jpg",UriKind.Relative) });
¥
b

For demonstration purposes only, the ImageFileCollection class is populated with 1000
instances of the same image in order to cause some overhead. Now make the new window the
startup object for the application by editing the StartupUri attribute of the Application node
in the App.xaml file as follows:

StartupUri="ImageRenderingWindow.xaml"

Next, edit the new Window’s constructor as shown in Code Listing 11 in order to assign a new
ImageFileCollection as the data source.

Code Listing 11

public ImageRenderingWindow()

{

InitializeComponent();
this.DataContext = new ImageFileCollection();

When ready, launch the application. It should look like in Figure 33.

54

B ' ImageRenderingWindow = O X
L —] N

Beach.jpg

Beach.jpg

Beach.jpg

Figure 33: Sample App Showing 1000 Instances of Image

s

www . dbooks . org

https://www.dbooks.org/

Next, let's examine how to analyze the Ul performance with the integrated Visual Studio tools.

The Application Timeline tool

Visual Studio 2015 brings to WPF a diagnostic tool called the XAML Ul Responsiveness Tool. It
was originally developed for Windows Store apps and was introduced in Visual Studio 2013; it is
certainly still available in version 2017. Now this tool is called Application Timeline (or, more
simply, Timeline), and you can leverage it with your WPF applications. The Timeline tool
analyzes the application’s behavior in order to help you detect where it spends time. Though
this tool can detect events such as (but not limited to) startup, disk I/O, and rendering the Ul
(including thread utilization), its focus is investigating the Ul behavior in more detail. In order to
understand how it works, press ALT+F2 (or Debug, Performance Profiler) to show the so-
called Diagnostics Hub, which contains a list of performance analysis tools, then select
Application Timeline (see Figure 34).

= Tip: If it looks disabled, make sure you first unselect any other diagnostic tool.

w SampleWpf - Microsoft Visual Studio Y & | Quick Launch (Ctrl+) P - O x

File Edit View Telerik Project Build Debug Team Tools VisualSVN Architecture Test Infragistics Analyze Aleszandro Del Sole = ‘
Window Help

G- | -2 d‘| - = | Release - Any CPU ~| SampleWpf -~ P Start v| B ; M~% % -

Report20160714-2201.diagsession + X [EhSeTyl] ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml

Analysis Target

y J210|dx3 uonnjos

Startup Project

@ SampleWpf

Change
Target ™

Available Tools Show all tools

¥oq|oo] Jai0)dxg ;aMRS 1aZIjENSI) Kejuks

Application Timeline [CPU Usage
Examine where time is spent in your application. Useful when See where the CPU is spending time executing your code.
troubleshooting issues like low frame rate Useful when the CPU is the performance bottleneck

[GPU Usage &t Memaory Usage

Exarnine GPU usage in your DirectX application. Useful to Investigate application memory to find issues such as memory
determine whether the CPU or GPU is the performance leaks
bottleneck

Performance Wizard

saipadold suonedpjop J2i0jdx wea|] maip sse|

CPU Sampling, Instrumentation, .NET Memory allocation, and
Resource Contention

8
i
w
m
2
[
=
m
a2
a
o
a
o
m
i
o
@

sa10)dx3 [PROW TINN

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish -

Figure 34: Selecting the Application Timeline

57

Because the Timeline is a specialized profiler, for accurate results you should first change the
output configuration for your project from Debug to Release. When ready, click Start so that the
application will start with an instance of the profiler attached. When the application has started
and all images have been loaded, play a bit with the user interface—for example, resize the
window or scroll the image list. When your application has been working for a while in different
situations, click the Stop Collection hyperlink in Visual Studio. After a few seconds, you will get
a very detailed visual report (see Figure 35 for an example).

w SampleWpf - Microsoft Visual Studic ¥ | & | Quick Launch (Ctrl+Q) P - B x
File Edit View Telerik Project Build Debug Team Tools Architecture Test Apalyze Window Help Alessandro Del Sole - ﬂ
e - | iﬁ -2 ¥] f | - = | Release -~ Any CPU - SampleWpf -~ | Start -| -

Report20160713-1544.diagsession” & > ELLEEH] ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml|
&, = i
Diagnostics session: 14,732 seconds
| 25s 755 10s 12,55 |

4 Ul thread utilization (%) MParsing MLayout MRender /0 0 App Code [Xaml Other
100 100

sjoo] ai3soubeig

saipadoig

4 Visual throughput (FPS) Composition Thread U Thread

¥oqoo] Jaiojdig samas smiensip xejuds (B

y J1=10(dx3 uonnjog

Timeline details Sort by: | Start time ﬂ l'E". Y- ﬁ‘
Event name
Application Startup 39595 ms Duration (total): 4,69 ms
| 4 Parsing (ImageRenderingWindow) | 38,17 ms (6,32 ms) [3] Duration (self): 0,02 ms
| Parsing (imagerenderingwindow) 1 31,85 ms [4]
| Render 1 0,034 ms
| 4 Layout (17) I 5.41 ms (0,041 ms)
| 4 ImageRenderingWindow (16) 5,37 ms (0,54 ms)
| 4 Border (15) 4,83 ms (0,024 ms)
| 4 AdornerDecorator (14) 4.8 ms (0,021 ms)
|
|

Start time: 3204 ms
Thread: Ul thread

8
=
o
m
3
]
=
m
2
g
m
3
o
g
|
3
3
=

Class: System.Windows...
Count: 1

suonesyiop Jiojdxg wea) maip sse|

Changes were made to this element that

Ad Lay: 00
ornerLayer WJ1ms required the size and/or position of this

4 ContentPresenter (12) 477 ms {0,085 ms) element te be computed.
4 |mageListBox (10) 467 ms (0,31 ms)
4 Bd(9) 4,36 ms (0,074 ms)
4 ScrollViewer (8) 428 ms (2.8 ms)

1a101dx3 RPRow TN

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 4 Publish «
Figure 35: Report Generated by the Application Timeline

The report consists of four main areas: the Diagnostic session, the Ul thread utilization, the
Visual throughput (FPS), and the Timeline details. Let’s discuss each more thoroughly.

The Diagnostic session
The Diagnostic session report shows information about the duration of the diagnostic session.
You can use the black markers to analyze a specific interval of time during the application

lifetime. When you select a specific interval, the other areas will automatically show diagnostic
information for that interval.

www . dbooks . org

https://www.dbooks.org/

Ul thread utilization

The Ul thread utilization section gives a percentage for how the Ul thread has been exploited by
different tasks managed by the runtime. You can understand how many resources have been
consumed by the XAML parser (blue), how many consumed in rendering the user interface
(dark orange), how many consumed in executing the app code (light green), how many
consumed in disk I/O (light blue), and how many consumed in other tasks related to XAML (not
parsing). In conjunction with the Diagnostic session report, this can be very useful for
understanding which areas of your code have the most negative impact on the overall
performance at a specified interval of time in the application lifetime. For instance, in Figure 35
you will see there is an important impact in rendering the layout at 7.5 seconds after the
application startup, which is the point at which 1000 images were rendered.

