CHAPTER 1
TEACHING NOTES
You have substantial latitude about what to emphasize in Chapter 1. I find it useful to talk about
the economics of crime example (Example 1.1) and the wage example (Example 1.2) so that
students see, at the outset, that econometrics is linked to economic reasoning, even if the
economics is not complicated theory.
I like to familiarize students with the important data structures that empirical economists use,
focusing primarily on cross-sectional and time series data sets, as these are what I cover in a
first-semester course. It is probably a good idea to mention the growing importance of data sets
that have both a cross-sectional and time dimension.
I spend almost an entire lecture talking about the problems inherent in drawing causal inferences
in the social sciences. I do this mostly through the agricultural yield, return to education, and
crime examples. These examples also contrast experimental and nonexperimental
(observational) data. Students studying business and finance tend to find the term structure of
interest rates example more relevant, although the issue there is testing the implication of a
simple theory, as opposed to inferring causality. I have found that spending time talking about
these examples, in place of a formal review of probability and statistics, is more successful (and
more enjoyable for the students and me).
SOLUTIONS TO PROBLEMS
1.1 It does not make sense to pose the question in terms of causality. Economists would assume
that students choose a mix of studying and working (and other activities, such as attending class,
leisure, and sleeping) based on rational behavior, such as maximizing utility subject to the
constraint that there are only 168 hours in a week. We can then use statistical methods to
measure the association between studying and working, including regression analysis that we
cover starting in Chapter 2. But we would not be claiming that one variable “causes” the other.
They are both choice variables of the student.
1.2 (i) Ideally, we could randomly assign students to classes of different sizes. That is, each
student is assigned a different class size without regard to any student characteristics such as
ability and family background. For reasons we will see in Chapter 2, we would like substantial
variation in class sizes (subject, of course, to ethical considerations and resource constraints).
(ii) A negative correlation means that larger class size is associated with lower performance.
We might find a negative correlation because larger class size actually hurts performance.
However, with observational data, there are other reasons we might find a negative relationship.
For example, children from more affluent families might be more likely to attend schools with
smaller class sizes, and affluent children generally score better on standardized tests. Another
possibility is that, within a school, a principal might assign the better students to smaller classes.
Or, some parents might insist their children are in the smaller classes, and these same parents
tend to be more involved in their children’s education.
(iii) Given the potential for confounding factors – some of which are listed in (ii) – finding a
negative correlation would not be strong evidence that smaller class sizes actually lead to better
performance. Some way of controlling for the confounding factors is needed, and this is the
subject of multiple regression analysis.
1.3 (i) Here is one way to pose the question: If two firms, say A and B, are identical in all
respects except that firm A supplies job training one hour per worker more than firm B, by how
much would firm A’s output differ from firm B’s?
(ii) Firms are likely to choose job training depending on the characteristics of workers. Some
observed characteristics are years of schooling, years in the workforce, and experience in a
particular job. Firms might even discriminate based on age, gender, or race. Perhaps firms
choose to offer training to more or less able workers, where “ability” might be difficult to
quantify but where a manager has some idea about the relative abilities of different employees.
Moreover, different kinds of workers might be attracted to firms that offer more job training on
average, and this might not be evident to employers.
(iii) The amount of capital and technology available to workers would also affect output. So,
two firms with exactly the same kinds of employees would generally have different outputs if
they use different amounts of capital or technology. The quality of managers would also have an
effect.
Introductory Econometrics: A Modern Approach by Jeffrey M. Wooldridge