Visual throughput (FPS)

This section shows how many frames per second (FPS) have been rendered during the
application lifecycle. For timing, you can take the Diagnostic session as a reference. This tool is
very straightforward—it can show frames in both the Ul thread and the composition thread. If
you pass the mouse pointer over the graphic, you will see a tooltip showing frames per second
for both threads at the given time.

Note: If you are not familiar with the composition thread, it is a companion thread
for the Ul thread, in that it does some work that should otherwise be done by the Ul
thread. The composition thread is normally responsible for combining graphic
textures and sending them to the GPU for rendering. This is all managed by the
runtime; by invoking the composition thread, the runtime can make an app stay much
more responsive and you, the developer, need not do any additional work manually.

Timeline details

At the bottom of the report, you will find the Timeline details, which provide further information
about events in the application lifecycle and about Ul elements involved in such events. More
specifically, you can see a list of events and Ul elements. For each, you can see the time in
milliseconds. For example, if you consider Figure 35, you can see how the Application Startup
event has required 395.95 milliseconds. Some events, such as Layout, are split into multiple
parts, which is typical because rendering the layout requires two different threads (Ul and
Composition) that run asynchronously. This means each node can be expanded to get more
information. When you expand a Layout node, you also see the visual tree of Ul elements
involved in that particular event.

These Ul elements can be expanded to show nested controls and types. When you click an
event or object, you will also see detailed information on the right side of the report, including
the number of instances of an object, the containing .NET type, and the time required to render
a Ul element. For example, if you again consider Figure 35, you'll see a description of a Grid on
the right side of the report that is currently selected in the list of Ul elements; such a description
also shows how much time it took to render this Grid in milliseconds, the thread that was
responsible for drawing the element (the Ul thread in this case), and the count, which is one

58

59

instance. Having the option to discover how many instances of an object have been created will
help you understand which Ul elements might negatively impact the overall Ul performance.

Changing the analysis target

Analysis tools listed in the Diagnostics Hub can run against a number of possible targets. If you
look at Figure 34, you'll see a button called Change Target. Click this button and you will see a
list of possible analysis targets, such as a running or installed Windows Store app, an existing
.exe file, and even an ASP.NET application running on 1IS (see Figure 36).

w SampleWpf - Microsoft Visual Studio % & |Quick Launch [Ctrl+Q) P - O x
File Edit View Telerik Project Build Debug Team Tools VisualSVM Architecture Test Infragistics Apalyze Alessandro Del Sole = ﬂ
Window Help

fie-0| -2 @ 9 - & | Release - AnyCPU - SampleWpf s M _iR-wR 2.

Report20160714-2201.diagsession & > Nl

ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml

> Analysis Target

y Jsaio|dx3 uonnjos

Startup Project

@ SampleWpf

Change
Target ™

w

&
=1
ES
=
=
=
2
5
2
m
v
m
2
z
|
5

Startup Project
Use the startup project
Show all tools

Running App...

Attach to a running Windows Store App [CPU Usage
-application. Useful when See where the CPU is spending time executing your code.
Installed App... 1e rate Useful when the CPU is the performance bottleneck

Launch an installed Windows Store App

Memory Usage

Investigate application memory to find issues such as memory
is the performance leaks

Internet Explorer on Windows Phone... application. Useful to
Browse to a web page on a Windows Phone

Executable
Launch an executable file [exe)

saipadoly suopedyop Jai0jdxg wea] maip sse|

ASENET ET Memery allocation, and

Launch an ASP.NET application running on II5

@ %2800

1310]

12101d%3 PROW TN

Error List Breakpoints

Ready

Qutput Find Symbol Results Azure App Service Activity Package Manager Console

 Publish «
Figure 36: Possible Analysis Targets

The Application Timeline can only run against the first three targets: Startup Project, Running
App, and Installed App. Both Running App and Installed App refer to Windows Store apps, not
WPF applications. More precisely, note that if you select Installed App, you will be prompted
with a list of installed Windows Store apps on your machine (which includes Universal Windows
apps), as you can see in Figure 37.

www . dbooks . org

https://www.dbooks.org/

Select Installed App Package ? et

Local Machine b

App packages installed for the current session

Search o]

Candy Crush Soda Saga
] Package Full Mame: king.com.CandyCrush5SodaSaga_1.68.300.0_x26__kggvnymyfus32
3—:?“3@ Wersion: 1.68.500.0

Canon Inkjet Print Utility
Package Full Mame: 34791E63.CanoninkjetPrintUtility_2.6.0.5_neutral__6e5tt8cgb93ep
Version: 2.6.0.5

LINE
Package Full Name: MAVER.LINEwing 5.2.1.0_xb4 8ptj331gd3tyt

Version: 5.2.1.0

Lync
ub Package Full Mame: Microsoft.LyncMX_16.0.1929.1162_x64_ Swekyb3d3bbwe
Version: 16.0.1929.1162

L= \ficrosoft Solitaire Collection
@1 Package Full Mame: Microsoft.MicrosoftSolitaireCollection_3.10.6302.0_x64_ Bwekyb3dEbbwe
Wersion: 3.10,6302.0

Microsoft.3 DBuilder_11.1.8.0_x64_ 8wekyb3d8bbwe

Package Full Name: Microsoft.30Builder_11.1.8.0_x64_ Swekyb3dibbwe
Yersion: 11.1.8.0

Microsoft. AAD.BrokerPlugin_1000.10586.0.0_neutral_neutral_cw5n1h2toyewy
Package Full Mame: Microsoft. AAD.BrokerPlugin_1000.10586.0.0_neutral_neutral_cw3nTh2borew:

. Version: 1000.10586.0.0 “

| Refresh ||| Select || Cancel |

Figure 37: Selecting an Installed Windows Store App as the Analysis Target

Simply select an application, click Select, then start the diagnostic session with the Application
Timeline.

Chapter summary

Performance is one of the most important aspects of any professional application. You can build
a beautiful application, but if it is slow or unresponsive, customers and users will be very
dissatisfied. This is even more important with WPF applications in which the user interface
natively supports media, documents, and XAML data-binding. In order to help you analyze the
performance of the user interface in your applications, Visual Studio 2015 ships with a tool
called Application Timeline that analyzes events such as startup and disk I/O but focuses on

60|_

61

how much time it takes to render the application’s user interface, which will allow you to
understand which elements are consuming which resources at a particular point in the
application lifecycle. By analyzing the report produced by Timeline, you will be able to
understand which parts of the user interface need to be restructured in order to improve the
customer experience.

www . dbooks . org

https://www.dbooks.org/

Chapter 7 Analyzing the Application
Performances

We have seen how the Application Timeline tool provides a convenient way to analyze the
behavior of the user interface of your application during its lifecycle. This is particularly
important, especially for perceived performance, but an application is not just user interface.
You might have a simple Ul with code that works with hundreds of objects but that could cause
memory leaks, or your application might perform CPU-intensive work. In such cases, analyzing
memory allocation and CPU utilization is both useful and important. This chapter provides
guidance on built-in profiling tools in Visual Studio that will help you solve problems related to
memory allocation and CPU utilization.

Investigating memory allocation

Understanding how the application uses memory is one of the most important steps in building
performant applications. Visual Studio provides an analysis tool called Memory Usage you can
find in the Diagnostics Hub and that you can see by pressing Alt+F2 (or Debug, Performance
Profiler). Figure 38 shows how to enable this tool.

62

w SampleWpf - Microsoft Visual Studic % & | Quick Launch (Ctrl+Q) P - O x
File Edit View Telek Project Build Debug Team Jools VisualSVMN Architecture Test Infragistics Analyze Alessandro Del Sole - H
Window Help

0 - | -2 |f| - = | Release ~ AnyCPU - SampleWpf - P Start v| F_oiM-ta _

S
5

Report20160714-2201.diagsession + ¢ ENLEETG] ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml

onn|

Analysis Target

31dig uic

13TI|ENSIA XEJUA

EE3:

Startup Project

FI{’E} SampleWpf

Change
Target ™

35

y1dg 12
ML, 5581

TRRCIL

Available Tools Show all tools

1dig wiea)

EE3:

Application Timeline CPU Usage

Examine where time is spent in your application. Useful when See where the CPU is spending time executing your code.
troubleshooting issues like low frame rate Useful when the CPU is the performance bottleneck

GPU Usage Memary Usage &F

Examine GPU usage in your DirectX application. Useful to Investigate application memory to find issues such as memory

determine whether the CPU or GPU is the performance leaks
bottleneck

Tos
N

S

0 J3n3s
SLIOIFEIIHIAC

0ig

=y
m
n
(1]
ud

Performance Wizard

sa1pade

CPU Sampling, Instrumnentation, .NET Memory allocation, and
Resource Contention

jdxg 353] 42

12ic

O TAIN

y|dig |2pe

EE3:

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish =
Figure 38: Selecting Memory Usage as the Analysis Tool
Make sure the Release configuration is selected, then click Start to begin a diagnostic session.

After a few seconds, you will see that Visual Studio shows the Live Graph and immediately
begins reporting the memory usage in MB during the entire application lifecycle (see Figure 39).

www . dbooks . org

https://www.dbooks.org/

w SampleWpf - Microsoft Visual Studic % & | Quick Launch (Ctrl+Q) P - O

File Edit View Telek Project Build Debug Team Jools VisualSVMN Architecture Test Infragistics Analyze Alessandro Del Sole - ﬂ

Window Help
S0 - | -2 |f| - - | Release ~ Any CPU - SampleWpf - P Start v| B ; M~ %W

Report20160714-2201.diagsession + ¢ ENLEETG] ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml
W Stop | IG5 Take Snapshot <f” Force GC
Diagnostics session: 9 seconds ® Lpp lifecycle mark W Usermark W GC completed MdMerged mark
10s 30s 40s 50s

4 Memory (MB) Process Memory Usage (Private Bytes)
62 62

xogjoo] Jasojchq ;MRS JaZIjENSIp XeJUAS

Take snapshot

9
i
w
&
2
[
A=
m
A
o
o
o
o
m
i
in
o
m

1N

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready # Publish «
Figure 39: Memory Usage Reporting Memory Usage

This kind of report can be useful for determining if memory usage increases or decreases, but
the great benefit of this tool is its ability to take snapshots of the memory at a specific point in
time. You make this happen by clicking Take Snapshot. Each snapshot contains information
about object instances and managed heap size, and, by comparing that shot with a previous
shapshot, we can see if the amount of used memory has increased or decreased. Figure 40
shows the result of capturing two snapshots.

x

y 1a1o)dxg uonnjog

suoiedyion JRiojdig wes) maip sse|

saipadoly

64

w SampleWpf - Microsoft Visual Studic % & | Quick Launch (Ctrl+Q) P - O x

File Edit View Telek Project Build Debug Team Jools VisualSVMN Architecture Test Infragistics Analyze Alessandro Del Sole - ﬂ
Window Help

S0 - | -2 W |.F| - = | Release ~ AnyCPU - SampleWpf M Startv| B ; M~ %W

Report20160714-2201.diagsession” -+ ¢ ELLFETG ImageRenderingWindow.xaml.cs ImageRenderingWindow.xaml

a = p
N, = ul

Diagnostics session: 41,924 seconds & Lpp lifecycle mark W Usermark W GC completed MdMerged mark
I v 30s 405 I

4 Memory (MB) Process Memory Usage (Private Bytes)
73 73

y 1a1o)dxg uonnjog

o] J210|dKg ;AmRS JITIENSIA XEJUAS

Snapshot #1 (22:18:36) Snapshot #2 (22:18:50)

1,07 MB 24,394 objects 12 MB 27.988 objects
Baseling Baseline +1302 KE T +3.504

saipadold suongedygop J2i0idxg wea) mai sse|

9
i
0
o
2
3
A=
m
a
a1
o
m
4
m
in
m

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready A Publish «
Figure 40: Memory Usage Again Reporting Memory Used
The following is a list of important considerations:

¢ The Diagnostic session area reports the session duration and information such as
application events and invocations to the Garbage Collector. Figure 40 shows how a
garbage collection, which is indicated by a red, triangular mark, has been performed five
times. If you hover over a mark with the mouse, you will get a tooltip explaining the
reason for the garbage collection. The tooltip is self-explanatory and makes it easier to
understand the reason for each garbage collection. Too many garbage collections might
be a symptom of bad memory usage.

e Every snapshot shows the size of the managed heap on the left and the number of
allocated objects on the right. In the case of multiple snapshots, they also show the
difference between the sizes of the managed heap and between the numbers of object
instances.

¢ You can click the managed heap size and the list of objects in order to get detailed
information, and you can compare snapshots visually.

Let’s discuss this last point in detail.

www . dbooks . org

https://www.dbooks.org/

Investigating the managed heap size

By clicking the managed heap size, you get a representation of the heap size at the time the
shapshot was taken, as shown in Figure 41. This view focuses on the order in which objects
were allocated rather than their count.

w SampleWpf - Microsoft Visual Studio ¥ & | Quick Launch (Ctrl+Q) P - B x

File Edit View Telerik Project Build Debug Team Tools VisualSVN Architecture Test Infragistics Apalyze Window AIessandroDeISoIe'ﬂ
Help

e - | i R HH| - ~ | Release - Any CPU = SampleWpf i Startv| 5 ; M- 4% % -

Snapshot #2 (Repor...4-2201.diagsession) + X [EdeyenlEipa Rkl IR EE0 Appxaml ImageRenderingWindow.xaml.cs

Managed Heap

O view Settings filters are applied (Just My Code, Collapse Small Objects)

y 1au0)dx3 uoinjog

Object Type Count Size (Bytes) Inclusive Size (Bytes) + Module
[» Listltem 306 7.344 547440 PresentationCore.dll
[» Request 306 6.120 471.240 PresentationCaredll
[» Hashtable 90 115.600 394276 mscorlibdll
[SampleWpf.App 1 444 209.556 SampleWpfexe
[» SampleWpflmageRenderingWindow 1 4,268 208,772 SampleWpfexe
[» DependencyProperty 70.240 128,392 WindowsBasedll
[» GlyphTypeface 656 114,500 PresentationCoredll
[MS.Internal.FontCache.CachedTypeface 32 113936 PresentationCore.dll
[» MS.Internal.FontCache.FontFacelayoutinfo 1134352 113452 PresentationCoredll
[» ListBox 21.360 112,568 PresentationFramewark.dll
[» ControlTemplate 46.568 02344 PresentationFramework.dll

¥ogjoo] Jsasojdig aaag sazensip xejuds

[» ResourceDicticnaries 92 89.260 PresentationFramework.dll

saipadold suonedynop Riojdig wea) maip sse|

[» ResourceDicticnary 4,788 89.768 PresentationFramework.dll
L4

Paths to Root | Referenced Types

9
=
”
m
2
g
K=
m
a
a
jy
=
o
7
.
=
]

Object Type Reference Count Module
4 Listltem PresentationCore.dll
Listltem [Cycle Detected] PresentationCore.dll
[> AdornerLayer PresentationFramewark.dll

[* ContextLayoutManager PresentationCore.dll

Jsai01dxg RO TIAIN

[» SampleWpf.lmageRenderingWindow SampleWpfexe

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish =
Figure 41: Objects in the Managed Heap at the Moment of a Snapshot

Among the other things, you can see that there are 306 objects for the ListItem type. Because
the application is loading a large number of images in a ListBox control, this is certainly an
expected behavior, so we won’t get worried about it. However, this view becomes useful if you
have an unexpected, large number of instantiated objects—by knowing the type, it is easier to
understand if code is creating unnecessary object instances. Every object can be expanded to
get more information about single instances. Notice that the report provides two columns called
Size and Inclusive Size. The Size column shows the actual size of the object, whereas Inclusive
Size aggregates the object size and the size of children objects. At the bottom of the view, there
is a secondary grid called Paths to Root. As the name implies, it shows parent items for the
selected object and the reference count. The Referenced Types tab shows you a list of types for
which the selected object has a reference.

66

Analyzing object count

If you go back to the report and click the list of objects within a snapshot, you will get a view that
is more focused on the object counts (see Figure 42).

w SampleWpf - Microsoft Visual Studio Y & | Quick Launch (Ctrl+) Pl O x

File Edit View Telerik Project Build Debug Team Tools Visual3VN Architecture Test Infragistics Apalyze Window Alessandro Del Sole = ﬂ

Help
< I | -2 m| - = | Release - Any CPU - SampleWpf - » Startv| F ; -4t -

Snapshot #2 (Repor...4-2201.diagsession) = ¢ ellyeln [Fipg Rkl W IEL 22T Appxaml ImageRenderingWindow.xaml.cs

Managed Heap

O view Settings filters are applied (Just My Code, Collapse Small Objects)

Yy J210)dx3 uonnjos

Object Type Count - Size (Bytes) Inclusive Size (Bytes) = Module
X Y O] =
[» ImageFile 1.001 16.048 56.088 SampleWpfexe ~
[» DependencyProperty 494 70.240 128392 WindowsBasedll
[MS.Utility.LargeSertedObjectMap 384 50.288 57192 WindowsBasedll
[» KeyRecord 7 20,136 46,356 PresentationFramework.dll
[» Listltermn 306 7344 547.440 PresentationCoredll
[Request 306 6120 471.240 PresentationCare.dll
[» ConditionalWeakTable<Object, Object> 232 41,152 41,132 mscorlibdll
[+ DictionaryNade 197 27.328 51.188 System.dll
[» FactoryRecord 114 42,344 42,344 System.Configuration.dll
[» List<Object> 13 48120 48120 mscorlibdll
[» MS.Internal. Xaml.Context.ObjectWriterFra... 102 9.796 54,056 System.Xamldll
[» WpfKnownType 04 47.988 47988 PresentationFramewark.dll

x0q|oo] JRiojdxg Jlamas sazijensip Kejuhs

suoiedyion Jauojdig Wea) maip sse|

saipadolg

Paths to Root | Referenced Types

@
i
w
m
32
3
o

=
w
o
a
o
z
4
4]
i1
jy
o

Object Type Reference Count | Module
4 Uri System.dll
[» ImageFile 1.001 SampleWpfexe
[» Image PresentationFramework.dll

[> DictionaryNade System.dll

12101dx3 [RRO TWIN

[» GlyphTypeface PresentationCoredll
Uri [Static variable Uri._defaultUr] System.dll
Uri [Static variable Uri. packageRootUri System.dll

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 4 Publish =

Figure 42: Object Count at Moment of Snapshot

This view gives you an immediate perception of the number of objects allocated at the time of a
shapshot, but the same considerations made in the previous section apply to the objects count
view, t0o. In this specific case, you can see that the number of instantiated objects is consistent
with the large number of images the application loads, so this is no surprise. But if you see a
type that was unexpectedly instantiated too many times, you have a chance to investigate your
code in order to understand where and why it is creating so many instances.

www . dbooks . org

https://www.dbooks.org/

Comparing snapshots

Viewing details of a single snapshot is certainly useful for understanding how memory is used at
a specific point of the application lifecycle, but it is perhaps even more useful for understanding
if there are more or fewer object instances between two snapshots. The Memory Usage tool
provides an option to compare two snapshots very easily. In order to do this, right-click a
shapshot, select Compare To, then pick a snapshot from the list that appears. Figure 43 shows
the result of the comparison between two snapshots | took for the sample application.

w SampleWpf - Microsoft Visual Studio Y & | QuickLaunch (Ctrl+Q) Pl - O x

File Edit View Telerik Project Build Debug Team Tools VisualSVN Architecture Test Infragistics Apalyze Window Alessandro Del Sole = ﬂ
Help
e - | B2 N | - ~ | Release ~ AnyCPU ~ SampleWpf ~ P Start v| A ; -4 % _

Snapshot #1 - Snap...4-2201.diagsession) & X TR il e Sl I IET))| Report20160714-2201.diagsession™

Managed Heap

O view Settings filters are applied (Just My Code, Collapse Small Objects)

y 1ai0)dx3 uoinjos

Object Type Count Count Diff. Size (Bytes) Total Size Diff. (Bytes) Inclusive Size (Bytes) | Inclusive Size Diff. (Byt...
[+ List<AutomationPeer> 13 +13 6156 +6.156 76.584 +
[» ListBoxltemAutomationPeer 1 +11 1.002 +1.002 67,158 ~
[» ImageAutomationPeer +11 1188 +1.188 60.008
_———
[MS.Internal.Automation.ElementProxy +636 57.372
[» DictionaryNode 197 +197 27328 +27.328 51.188
[» ConditionalWeakTable <CObject, Obje... 232 +232 41152 +41.152 411352
[» SampleWpf.App 1 444 0 208.556
[» SampleWpf.lmageRenderingWindow 1 4268 +68 208.772
[» ListBox 1 21.360 112,368
[» Hashtable 90 - 115.600 . 394276
[» List<DependencyObject> 38 26.308 N 74828
|>(Border 19 22,348 . 73.784

¥ogjoo] Jsasojdig samag sazyensiy xejuds (R

suonesyjon Jasojdkg Wea) maip sse|

saipadolg

Paths to Root | Referenced Types

o]
ol
.
m
2
I3
K=
m
a2
a
o
@
o
R
G
o
3

Object Type Reference Count Reference Count Diff. | Module

4 Image PresentationFramewark.dll
[» DoubleCollection 22 +22 PresentationCore.dll
[> ImageAutomationPeer n PresentationFramewark.dll

Image [Cycle Detected] 1 PresentationFramewark.dll

12101dx3 12POIN TN

[» VisualCollection 1 PresentationCoredll

[+ List<DependencyCbject> 1 mscerlib.dll

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready A1 Publish =

Figure 43: Comparing Snapshots

The Count column shows the number of instances of an object in the selected snapshot, while
Count Diff. shows the count difference from the other snapshot. Similarly, Size and Total Size
Diff. show the current total size of all the instances of an object and the difference from the
previous snapshot. Finally, Inclusive Size and Inclusive Size Diff. show the current total size of
the instances of an object plus children objects and also show the difference from the previous
shapshot. This is probably the most important report you can get with Memory Usage because it
allows you to determine if there is a normal or unexpected behavior of your objects at different
intervals during the application lifecycle.

68

a"
él Note: Reports generated by any diagnostic tool can be saved for later analysis
and comparison. Visual Studio stores reports into .diagsession files that can be
reopened later inside the IDE. This is not limited to the Memory Usage tool—it is also
true for all the diagnostic tools described in this chapter.

Analyzing CPU utilization

In some situations, you might want to detect where the CPU is spending time executing your
code. One of the available tools in the Diagnostics Hub is the CPU Usage. As you can see in
Figure 44, this tool makes it easier to analyze the CPU usage in the case of intensive work.

w SampleWpf - Microsoft Visual Studio Y & | Quick Launch (Ctrl+Q) P - B x
File Edit View Telerik Project Build Debug Team Tools VisualSVMN Architecture Test Infragistics Analyze Aleszandro Del Sole ~ ﬂ
Window Help

- | -2 f| v = | Release ~| AnyCPU * SampleWpf + P Start v| - I

Report20160723-1247.diagsession # X ENLEE] ImageRenderingWindow.xaml MainWindow.xaml MainWindow.xaml.cs

saipadolg

Analysis Target

Startup Project

[‘";'E‘} SampleWpf

Change
Target ™

y J=10|dx3 uonnjos

Available Tools Show all tools

[Application Timeline CPU Usage

Examine where time is spent in your application. Useful when See where the CPU is spending time executing your code.
troubleshooting issues like low frame rate Useful when the CPU is the performance bottleneck

O GPU Usage % Memory Usage
Examine GPU usage in your DirectX application. Useful to Investigate application memory to find issues such as memory
determine whether the CPU or GPU is the performance leaks
bottleneck

R
=
3
2
o
=
=
=
=
m
w
m
2
]
sl
3
o
m
=
=
o
3
A
m
sl
3
=
=

Performance Wizard

suonedyiion Jauiojdxg wea malp sse|

CPU Sampling, Instrumentation, .NET Memory allocation, and
Resource Contention

1210(dx3 12(gp MRS 05

b3 [PROIA TAIN

ErrorList Breakpoints Output Find Results 1 Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish -

Figure 44: Enabling the CPU Usage Diagnostic Tool

69

www . dbooks . org

https://www.dbooks.org/

Before continuing, let’'s add some code to the sample application that simulates intensive CPU
work. Add the method shown in Code Listing 12, and make sure you invoke such a method after
the ImageFileCollection assignment to the Window’s DataContext property. The
System.Threading.Thread.SpinWait method causes the running thread to wait for the
specified milliseconds, and this is repeated within a 10,000-iterations loop with the purpose of
causing CPU overhead.

Code Listing 12

private void SimulateIntensiveWork()
{
var watch = new Stopwatch();
watch.Start();
for (int i=0; i < 10000; i++)
{
//Simulates intensive processing.
System.Threading.Thread.SpinWait (800000) ;

¥
watch.Stop();

When ready, click Start in the Diagnostic Hub. You will see how Visual Studio starts reporting
the CPU usage in the Live Graph. Wait for 30-40 seconds, then stop the diagnostic session.
When finished, Visual Studio gives a detailed report, as shown in Figure 45.

70

w SampleWpf - Microsoft Visual Studio Y & | Quick Launch (Ctrl+Q) Pl - o x

File Edit View Telerikk Project Build Debug Team Datalake Tools VisualSVN Architecture Test Infragistics Alessandro Del Sole = .‘
Analyze Window Help
G- | [=l ~ T | - ~ | Release - Any CPU = SampleWpf ~ P Start v| p ; M- =

Report20160714-2332.diagsession™ + 2 ENIFE]] ImageRenderingWindow.xaml.cs SampleWpf ImageRenderingWindow.xaml
£ =Y ult

Diagnostics session: 33,135 seconds

| 5s 30s |

4 CPU (% of all processors) Process CPU Usage

100 Time: 14,9955
Value: 12% of all processors

) Jsaiojdxguonnjos sjo0) ansoubelg

¥ogjoo] Jsaiojdig R samjensip kejuds

Create detailed report.. 'Y Filter ~

Function Mame Total CPU (%) = Self CPU (%) | Total CPU (ms) Self CPU (ms) | Module
4 SampleWpf.exe (PID: 19044) 100,00% 0,00% 31028 0 SampleWpf.exe
4 [External Code] 100,00% 0,73% 31028 225 42 modules
4 SampleWpfApp:Main 99,27% 0,00% 30803 0 SampleWpf.exe
4 [External Code] 99.27% 0,74% 30803 229 44 modules
4 SampleWpfimageRenderingWindow:.ctor 98,54% 0,00% 30574 SampleWpf.exe
[» SampleWpf.ImageRenderingWindow:SimulatelntensiveW... 98,48% 0,00% 30355 SampleWpf.exe
[» SampleWpf.ImageRenderingWindow:InitializeComponent 0,05% 0,00% 17 SampleWpf.exe
[» SampleWpf.ImageRenderingWindow+ImageFileCollection.... 0,00% 0,00% 1 SampleWpf.exe
[External Code] 0,00% 0,00% 1 6 modules

@
2
2
w
&
2
=

=
m
o
o

=
o
7
in

b
]

saipadold suopedyon JRI0|dX3 We3) MAIp Sse|

121013 PR TIAIN

Error List Breakpoints Output Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish «

Figure 45: Investigating the CPU Usage

At the top, the report shows the duration of the diagnostic session and the CPU utilization during
the application lifecycle. At the bottom, you can see a list of method calls, including constructors
and external code, and the CPU usage they caused. In this particular case, the
SimulateIntensiveWork method caused the more intensive work for the CPU. The report
shows five columns:

o Total CPU (%), which shows the percentage of usage caused by the selected function
and the functions it called.

e Self CPU (%), which shows the percentage of usage caused by the selected function,
excluding the functions it called.

e Total CPU (ms), which shows the time in milliseconds the CPU was busy because of the
selected function and the functions it called.

e Self CPU (ms), which shows the time in milliseconds the CPU was busy because of the
selected function, excluding the functions it called.

¢ Module, which shows the component name that contains the selected function or the
number of external modules referenced.

As you can easily imagine, the more a function causes the CPU to be busy, the more it should

be analyzed in code to see if it is performing expected, extensive work or if a bottleneck has
occurred.

www . dbooks . org

https://www.dbooks.org/

Analyzing GPU performances

The Graphics Processing Unit (GPU) is the video card on your machine that makes it possible
to render anything you see on screen, from text and windows, to videos and images. In the case
of applications that make intensive usage of the GPU, especially with media and games, you
can leverage a diagnostic tool called GPU Usage, which is available in the Diagnostics Hub

(see Figure 46).

w Cap23 - Microsoft Visual Studio
File Edit View Telerk
Help

e -

Project Build Debug Team Tools

ERTTIERE

ROl TR R Rl EL T Il Report20160715-1220.diagsession”™

Release ~ | Any CPU

Analysis Target

Startup Project
Fl'é} TaskBarlcons

Change
Target ™

Available Tools

[Application Timeline
Examine where time is spent in your application. Useful when
troubleshooting issues like low frame rate

GPU Usage

Examine GPU usage in your DirectX application. Useful to
determine whether the CPU or GPU is the perfformance
bottleneck

¥0gjoo] Jasojdig 2duewopad Ji0|dx3 ;BARS 13zIjEnsIp Xejuls

Performance Wizard
CPU Sampling, Instrumentation, .MET Memory zallocation, and
Resource Contention

3
il
e
m
2
I3
=
[i]
a2
a
o
@

1210(dx3 PROW TN

VisualSVN

~ | TaskBarlcons

%Y & | Quick Launch (Ctrl+Q) P -
Architecture Test Infragistics Apalyze Window

S }Start-|p -

MainWindow.xaml

Show all tools

[] CPU Usage
See where the CPU is spending time executing your code,
Useful when the CPU is the performance bottleneck
Memory Usage
Investigate application memory to find issues such as memory
leaks

Error List.. Breakpoints Output Find Results 1 Find Symbol Results Azure App Service Activity Package Manager Console

Ready

B x

Alessandro Del Sole - ﬂ

y 1au0)dxg uoinjog

saipadosd suonedyjop sRuojdig wea) manp sse|

Publish

Figure 46: Enabling GPU Usage

This tool’'s primary purpose is analyzing applications that heavily use the DirectX graphic
libraries. Though WPF invokes DirectX behind the scenes, you will get limited information from
GPU Usage unless you code 3-D graphics and animations. However, you can definitely get

information about the GPU utilization in any WPF application that works with videos, animations,

and, more generally, with media content.

72

73

= Tip: The goal of this e-book is to cover common WPF scenarios, not specific
development contexts such as gaming or 3-D graphics. If you want to see a more
specific example of GPU usage with WPF, you can check out the Walkthrough:
Hosting Direct3D9 Content in WPF on MSDN.

When you click Start, Visual Studio begins collecting information about the GPU utilization that
is immediately reported in the Live Graph. Figure 47 shows a sample report based on a WPF
application while playing a video.

w Cap23 - Microsoft Visual Studio Y & | Quick Launch (Ctrl+Q) Pl - o x

File Edit View Telerik Project Build Debug Team Tools VisualSWN Architecture Test Infragistics Analyze Window Alessandro Del Sole = ﬂ
Help

G- | B2 W m| - ~ | Release - Any CPU = TaskBarlcons M Startv| Mo

Report20160715-1553 (2).diagsession* + > ETNITT T
= Y ih
Diagnostics session: 42,775 seconds W User mark
| o |
A Frame time (ms) Frame time

30

4 Frames per second Frames per second
100 100

60 60

suoijeaynol Jaiojdig wea) malp sse|y Jauojdxg uonnjos

30 30

L
&

El

ES
8

=
[=4

o
&
o

w
S

2

3

o
[}

-l
m

=
3

a

El

a

m

o
@

=
=

saipadolg

4 GPU utilization GPU utilization (%)
100 100

1Riojdg palgg saneEs oS

Select a range of up to three seconds in the timeline above,
and then view details of GPU usage for that range.

Jz10| d.‘-'la PPo TN

Open in WPA
Error List.. Breakpoints Output Find Results 1 Find Symbol Results Azure App Service Activity Package Manager Console

Ready 1 Publish «

Figure 47: GPU Utilization in Action

www . dbooks . org

https://msdn.microsoft.com/en-us/library/cc656785(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/cc656785(v=vs.110).aspx
https://www.dbooks.org/

The Diagnostic session area still reports the duration of the application lifecycle. With DirectX
utilization, you can see the frame time in milliseconds and the frame rate per second at a given

time. In this case, you only get information in the GPU Utilization area. The utilization is due to
the video playing. Before you can analyze details for GPU utilization, you need to select a small

interval of time, up to three seconds, then click the view details hyperlink. At this point, you will
see a detailed report for the GPU utilization, as shown in Figure 48. If your code uses DirectX

directly, you will get details for each marker. In this case, you can see how the GPU has been

busy in decoding a video during the selected time frame, and you can see the threads involved
in the work. You can hover over each marker to see additional details (if available). At the

bottom, there is a list of events; in this case, all events are generically called GPU Work, but
would be more detailed in the case of direct calls to the DirectX libraries.

w Cap23 - Microsoft Visual Studio

File
Help

fe-

Edit View

|8 -2

Telerik

o |

Project

Build

Debug

Team Tools

-| Release ~ | Any CPU

GPU Usage: Report20160715-1333 (2) + X |y (S pa e W phls [T =T

Report20160713-1553 (2} (20,255 to 21,885) | Process: TaskBarlcons.exe (5872) = Threads = WSync: Display 0 -

VisualSVN

- TaskBarlcons

MainWind

Architecture

Y

Test

- P Start - | B

ow.xaml

l.;:‘

Infragistics

Analyze

Quick Launch (Ctrl+0))

Window

GPU work cannot be attributed to specific Direct¥ calls without upgrading to the latest Windows 8.1 version,

Pl - nm

Alessandro Del Sole - .ﬂ

204s

2055

f T
2063

207s

f T
20385

209s

T ' LIPS
21,05

= e o b e e e e e i

GPU VIDEO_DECODE

Thread 5124

Thread 14624

Thread 2904
— 4 1891 %

o
&
=1
ES
g
=
7
c
5
=
I3
w
m
2
[}
<
a
o
m
E
3
a
=1
2
m
<
]
3
T

[] Sort Hierarchically Export Data

192
193
194
195
196
197
198
199
200
202
204
205

1a101dx3 palgp sames 105

1a10(dx3 RO TINN

Error List...

Ready

Breakpoints

-4

Event Mame
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work
GPU Work

CPU Start (ns)

GPU Start (ns)
20.257.135.353
20.259.010.504
20.259.867.483
20.260.065.201
20.260.781.514
20.296.938.541
20.298.958.886
20.299.821.299
20.326.991.064
20.330.252.052
20.331.259.357
20.357.003.743

Figure 48: Reporting the GPU Work

GPU Duration (ns)
1.849.795
834.038
173.381
694.881
179.908
1.915.208
826.190
166.626
2.292.623
882.939
233.941
1.821.118

OQutput Find Results 1 Find Symbol Results Azure App Service Activity

Process Name

TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe
TaskBarlcons.exe

TaskBarlcons.exe

Thread ID

Package Manager Console

CPU Core

GPU Engine

Publish «

=

Yy Jaio)dx3 uonnjog

saipadold suopedyion JRiojdeg wea) maip sse|

75

Hints about the Performance Wizard

Visual Studio 2015 inherits from its predecessors a profiling tool known as Performance Wizard.
This tool has been updated with a modern user interface, but it performs analysis sessions that
are essentially similar to the Memory Usage and CPU Utilization, plus has a couple of
diagnostic tools that | will describe shortly. Behind the scenes, the Performance Wizard relies on
the Visual Studio profiler called VsPerf.exe. This is a command-line tool that can run on
machines on which Visual Studio is not installed, such as servers. Performance Wizard is
enabled in the Diagnostic Hub, as shown in Figure 49.

w SampleWpf - Microsoft Visual Studio Y & | Quick Launch (Ctrl+) P - B x
File Edit View Telerik Project Build Debug Team Tools Visual3VN Architecture Test Infragistics Apalyze Window Alessandro Del Sole - ﬂ

Bl < g | -2 d‘| - = | Release - Any CPU - SampleWpf - » Startv| o

Report20160713-1926.diagsession # < llaRETy] ImageRenderingWindow.xaml.cs SampleWpf ImageRenderingWindow.xaml

Analysis Target

Yy Jauio)dx3g uonnjos

Startup Project

@ SampleWpf

Change
Target ™

Available Tools

Show all tools

Application Timeline CPU Usage
Examine where time is spent in your application, Useful when See where the CPU is spending time executing your code,
troubleshooting issues like low frame rate Useful when the CPU is the performance bottleneck
GPU Usage Memory Usage
Examine GPU usage in your DirectX application. Useful to Investigate application memeory to find issues such as memory
determine whether the CPU or GPU is the performance leaks
bottleneck
Performance Wizard

CPU Sampling, Instrumentation, .NET Memory allocation, and
Resource Contention

Lo
g
=
3
=
&
=4
[
=
I3
«
m
2
I3
ol
i
-l
m
=
3
F
=1
a
m
m

E
@
=
=

saipadold suopedyion JRiojdig wea) MAIp sse|

1210)dx3 P2 12Mes DS

AN

Error List.. Breakpoints Output Find Results 1 Find Symbol Results Azure App Service Activity Package Manager Console

Ready 4 Publish =
Figure 49: Enabling the Performance Wizard
The Performance Wizard offers the following diagnostic tools:

CPU Sampling, which allows for analyzing the CPU usage.

Instrumentation, which measures function call counts and timing.

.NET memory allocation, which tracks managed memory allocation.

Resource contention data, which is useful for detecting threads waiting for other
threads.

I will not discuss CPU Sampling and .NET memory allocation here; you have seen how to use
the Memory Usage and CPU Usage, which are more recent tools that target Windows Store
apps as well, while the Performance Wizard does not. When you click Start, Visual Studio starts
the Performance Wizard by asking you to select the profiling method (see Figure 50).

www . dbooks . org

https://www.dbooks.org/

Performance Wizard -- Page 1 of 3

Specify the profiling method

Profiling your application can help diagnose performance problemns and identify the most common
expensive methods in your application. Te begin, choose a profiling method from the options below.

What method of profiling would you like to use?

() CPU sampling (recommended)
Maonitor CPU-bound applications with low overhead

(@ Instrumentation
Measure function call counts and timing

) .NET memory allocation
Track managed memaory allocation

() Resource contention data {concurrency)
Detect threads waiting for other threads

Read more about profiling methods

MNext = Cancel

Figure 50: Specifying the Profiling Method

Select Instrumentation, which is useful for checking for functions doing the most individual
work. When you click Next, you will be asked to specify the analysis target. You can leave the
default selection unchanged on the current project, but you could also specify a different .exe
file, an ASP.NET application, and even a .dll library. Complete the Wizard and start profiling.
While the application is running, Visual Studio collects information about function calls. You can
end the diagnostic session simply by closing the application, and you will get a detailed report of
the functions doing the most individual work, as shown in Figure 51.

76

w SampleWpf - Microsoft Visual Studio Y &7 | Quick Launch (Ctrl+Q) P - B0 x
File Edit View Telerik Project Build Debug Team Jools VisualSVMN Architecture Test Infragistics Analyze Window Help Alessandro Del Sole = ‘

‘e-o|@-2 W - b Start - | 5

- = | Release -~ AnyCPU ~ | SampleWpf

SampleWpf160715(2)wsp + > [yl [V ER i foel ol [T BT Appxaml| deringWind SampleWpf ImageRenderingWind

Current View: Summary

Instrumentation Profiling Report

1371eNS]

150 milliseconds of total execution time

Notificati

)iy g

—— CPU %% Usage)

FETT:

Y Filter by selection O View Guidance

T Zoormn by selection

T Zoorn reset Report
Y Zoom out

opad
ojdx3 wea) maip sse|y

13uc

"2 Show Trimmed Call Tree

1dxg 23ueLLIC

Compare Reports..

neany

0] IR
suc

Export Report Data...

5 6 7
Wall Clock Time (Secands)

g

il Save Analyzed Report...

Filter Report Data

sa1padc

Hot Path Toggle Full Screen

1 1300 &

124¢

NI

Function Name

&= SampleWpf.exe

&= SampleWpf.App.Main()

4= System Windows.Application.Run()

Elapsed Inclusive Time %
100,00

100,00

9731

Elapsed Exclusive Time %) Set Symbol Paths...

0,00
2,45
67,01
1.4

& SampleWpf.ImageRenderingWindow..ctor() 3030

Related Views: Call Tree Functions

Functions With Most Individual Work

Name Exclusive Time %
System.Windows.Application.Run() I (701
System.Windows.Application.LoadComponent({ebject, class System.Uri) I 7704

SamnleWnf Ann. Mainl I 247

Error List Breakpoints Output Find Results 1 Find bol Results Azure App Service Ac Package Manager

Ready A Publish «
Figure 51: Functions Doing the Most Individual Work
The Resource contention data tool shows information about thread concurrency—threads

waiting for other threads—with most contended resources and most contended threads, as
represented in Figure 52.

www . dbooks . org

https://www.dbooks.org/

w SampleWpf - Microsoft Visual Studio

File Edit View Telerik Project Build Debug Team TJools VisualsVM Architecture
BN - | B-2 W d‘| Release -~ Any CPU - SampleWpf

SampleWpf160715(3)wsp + X BEINMEN R TR ET PR Report20160715-1926.diagsession

=> Current View: Summary
Concurrency Profiling Report

7 total contentions

4 3
Wall Clock Tirme (Seconds)

x0qjoo] JRi0jdxg ouewiopay JRi0)dig JRMIRS sRZiEnsIp Xejuls

Most Contended Resources

Handle 1
Multiple Handles 1

<}
=
o
¥
3
i
=]
Z
=
B
3
o
-
z

Critical Section 1

Handle 2

Most Contended Threads
Thread ID MName
10396 COM+_Entry_Paint

12101dx3 RROW TIAIN

Test Infragistics

Y & | Quick Launch (Ctrl+0) P o B x

Analyze Window Help Alessandro Del Sole ~ ‘

- b Start - | 5

Appaaml

Name Contentions %

28,57
28,57
28,57
14,29

Contentions %
I 00,00

ImageRenderingWindow.xaml.cs SampleWpf

. Notificati
—— Contentions

Y Filter by selection Bl Show All Code
T Zoormn by selection
T Zoorn reset

T Zoom out

ﬂ View Guidance

Report

%= Show Trimmed Call Tree
&= Show Hot Lines

=% Compare Reports...

saipadold suopesiyiop saso0jdxg wea) maiy sse) sai0idx3 uonnjos

“& Export Report Data...
M Save Analyzed Report..
Contentions
2

Y Filter Report Data
[l Toggle Full Screen

2
2 ©.) Set Symbol Paths...
1

Contentions
ki

Error List Breakpoints Output Find Results 1 Find Symbol Results Azure App Service Activity Package Manager Console

Ready

A Publish «

Figure 52: Understanding Thread Concurrency and Contended Resources

Of course, this tool will be particularly useful with applications that create multiple threads to do

some of their work.

The Performance Explorer window

Each time you start a profiling session with the Performance Wizard, Visual Studio collects and
organizes reports into a convenient view offered by the Performance Explorer tool window,
which should be visible automatically and that you can also enable by selecting Debug, Profiler,
Performance Explorer, Show Performance Explorer (see an example in Figure 53).

78

79

Performance Explorer » 1 X
Actions = ‘& Launch Python Profiling...

4 SampleWpf (Sampling) a

F Reports
o1 SampleWpf160715.vsp
F Targets

'8 SampleWpf
4 [E| SarmpleWpf1 (Sampling)

4 Reports
S SampleWpf160715.vspx
a Targets

'8 SampleWpf
4 [m SampleWpf2 (Instrurentation)

F Reports
23 SampleWpf160715(1).vsp
F Targets

B SampleWpf
F SampleWpf3 (Instrurentation)

F Reports
S SarmnpleWpf160715(2) vsp
P Targets
om SampleWpf -

MNG W Toclbox SOL Serv.. UML Mo...

Figure 53: The Performance Explorer Tool Window

As you can see, Performance Explorer provides a categorized view of the profiling sessions
based on their target and profile. You can simply double-click a report file to open the
corresponding viewer. You can also compare reports by right-clicking a report name, then
selecting Compare Performance Reports.

Chapter summary

Analyzing a WPF application performance is an important task, and Visual Studio demonstrates
once again how powerful it is by offering a number of diagnostic tools. With the Memory Usage
tool, you can investigate how your application uses memory and have an easier time of
discovering memory leaks. With the CPU Usage tool, you can check if your application is
performing unexpected CPU-intensive work. With the GPU Usage tool, you can analyze how
your application is consuming GPU resources. With the Performance Wizard, you have
specialized tools to investigate function calls and thread concurrency.

www . dbooks . org

https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Introduction
	Chapter 1 Debugging WPF Applications
	Debugging in Visual Studio
	Preparing a sample application
	Quick overview of debugging tools

	Chapter summary

	Chapter 2 Stepping Through Code
	Introducing breakpoints and data tips
	Run-to-click in Visual Studio 2017
	Intentionally and unintentionally breaking the application execution
	Removing breakpoints

	Understanding runtime errors
	Fixing code at runtime with Edit and Continue
	Stepping through code
	Step Into and Step Over
	Step Out
	Run To Cursor
	Set Next Statement and Show Next Statement

	Debugging user code only
	Enabling native code debugging
	Customizing breakpoints
	Managing breakpoints with the Breakpoints window
	Providing breakpoint labels
	Setting breakpoint conditions
	Sending messages to the Output window with Actions

	Introducing Performance Tips
	Chapter summary

	Chapter 3 Working with Debug Windows
	Investigating local variables with the Locals window
	Investigating current variables with the Autos window
	Analyzing method calls: the Call Stack window
	Evaluating expressions: Watch and Quick Watch windows
	Debugging lambda expressions

	Debugging threads: the Threads window
	Asynchronous debugging: the Tasks window
	Chapter summary

	Chapter 4 Debugger Visualizers and Trace Listeners
	Introducing debugger visualizers
	The WPF Tree Visualizer

	Interaction with the debugger: the Debug and Trace classes
	Controlling trace information

	Exporting debugger information with trace listeners
	Working with trace listeners at configuration level

	Chapter summary

	Chapter 5 XAML Debugging
	WPF Trace
	UI debugging tools
	Live Visual Tree and Live Property Explorer
	XAML In-App Menu
	Go to Live Visual Tree
	Enable Selection
	Display Layout Adornments
	Track Focused Element

	XAML Edit and Continue

	Chapter summary

	Chapter 6 Analyzing the UI Performances
	Preparing an example
	The Application Timeline tool
	The Diagnostic session
	UI thread utilization
	Visual throughput (FPS)
	Timeline details
	Changing the analysis target

	Chapter summary

	Chapter 7 Analyzing the Application Performances
	Investigating memory allocation
	Investigating the managed heap size
	Analyzing object count
	Comparing snapshots

	Analyzing CPU utilization
	Analyzing GPU performances
	Hints about the Performance Wizard
	The Performance Explorer window

	Chapter summary

